淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3101201813481900
中文論文名稱 利用X光吸收光譜研究單晶結構的Ni3TeO6
英文論文名稱 X-ray absorption studies of Ni3TeO6 single crystal
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 106
學期 1
出版年 107
研究生中文姓名 陳冠宏
研究生英文姓名 Kuan-hung Chen
學號 603210104
學位類別 碩士
語文別 中文
口試日期 2018-01-19
論文頁數 47頁
口試委員 指導教授-彭維鋒
委員-杜昭宏
委員-邱昭文
中文關鍵字 延伸X光吸收精細結構  X光線偏振二向性  X光磁圓偏振二向性  自旋 
英文關鍵字 EXAFS  XLD  XMCD  Spin 
學科別分類 學科別自然科學物理
中文摘要 本論文主要以同步輻射實驗研究單晶結構Ni3TeO6的電子、原子結構關聯性。實驗包含在不同溫度下X光吸收光譜之吸收近邊緣結構(XANES)、延伸X光吸收精細結構(EXAFS)、X光磁圓偏振二向性(XMCD)、X光線偏振二向性(XLD)。Ni3TeO6隨著溫度從低溫升至室溫,量測沿著樣品不同的方向,意即ab-平面和c軸的磁化率,分別出現不同的特徵峰。由XANES的實驗發現隨著溫度從低溫升至室溫,Ni皆為二價存在。在EXAFS的變溫度實驗中,即使在磁結構相變後,Ni-O鍵長沒有明顯的改變。從XLD實驗結果中發現,由低溫回溫至室溫,其中在磁相變溫度後,電子軌域由3d3z2-r2轉向 3dx2-y2軌域。最後沿c軸量測XMCD變溫實驗,溫度在TSO ≈ 59K,發現鐵磁性的XMCD譜圖。上述的實驗結果,是因為Ni自旋有序才能產生一連串的物理現象。
英文摘要 Here we report the temperature dependence of anisotropic electronic and magnetic structures of Ni3TeO6 single crystalline samples by means of dichroic XAS techniques. Magnetic measurements have revealed an existence of weak Ni-Ni FM interaction near ~ 60 K (TSO) with different peak pointing along the crystallographic c-axis. Below Neel Temperature, TN ~ 52 K, the sample stabilizes in AFM state with the spin axis also parallel to the c-axis. The Ni L3,2-edge XLD plots have revealed contributions both from magnetic interactions (below the spin ordered phase, T ≤ TSO) and temperature independent crystal field effects above TSO. The XLD results show that above TSO, the Ni 3d eg electrons will remain in in-plane 3dx2-y2 orbitals and switches to the out-of-plane 3d3z2-r2 orbitals below TSO. Ni L3,2-edge with H // c along the crystallographic c-axis existence of XMCD spectra. Due to Ni3TeO6 Ni-spin existence, which produce a series of physical phenomena.
論文目次 致謝
中文摘要.................................................Ⅰ
英文摘要...............................................Ⅱ
目錄.....................................................Ⅲ
圖表目錄.................................................Ⅴ
一、 緒論
1-1.多鐵材料簡介........................................1
1-2. Ni3TeO6晶體結構與磁性特性............................2
1-3. 超交互作用(Super exchange Interaction)....................5
二、 X光吸收光譜簡介
2-1.同步輻射與X光吸收光譜...............................6
2-1-1.吸收截面與E0值.....................................9
2-1-2. X光吸收近邊緣結構(XANES)........................10
2-1-3.延伸X光吸收精細結構(EXAFS)..................... 11
2-1-4.實驗方式..........................................16
2-1-5.數據分析..........................................21
2-2. X光磁圓偏振二向性(XMCD)簡介
2-2-1.理論模型..........................................25
2-2-2.實驗方法..........................................28
2-3. X光線偏振二向性(XLD)簡介
2-3-1.理論模型..........................................29
2-3-2.實驗方法..........................................29
三、實驗數據分析與討論
3-1.樣品製備與量測......................................31
3-2. X光磁圓偏振二向性(XMCD)之分析.....................33
3-3. X光吸收近邊緣結構(XANES)之分析....................36
3-4.延伸X光吸收精細結構(EXAFS)之分析...................38
3-5. X光線偏振二向性(XLD)之分析........................42
四、結論.................................................44
參考文獻.................................................45

圖表目錄
圖1-1(a)Ni3TeO6結構圖(b)三種位置的Ni-O八面體...........4
圖1-2變溫磁化率..........................................4
圖1-3超交互作用示意圖....................................5
圖2-1光子能量與銅吸收截面關係圖..........................8
圖2-2 XANES與EXAFS分界圖............................13
圖2-3光電子平均自由路徑與能量關係圖.....................13
圖2-4單一散射與多重散射之圖像...........................14
圖2-5 (a)建設性干涉 (b)破壞性干涉.........................15
圖2-6 X光吸收光譜實驗示意圖.............................17
圖2-7 三種光譜量測方法...................................20
圖2-8 X光吸收光譜之數據分析流程.........................21
圖2-9 Ni L3,2-edge吸收光譜................................27
圖2-10Ni L3,2-edge XMCD譜................................27
圖2-11 XLD實驗示意圖...................................30
圖3-1XRD(a) θscan (b)θ-2θlongscan ......................32
圖 3-2外加磁場變溫磁化率 (a) 100 Oe (b) 2.5 T ..............32
圖3-3 NTO結構與J1-J5示意圖..............................34
圖3-4H // c的Ni L3,2-edgeXANES和XMCD...................35
圖3-5H ┴c的Ni L3,2-edgeXANES和XMCD...................35
圖3-6Ni K-edge XANES....................................37
圖 3-7 Ni K-edge EXAFS傅立葉轉換圖 (a) E ┴ c (b) E // c.......40
圖 3-8氧原子與中心原子Ni夾角示意圖......................41
圖 3-9 鍵長和σ2對溫度關係................................41
表3-1Ni K-edge Fitting.....................................41
圖3-10 Ni L3,2 -edge 及XLD譜圖.............................43

參考文獻 1. J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q. Zhou, G. H. Wang, and J. M. Liu, Appl. Phys. Lett. 86, 125501 ,2005
2. R. V. Chopdekar and Y. Suzuki, Appl. Phys. Lett. 89, 182506, 2006.
3. Khomskii, D. Trend. Physics, 2, 20 , 2009.
4. J. V. D. Boomgaard, D. R. Terrell, R. A. J. Born, H. F. J. I. Giller, J.
Material. Science. 9, 1705 , 1974.
5. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science. 299, 1719, 2003.
6. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Sci. 303, 661, 2004.
7. Oh, Y. S., Artyukhin, S., Yang, J. J., Zapf, V., Kim, J. W., Vanderbilt, D., & Cheong, S. W. Nat. com. 5, 3201, 2014.
8. Newnham, R. E., and E. P. Meagher. Materials Research Bulletin. 2.5: 549, 1967.
9. Živković, Ivica, et al. Journal of Physics: Condensed Matter 22.5: 056002 , 2015.
10. Mathieu, R., Ivanov, S. A., Nordblad, P., & Weil, M. The European Physical Journal B. 86, 8, 361, 2013.
11. J. L. Her, C. C. Chou, Y. H. Matsuda, K. Kindo, H. Berger, K. F. Tseng, C. W. Wang, W. H. Li, and H. D. Yang. Phys. Rev. B. 84, 235123, 2011.
12. S.A. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren, C. Ritter, N.V. Golubko, E.D. Politova, and M. Weil. Mater. Res. Bull. 46, 1870, 2011.
13. M. Sahu, D. Rawat, B. G. Vats, M. K. Saxena, S. Dash. Thermo. Acta. 585, 50, 2014.
14. M. Fiebig, T. Lottermoser, D. Meier and M. Trassin. “The evolution
of multiferroics” Nat. Rev. Mater., 1, 1 ,2016.
15. R. Becker, and H. Berger. Acta. Cryst. E62, i222, 2006.
16. X. Wang, F. T. Huang, J. Yang, Y. S. Oh, and S. W. Cheong, APL Mater. 3, 076105, 2015.
17. M. O. Yokosuk, A. al-Wahish, S. Artyukhin, K. R. O’Neal, D. Mazumdar, P. Chen, J. Yang, Y. S. Oh, S. A. McGill, K. Haule, S.-W. Cheong, D. Vanderbilt, and J. L. Musfeldt. Phys. Rev. Lett. 117, 147402, 2016.
18. M. O. Yokosuk, S. Artyukhin, A. al-Wahish, X. Wang, J. Yang, Z. Li, S.-W. Cheong, D. Vanderbilt, and J. L. Musfeldt. Phys. Rev. B, 92, 144305, 2015.
19. J. W. Kim, S. Artyukhin, E. D. Mun, M. Jaime, N. Harrison, A. Hansen, J. J. Yang, Y. S. Oh, D. Vanderbilt, V. S. Zapf, and S.-W. Cheong. Phys. Rev. Lett. 115, 137201, 2015.
20. R. Sankar, G. J. Shu, B. K. Moorthy, R. Jayavel, and F. C. Chou, Dalton Trans. 42, 10439, 2013.
21. S. Skiadopoulou, F. Borodavka, C. Kadlec, F. Kadlec, M. Retuerto, Z. Deng, M. Greenblatt, and S. Kamba. Phys. Rev. B. 95, 184435, 2017.
22. Fang Wu, Erjun Kan, Chuan Tian and Myung-Hwan Whangbo. Inorg. Chem. 49, 7545, 2010.
23. P. W. Anderson, Phys. Rev. 79, 350, 1950.
24. A Haase, G Landwehr, Eberhard Umbach. Wilhelm Conrad Röntgen, 1997.
25. Herman Winick. scientific, 1997.
26. D. C. Koningsberger, and VR. Prins, Chem., 92, 1988.
27. Jeroen A. Van Bokhoven, Carlo Lamberti., Vol. 1. John Wiley & Sons, 2016.
28. D. E. Sayers, E. A. Stern, F. W. Lytle, Phys. Rev. Lett. 27, 1024 ,1971.
29. Sheehy, M. a., Winston, L., Carey, J. E., Friend, C. M. & Mazur et al., Chem. Mater. 17, 3582, 2005.
30. Her, T.-H., Finlay, R. J., Wu, C., Deliwala, S. & Mazur et al., Appl. Phys. Lett. 73, 1673, 1998.
31. Boon K. Teo, Springer-Verlag. 1986.
32. N. G. Deshpande, C. H. Weng, Y. F. Wang, Y. C. Shao, C. Q. Cheng, D. C. Ling, H. C. Hsueh, C. H. Du, H. M. Tsai, C. W. Pao, H. J. Lin, J. F. Lee, J. W. Chiou, M. H. Tsai and W. F. Pong, J. Appl. Phys., 115, 233713, 2014.
33. Tull, B., Carey, J. & Mazur et al., MRS Bull.31, 626, 2006.
34. Murphy et al., Surf. Sci. Rep.64, 1, 2009.
35. Boon K. Teo, Springer-Verlag, 1986.
36. “安全訓練手冊”,新竹同步輻射 , 2001.
37. C. S Hwang, F. Y. Lin, C. H. Lee, K. L. Yu, P. K. Tseng, J. T. Lin, H. C. Tseng, W. C. Su, J. R. Chen, T. L. Lin, W. F. Pong, Rev. Sci. Instrum. 69, 1230, 1998.
38. A. Bianconi, L. Incoccia and S. Stipcich, Springer-Verlay, 1983.
39. C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette. Phys. Rev. Lett. 75, 152., 1995.
40. F. Sette, C. T. Chen, Y. Ma, S. Modesti, N. V. Smith. AIP Conf. Proc.
215, 787., 1990.
41. C. T. Chen, L. H. Tjeng et al., Phys. Rev. Lett. 68, 2543, 1992.
42. J. H. Van Vleck. Phys. Rev. 41, 208, 1932.
43. J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135, 1991.
44. A. I. Frenkel, E. A. Stern, M. Qian, and M. Newville, Phys. Rev. B, 48,12449, 1993.
45. A-L. D. Casto, A. J. Clune, M. O. Yokosuk, J. L. Musfeldt, T. J. Williams, H. L. Zhuang, M.-W. Lin, K. Xiao, R. G. Hennig, B. C. Sales, and D. Mandrus, APL Mater. 3, 041515, 2015.
46. Islam, Q. T. & Bunker, B. A. Phys. Rev. Lett. 59, 2701, 1987.
47. Piamonteze, C., Tolentino, H. C., Ramos, A. Y., Massa, N. E., Alonso, J. A., Martínez-Lope, M. J., & Casais, M. T. Phy. Rev. B, 71, 012104, 2005.
48. D. Alders, L. H. Tjeng, F. C. Voogt, T. Hibma, G. A. Sawatzky, C. T. Chen, J. Vogel, M. Sacchi, and S. Iacobucci. Phys. Rev. B, 57, 11623, 1998.
49. M. W. Haverkort, S. I. Csiszar, Z. Hu, S. Altieri, A. Tanaka, H. H. Hsieh, H.-J. Lin, C. T. Chen, T. Hibma, and L. H. Tjeng. Phys. Rev. B, 69, 020408, 2004.
50. Y. Z. Wu, Y. Zhao, E. Arenholz, A. T. Young, B. Sinkovic, C. Won, and Z. Q. Qiu. Phys. Rev. B, 78, 064413, 2008.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-02-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-02-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信