淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-3105201113293000
中文論文名稱 以模糊理論為基礎探討顧客導向之電子化服務合作合適度
英文論文名稱 Using Fuzzy Theory to Explore the Appropriateness of Customer-Oriented E-Service Cooperation
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士班
系所名稱(英) Department of Business Administration
學年度 99
學期 2
出版年 100
研究生中文姓名 林俞均
研究生英文姓名 Yu-Jyun Lin
學號 698610887
學位類別 碩士
語文別 中文
口試日期 2011-05-09
論文頁數 99頁
口試委員 指導教授-張瑋倫老師
委員-李月華老師
委員-董惟鳳老師
中文關鍵字 E化服務  價值網絡  層級分析  模糊理論  合作合適度 
英文關鍵字 E-service  Value network  AHP  Fuzzy theory  The appropriate degree of cooperation 
學科別分類 學科別社會科學管理學
中文摘要 本研究以E化服務中的入口網站為研究標的,探討企業參考消費者角度,評估E化服務中入口網站的合作合適度。研究架構可分為三部分,首先利用Allee的價值網絡圖,呈現出透過合作所提供的服務傳遞給消費者的價值,藉此瞭解消費者需求;接著透過語意差量表,調查調查消費者對那些價值得重視程度與滿意度;最後利用層級分析法計算各價值的權重,再透過模糊理論計算各價值滿意度,以探討合作合適度。
本研究以Yahoo!線上字典與Yahoo!線上音樂平台兩個案做驗證。Yahoo!目前之合作對象為Dr. eye之線上字典,本研究亦選取Google字典為比較標的。研究結果顯示使用者認為對象Dr. eye並非最合適的,應與Google合作較佳,本研究推論原因在於原本使用Google為搜尋網站之人口較Yahoo!多,因此使用Google線上字典較多,故其可能為使用者認為Yahoo!與Google合作較為合適之原因。
而Yahoo!線上音樂平台之個案中,Yahoo!目前之合作對象為KKBOX,本研究加入目前另一知名線上音樂平台ezPeer+,讓使用者選取其認為Yahoo!線上音樂平台合適之合作對象。結果顯示,使用者認為KKBOX為最佳合作對象。雖然問卷填答者整體認為KKBOX為最佳合作對象,但若以性別分群,男女會有不同之意見,男生認為KKBOX為最佳合作對象,女生則是認為ezPeer+為最佳合作對象;以職業分群,學生與上班族亦有不同的意見,學生認為KKBOX為最佳合作對象,上班族則認為ezPeer+為最佳合作對象。可能原因為KKBOX常在網路上接觸到,而ezPeer+則是與電信業者合作,學生與男性較常在網路上自行尋找音樂平台,因此有較大機會接觸到KKBOX;上班族及女性通常會由網路以外的管道尋找音樂平台,因此接觸ezPeer+機會較大。由此可見,使用者對於Yahoo!線上音樂平台現行之合作對象是滿意的,但使用者對於KKBOX與ezPeer+兩者之歸屬程度差異並不大,因此Yahoo!應與KKBOX共同研究並持續改善服務,以提供更優質的服務給使用者。
本研究以模糊理論為基礎透過顧客之觀點,使E化服務企業能參考消費者角度評估合作合適度,主要貢獻有下列三點:
1. 透過價值網絡,使E化服務企業瞭解其所提供之服務,必須傳遞何種價值給消費者,並進一步滿足消費者需求。
2. 本研究所提供之模式能使E化服務企業能更有效的利用有限的資源。
3. 本研究所提之模式能夠使E化服務企業落實以顧客導向為基礎之概念。
英文摘要 Today, service industry has become the economic core of each country. Particularly, the concept of e-service extends the business model of electronic commerce. This research investigates the alliance of e-services from customer perspective. This research utilizes the concept of Allee (2000) to construct the value network of cooperation. This study takes into account customer assessment as the basis for e-service cooperation. This work uses Fuzzy theory to estimate the feasibility of alliance by collecting customer value perception. The goals of this research are (1) using value network to present the value among e-service providers and customers, (2) utilizing Fuzzy theory to determine the score and weight for e-service cooperation, and (3) exploring the appropriateness of customer oriented e-service cooperation.
In this study, we use two cases for validation: Yahoo! and online dictionary and Yahoo! and online music platform. In the case of online dictionary, this study selected Google online dictionary to compare with current partner (Dr. eye) of Yahoo!. The results reveal the users consider Google online dictionary is superior to Dr eye for further cooperation. We inferred that certain people used Google more than Yahoo! as the default search engine which results in more usage of Google online dictionary. Hence, users consider Google online dictionary is more appropriate than Yahoo! for cooperation.
In the case of online music platform, this study selected ezPeer+ to compare with current partner (KKBOX) of Yahoo!. The results reveal the users consider the existing partner (KKBOX) is superior. However, gender difference results in different results. For example, males preferred KKBOX and females preferred ezPeer+. In addition, students and workers have different opinions. Students preferred KKBOX and workers preferred ezPeer+. The present research infers that KKBOX frequently
exposed to the Internet and ezPeer+ cooperates with telecommunication operators. Students and males find music platform themselves on the internet and have more chances to contact with KKBOX. Workers and females frequently inquire other people to find music platform which is a chance of exposure to ezPeer+.
In summary, this research investigates the alliance of e-services from customer perspective by using value network and fuzzy theory. The major contributions are:
1. E-service companies recognize the value of e-services they provided From value network.
2. The E-service companies can utilize resources efficiently for cooperation.
3. E-service companies can take into account customer perspective to estimate the feasibilityof alliance.
論文目次 目錄
目錄 I
表次 II
圖次 IV
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 4
第三節 研究問題與目的 7
第四節 研究流程 10
第二章 文獻探討 13
第一節 E化服務 13
第二節 價值網絡(Value Network) 18
第三節 模糊理論(Fuzzy Theory) 22
第三章 研究方法 28
第一節 研究架構 28
第二節 模糊理論 31
第三節 價值網絡 40
第四章 個案探討─Yahoo!與線上字典 43
第一節 問卷設計 43
第二節 信度分析與敘述性統計 46
第三節 資料分析 50
第四節 小結 57
第五章 個案探討─Yahoo!與線上音樂平台 60
第一節 問卷設計 60
第二節 信度分析與敘述統計 62
第三節 資料分析 67
第四節 小結 74
第六章 結論 76
第一節 研究結論 76
第二節 管理意涵 79
第三節 研究限制 82
參考文獻 84
附錄一 90
附錄二 95

表次
表2-1 各學者E化服務之研究範疇 17
表2-2 價值交換 20
表2-3 各學者對價值網絡之概念 21
表2-4 MODM與MADM比較表 24
表2-5 MADM主要方法整理 25
表2-6 模糊理論各學者之概念 26
表3-1 符號涵義 32
表3-2 評估尺度定義及說明 33
表3-3 隨機指標值R.I. 35
表3-4 單一準則語意量表評估尺度 36
表4-1 Yahoo!線上字典合作和適度主準則之倒數矩陣與權重 47
表4-2 可靠性子準則之倒數矩陣與權重 47
表4-3方便性子準則之倒數矩陣與權重 47
表4-4語言學習子準則之倒數矩陣與權重 48
表4-5 觀察值處理摘要 48
表4-6 可靠性統計量 48
表4-7 符號涵義 51
表4-8 Yahoo!與Dr. eye可靠性之模糊滿意度 51
表4-9 Yahoo!與Google可靠性之模糊滿意度 51
表4-10 Yahoo!與Dr. eye方便性之模糊滿意度 52
表4-11 Yahoo!與Google方便性之模糊滿意度 52
表4-12 Yahoo!與Dr. eye語言學習之模糊滿意度 53
表4-13 Yahoo!與Google語言學習之模糊滿意度 53
表4-14 使用人次前五名之網站公司 55
表4-15 男性與女性對Yahoo!與Dr. eye合作各評估主準則模糊滿意度 55
表4-16男性與女性對Yahoo!與Google合作各評估主準則模糊滿意度 55
表4-17 乘上權重後男性與女性之各評判標準之歸屬函數及最終決策函數 56
表4-18 大學與研究所對Yahoo!與Dr. eye合作各評估主準則模糊滿意度 56
表4-19 大學與研究所對Yahoo!與Google合作各評估主準則模糊滿意度 56
表4-20 乘上權重後大學與研究所之各評判標準之歸屬函數及最終決策函數 57
表5-1 Yahoo!線上音樂平台合作和適度主準則之倒數矩陣與權重 63
表5-2 網頁內容品質子準則之倒數矩陣與權重 63
表5-3 E化服務品質子準則之倒數矩陣與權重 64
表5-4 觀察值處理摘要 64
表5-5 可靠性統計量 65
表5-6 符號涵義 67
表5-7 服務提供者之可靠性之模糊滿意度 67
表5-8 Yahoo!與KKBOX網頁內容品質之模糊滿意度 68
表5-9 Yahoo!與ezPeer+網頁內容品質之模糊滿意度 68
表5-10 Yahoo!與KKBOX E化服務品質之模糊滿意度 69
表5-11 Yahoo!與ezPeer+ E化服務品質之模糊滿意度 69
表5-12 男性與女性對Yahoo!與KKBOX合作各評估準則之模糊滿意度 70
表5-13 男性與女性對Yahoo!與ezPeer+合作各評估準則之模糊滿意度 71
表5-14乘上權重後男性與女性之各評判標準之歸屬函數及最終決策函數 72
表5-15 學生與上班族對Yahoo!與KKBOX合作各評估準則之模糊滿意度 72
表5-16 學生與上班族對Yahoo!與ezPeer+合作各評估準則之模糊滿意度 72
表5-17乘上權重後學生與上班族之各評判標準之歸屬函數及最終決策函數 73


圖次
圖1-1 2010年各國服務業占GDP比率 1
圖1-2 全球網路使用人數 2
圖1-3 研究流程 12
圖2-1 電子商務與E化服務的不同 13
圖2-2 E化服務分類 15
圖2-3 價值網絡圖 19
圖2-4 價值交換圖 20
圖3-1 研究架構 30
圖3-2 三角模糊數之歸屬函數 36
圖3-3 價值網絡圖 41
圖4-1 Yahoo!線上字典價值網絡圖 43
圖4-2 Yahoo!與各線上字典的合作合適度之評估準則 45
圖4-3問卷填答者年齡比例 49
圖4-4問卷填答者職業分佈 50
圖4-5 問卷填答者居住地區 50
圖5-1 Yahoo!線上音樂平台價值網絡圖 60
圖5-2 Yahoo!與各線上音樂平台之合作合適度之評估準則 61
圖5-3 填答者年齡分布 65
圖5-4 填答者職業分佈圖 66
圖5-5 填答者居住地區 66
圖5-6 填答者是否使用過付費版線上音樂平台比例 66

參考文獻 參考文獻
1. The World Factbook: https://www.cia.gov/library/publications/the-world-factbook/
2. 國際電信聯盟(ITU): http://www.itu.int/ITU-D/ict/
3. AC NIELSON: http://www.nielsen.com/us/en.html
4. 資策會: http://www.iii.org.tw/
5. McKinsey: http://www.mckinsey.com/
6. 美國企業新聞通訊公司: http://www.prnewswire.com/
7. Abramson, J. S. and Rosenthal, B. B. (1995). Interdisciplinary and interorganizational collaboration. In Encyclopedia of social work, 19th edition 1479-1489.Washington, DC: NASW.
8. Allee, V. (2000). Reconfiguring the value network. Journal of Business Strategy, 21(4). 36-39.
9. Allee, V. (2003). The Future of Knowledge: Increasing Prosperity through Value Networks. Burlington, MA: Butterworth-Heinemann.
10. Allee, V. and Schwabe, O. (2009). Measuring the impact of research networks in the EU: value networks and intellectual capital formation, Proceedings of the European Conference on Intellectual Capital, Haarlem,Netherlands.
11. Al-Mudimigh, A. S., Ullah, Z. and Alsubaie, T. A. (2011). A framework for portal implementation: a case for Saudi organization. International Journal of Information Management, 31(1), 38-43.
12. Andersen, E. and Fjeldstad, ØYstein D. (2003). Understanding interfirm relations in mediation industries with special reference to the Nordic mobile communication industry. Industrial Marketing Management, 32(5), 397-408.
13. Anderson, J. C. and Narus, J. A. (1990). A model of distributor firm and manufacturer firm working partnerships. Journal of Marketing, 54(1), 42-58.
14. Baas, S. and Kwakernaak, H.(1977). Rating and raking of multiple-aspect alternatives using fuzzy sets. Journal of Automatica, 13(1), 47-58.
15. Baldwin, J. F. (1993). Evidential support logic, FRIL and case based reasoning. Journal of Intelligent Systems, 8(9), 939-960.
16. Bellman, R. E. and Zadeh, L.A. (1970). Decision-making in a fuzzy environment.
85
Journal of Management Science, 17(4), 141-164.
17. Brouther,W. and Keith, D. (1995). Strategic Alliances: Choose Your Partners. Journal of Long Rang Planning, 28(3), 18-25.
18. Calantone, R. J., Benedetto, C. A. D., Schmidt, J. B. (1999) Using the analytic hierarchy process in new product screening. Journal of Product innovation management, 16(1), 65-76
19. Camarinha-Matos, L. M. and Afsarmanesh, H. (2008). Collaborative networks: Reference modeling. New york: Springer.
20. Chen, S. H. and Hsieh, C. H. (2000). Representation, Ranking, Distance, and Similarity of L-R Type Fuzzy Number and Application. Australian Journal of Intelligent Processing Systems, 6(4), 217-229.
21. Chiou, J. S. and Shen, C. C. (2006). The effects of satisfaction, opportunism, and asset specificity on customers’ loyalty intention toward internet portal sites. Journal of Service Industry Management, 17(1), 7-22.
22. Christensen, C. M. (2003). The innovator's dilemma: The revolutionary book that will change the way you do business. New York: HarperBusiness.
23. Clarke, I. and Flaherty, T. B. (2003). Web-based B2B portals. Journal of Industrial Marketing Management, 32(1), 15-23.
24. Collier, J. E. and Bienstock, C. C. (2006). Measuring Service Quality in E-Retailing. Journal of Service Research, 8(3), 260-275.
25. Contractor, F. J. and Lorange, P. (2002). Cooperative strategies and alliances, Chapter 6 pp.119~143 Paul Olk, Pergamon.
26. Cristobal, E., Flavián, C. and Guinalíu, M. (2007). Perceived e-service quality (PeSQ): Measurement validation and effects on consumer satisfaction and web site loyalty, Managing Service Quality, 17(3), 317 – 340.
27. Crnec, D. and Seljan, S. (2010). Evaluation of open-source online dictionaries. MIPRO, Opatija, Croatia, Proceedings of the 33rd International Convention,858-862
28. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
29. Das, K. T. and Teng, B. S. (2000). A resource-based theory of strategic alliances. Journal of management, 26(1), 36-61
30. Devlin, G. and M. Bleackley (1988). Strategic alliances-guidelines for success. Long range planning, 21(2), 18-23.
31. Dong, W. M., Shsh, H. C. and Wong, F. S. (1985). Fuzzy computations in risk and decision analysis. Journal of Civil Engineering and Environmental Systems, 2(4), 201-208.
32. Dong, W. M. and Wong, F. S. (1987). Fuzzy weighted averages and
86
implementation of the extension principle. Journal of Fuzzy Sets and Systems, 21(2), 183-199.
33. Dubois, D. and Prade, H. (1980). Fuzzy Sets and Systems: Theory and Applications. London, England: Academic Press.
34. Gersony, N. (1996).Sectoral effects on strategic alliances performance for new technology firms. Journal of high technology management research, 7(2), 175-189
35. Gowrisankaran, G. and Rysman, M. (2009). Dynamics of consumer demand for new durable goods (No. w14737). Retrieved from National Bureau of Economic Research.
36. Kahne, S. (1975). A procedure for optimizing development decisions. Journal of Automatica, 11(3), 261-269.
37. Kahraman, C., Cebeci, U. and Ruan, D. (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87(2), 171-184.
38. Kale, P. D. J.and Singh, H. (2001). Value creation and success in strategic alliances: alliancing skills and the role of alliance structure and systems. Journal of European Management, 19(5), 463-471.
39. Kim, J., Allenby, G. M. and Rossi, P. E. (2002). Modeling consumer demand for variety. Journal of Marketing Science, 21(3), 229-250.
40. Kotler, P. and Armstrong, G. (2007). Principle of Marketing. Prentice-Hall.
41. Kreitner, R. and Kinicki, A. (2001). Organizational Behavior(5th ed.). McGraw-Hill companies
42. Ku, E. C. S. and Fan, Y. W. (2009). Knowledge sharing and customer relationship management in the travel service alliances. Journal of Total Quality Management, 20(12), 1407-1421.
43. Laarhoven, P. J. M. and Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Journal of Fuzzy Sets and Systems,11(1-3), 199-227.
44. Lee, G. G. and Lin, H. F. (2005). Customer perceptions of e-service quality in online shopping. International Journal of Retail & Distribution Management, 33(2), 161 – 176.
45. Lee, Y. and Kozar, K. A. (2006) Investigating the effect of website quality on e-business success: An analttic hierarchy process(AHP) approach. Journal of decision support systems, 42(3), 1383-1401
46. Leung, L. C. and Cao, D. (2000). On consistency and ranking of alternatives in fuzzy AHP. European Journal of Operational Research, 124(1), 102-113.
47. Lewis, J. D.(1990),"Partnerships forand managing strategic alliances ,N.Y.:Free Press
87
48. Li, S. X. and Rowley, T. J. (2002). Inertia and evaluation mechanisms in interorganizational partner selection: Syndicate formation among US investment banks. Journal of Academy of management, 45(6), 1104-1119.
49. Lin, C. S. and Wu, S. (2002). Exploring the Impact of Online Service Quality on Portal Site Usage. Symposium conducted at the meeting of System Sciences of Hawaii.
50. Lunnan, R. and Haugland, S. A. (2008). Predicting and measuring alliance performance: a multidimensional analysis. Journal of Strategic Management, 29(5), 545-556.
51. MacCrimmon, K. R. (1973). An overview of multiple objective decision making, in: Cochrane and Zeleny, Eds., Multiple Criteria Decision Making
52. Marciukaityte, D., Roskelley, K. and Wang, H. (2009). Strategic alliances by financial services firms. Journal of Business Research, 62(11), 1193-1199.
53. McAlpine, J. and Myles, J. (2003). Capturing phraseology in an online dictionary for advanced users of English as a second language: a response to user needs. System, 31(1), 71-84.
54. Merig , J. M. and Gil-Lafuente, A. M. (2010). New decision-making techniques and their application in the selection of financial products. Information Sciences, 180(11), 2085-2094.
55. Hitt, M. A., Dacin, M. T., Levitas, E., Arregle, J. L. and Borza, A. (2000). Partner selection in emerging and developed market contexts: Resource-based and organizational learning perspectives. Journal of Academy of Management, 43(3), 449-467.
56. Murakami, Y., Ishida, T. and Nakaguchi, T. (2006). Infrastructure for Language Service Composition. Second International Conference on Semantics, Knowledge, and Grid, skg, 5
57. Pi, S. M., Wu, H. T. and Hsieh, P.H. (2010). A Study on Customer Relationship Management of Online Music Services. Symposium conducted at the meeting of Business and Information of Japan
58. Piccinelli, G. and Stammers, E. (2002). From E-Processes to E-Networks: an E-Service-oriented approach. Symposium conducted at the meeting of Internet computing
59. Ribeiro, R. A. (1996). Fuzzy multiple attribute decision making: A review and new preference elicitation techniques. Journal of Fuzzy Sets and Systems, 78(2), 155-181.
60. Robbins, S. P. (1990). Organizational Behavior, Conpect, Controversies, and Application. New Jersey: Prentice-Hall
61. Rust, R. T. and Kannan, P. K. (2003). E-service: A new paradigm for business in
88
the electronic environment. Journal of Communications of the ACM, 46(6), 36-42.
62. Saaty, T. L. (1978). Modelling unstructured decision problems – the theory of analytical hierarchies. Journal of Mathematics and Computers in Simulation, 20(3), 147-158.
63. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw- Hill.
64. Santos, J. (2003). E-service quality: a model of virtual service quality dimensions. Journal of Managing Service Quality, 13(3), 233-246.
65. Schuber, P. and H usler, U. (2001). E-government meets e-business: A portal site for startup companies in switzerland. Symposium conducted at the meeting of System Sciences of Hawaii.
66. Shahanaghi, K. and Yavarian, H. (2010). MODM-MCDM approach to partner selection in auto industry: A case study on Mazda of Iran. International Journal of Business and Management, 5(11), 183-189.
67. Schmucker, K. J. (1985). Fuzzy Sets, Natural Language Computations, and Risk Analysis, Computer Science Press, Inc., New York, NY.
68. Stabell, C. B. and Fjeldstad, ØYstein D. (1998). Configuring value for competitive advantage: On chains, shops, and networks. Journal of Strategic Management, 19(5), 413-437.
69. Solitander, M. and Tidström, A. (2010). Competitive flows of intellectual capital in value creating networks. Journal of Intellectual Capital, 11 (1), 23 – 38.
70. Strate, R. W. and Rappole, C. L. (1997). Strategic allianices between hotels and restaurants. Journal of Cornell Hospitality Quarterly, 38(3), 50-61.
71. Sun, Q. (2010). Assessing the Effects of e-Service Quality and e-Satisfaction on Internet Banking Loyalty in China. ICEE, 93-96, 2010 International Conference on E-Business and E-Government.
72. Swaid, S. I. and Wigand, R. T. (2009). Measuring the quality of e-service: scale development and initial validation. Journal of electronic commerce research, 10(1), 13-28.
73. Thiele, S. and Weiss, C. (2003). Comsumer demand for food diversity: evidence for Germany. Journal of Food Policy, 28(2), 99-115.
74. Tiwana, A. and Ramesh, B. (2001). e-Services: Problems, Opportunities, and Digital Platforms. Symposium conducted at the meeting of System Sciences of Hawaii.
75. Tseng, T. Y. and Klein, C.M. (1992). A new algorithm for fuzzy multicriteria decision. Journal of Approximate Reasoning, 6(1), 45-66.
76. ul-Haq, R. and Howcroft, B. (2006). An examination of strategic alliances and the origins of international banking in Europe. Journal of Service Industry
89
Management, 18(2), 120-139.
77. van Riel, A. C. R., Liljander, V. and Jurri ns, P. (2001). Exploring consumer evaluations of e-service:a portal site. International Journal of Service Industry Management, 12(4), 359-377.
78. Williams, K., Chatterjee, S. and Rossi, M. (2008). Design of emerging digital services: a taxonomy. Journal of Information Systems, 17(5), 505-517.
79. Xu, Z. (2008). On multi-period multi-attribute decision making. Knowledge-Based Systems, 21(2), 164-171.
80. Yager, R. R. (1978). Fuzzy decision making including unequal objectives. Journal of Fuzzy Sets and Systems, 1(2), 87-95.
81. Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision making. Journal of IEEE Trans. Systems Man Cybernet, 18(1), 183-190.
82. Yang, Z., Cai, S., Zhou, Z. and Zhou, N. (2005). Development and validation of an instrument to measure user perceived service quality of information presenting Web portals. Journal of Information and management, 42(4), 575-589.
83. Yen, C. H. and Lu, H. P. (2008). Effects of e-service quality on loyalty intention: an empirical study in online auction. Managing Service Quality, 18(2), 127 – 146.
84. Zadeh, L. A. (1965). Fuzzy sets. Journal of Information and Control, 8(3), 338-353.
85. Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems. Journal of IEEE Trans. Systems Man Cybernet, SMC-3(1), 28-44.
86. Zeithaml, V. A., Parasuraman, A. and Malhotra, A. (2000). e-service Quality: Definition, Dmensions and Conceptual Model. Working Paper Marketing Science Institute, Cambridge, MA
87. Zeithaml, V. A., Parasuraman, A. and Malhotra, A. (2002). Service quality delivery through web site: acritical review of extant knowledge. Journal of the Academy of Marketing science, 30(4), 362-375.
88. Zimmermann, H.-J. (1986). Fuzzy sets theory – and its applications. Kluwer-Nijhoff
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-06-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信