§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3101201809563800
DOI 10.6846/TKU.2018.01000
論文名稱(中文) 高層建築於干擾效應下不同約化風速對於氣彈實驗結果之影響
論文名稱(英文) Interference Effects of Highrise Building Based on Aeroelastic Experiments under Various Reduced Velocities
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 1
出版年 107
研究生(中文) 蔡昇偉
研究生(英文) Sheng-Wei Tsai
學號 604380070
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-01-19
論文頁數 67頁
口試委員 指導教授 - 羅元隆(yllo@mail.tku.edu.tw)
委員 - 王人牧(wang@mail.tku.edu.tw)
委員 - 黎益肇(liyichao223@gmail.com)
關鍵字(中) 高層建築
氣彈實驗
干擾效應
干擾因子
關鍵字(英) High-rise building
Aeroelastic
Interference effect
Interference factor
第三語言關鍵字
學科別分類
中文摘要
風力對於高層建築物的反應為高層建築設計中重要的一環,本研究以建物之間位移擾動值所造成的干擾效應影響比較為中心,比較不同約化風速及不同地況下位移擾動值的差異性。本實驗主要分為三個部分,第一部分為探討不同風速與流場之干擾效應下氣彈力實驗,比較位移擾動值之間的差異;第二部分為 C地況不同約化風速下的干擾因子與羅元隆(2015)的研究進行比對與探討;第三部分則探討 C地況不同約化風速下的位移擾動值。
    實驗結果發現,A、B地況的位移擾動反應較為接近,則C地況干擾現象更為明顯,干擾效應主要影響的範圍是 1.5B ~ 3B 的位置,遠離這個範圍量測到的干擾現象較不顯著,整體的位移擾動值有隨著約化風速的增大,最大的干擾因子出現在( x/B , y/B ) =( -1.5 , 1.5)位置,從軌跡圖可以發現斜橢圓的形狀,推測出橫風向以渦散現象主導的振動已消失,有部分的外力轉移到順風向,此點位在低約化風速下有極大的擾動反應。
英文摘要
This research focuses on the fluctuating response of high-rise building interfered by another identical neighboring building under different reduced velocities and exposed to different terrains. The discussions based on aero-elastic tests and categorized into three topics: (1) investigation of fluctuating responses under two reduced velocities and three terrains, which are open (α = 0.15), suburban (α = 0.25), and urban (α = 0.32); (2) interference factors due to detailed reduced velocities at open terrain and; (3) the fluctuating response values.
    Results showed that the tendencies of suburban and urban terrains are similar and not apparent as open terrain for interference effects. The main dominant interference range is those positions within 1.5B to 3.0B, where B stands for the principal building’s width. In general, the fluctuating response increases with the reduced velocity and for those positions near 1.5B and 2.0B there are various interference effects found. One interesting position is that the interfering building is at x/B = -1.5 and y/B = 1.5, where the trajectory shape is elliptical only when the reduced velocity is around 6.0 m/sec. Once the position is moved or the reduced velocity is changed, this phenomenon disappears. Several other comparisons with Lo et al (2016) and Chen (2016) were carried out for enhancing the interference effect mechanisms.
第三語言摘要
論文目次
目錄	
第一章 緒論	1
1.1 研究動機	1
1.2 研究方法	1
1.3 研究內容	2
1.4 論文架構	3
第二章 文獻回顧	4
2.1 風洞實驗之模擬	4
2.1.1 大氣邊界層之模擬	4
2.2 干擾效應之於主要建物的風力影響	4
2.2.1 整體風力影響之定性描述	4
2.2.2 以干擾因子定義之定量描述	5
2.3 結構物之振動行為	7
2.3.1 逼近流與尾跡對結構物造成之運動機制	7
2.3.2 順風向振動	8
2.3.3 橫風向振動	8
2.4 干擾效應下之氣彈力反應	10
第三章 理論背景	11
3.1 大氣邊界層特性	11
3.1.1 平均風速剖面	11
3.1.2 紊流強度	12
3.1.3 紊流長度尺度	13
3.1.4 阻塞效應	14
3.1.5 雷諾數效應	15
3.2 氣彈力實驗模擬	16
3.3 風與結構體之相互關係	16
3.3.1 氣動力現象	17
3.3.2氣彈力現象	18
3.4  阻尼比計算	20
第四章 實驗設置	21
4.1 實驗設置	21
4.1.1 風洞	21
4.1.2 模型	22
4.1.3 量測儀器	23
4.1.4 大氣邊界層流場模擬	25
4.2 數據採樣	26
4.3 氣彈力模型之模擬、率定即量測	27
4.3.1 自由振動	27
4.4  實驗數據分析	31
第五章 實驗結果與討論	32
5.1  不同地況與約化風速下的位移擾動值	33
5.1.1  干擾建物位於主建物前方	33
5.1.2  干擾建物位於主建物左前方	34
5.1.3  干擾建物位於主建物左方	34
5.1.4  干擾建物位於主建物左後方	34
5.1.5  干擾建物位於主建物後方	35
5.1.6     小結	35
5.2     C地況不同約化風速下的干擾因子與羅元隆(2015)研究進行比對與探討	36
5.2.1     干擾建物置於主要建物前方	36
5.2.2     干擾建物置於主要建物左前方	36
5.2.3     干擾建物置於主要建物左方	37
5.2.4     干擾建物置於主要建物左後方	37
5.2.5     干擾建物置於主要建物後方	38
5.2.6     小結	39
5.3     C地況不同約化風速下的位移擾動值	39
5.3.1  干擾建物位於主建物前方	39
5.3.2  干擾建物位於主建物左前方	39
5.3.3  干擾建物位於主建物左方	39
5.3.4  干擾建物位於主建物左後方	39
5.3.5  干擾建物位於主建物左後方	40
5.3.6     小結	40
第六章 結論與建議	56
6.1  結論	56
6.2  建議	57
參考文獻	58

 
表目錄
表3- 1不同地況之指數律參數	11
表3- 2不同地況之地表粗糙長度尺度	12
表3- 3地表粗糙長度尺度對應之β	13
表4- 1本研究風洞實驗所假設的各項相似性比例縮尺	27
表4- 2模型參數	30
 
 
		圖目錄
圖2- 1平坦地況頂部反應均方根圖	10
圖3- 1紊流長度尺度參數C、m與高度z0關係圖	14
圖3- 2鈍體分離流及渦漩示意圖	18
圖4- 1 淡江大學風工程研究中心第一號大氣邊界層風洞實驗室	21
圖4- 2 氣彈模型主建物與干擾建物模型示意圖及照片	22
圖4- 3 座標版配置示意圖	23
圖4- 4 壓力轉換器與皮托管	24
圖4- 5 訊號擷取器	24
圖4- 6 雷射位移計	25
圖4- 7 淡江大學大氣邊界層風洞實驗室擾流板與粗糙元素擺設示意圖	26
圖4- 8  A、B、C地況之平均風速剖面及紊流強度	26
圖4- 9氣彈架構	28
圖4- 10氣彈力模型與架構	28
圖4- 11結構特性評估流程圖	29
圖4- 12自由振動模型位移歷時─13Hz	30
圖5- 1順、橫風向的位移擾動值與羅元隆(2015)的實驗比對	32
圖5- 2橫風向的位移擾動值與黎益肇(2007)的實驗比對	33
圖5- 3干擾建物位於主建物前方	36
圖5- 4干擾建物位於主建物左前方	36
圖5- 5干擾建物位於主建物左方	37
圖5- 6干擾建物位於主建物左後方	37
圖5- 7左後方之位移軌跡圖( x , y ) = ( -1.5B,1.5B )	38
圖5- 8干擾建物位於主建物後方	38
圖5- 9干擾建物位於主要建物正前方之順風向位移擾動值比較	41
圖5- 10干擾建物位於主要建物正前方之橫風向位移擾動值比較	42
圖5- 11干擾建物位於主要建物左前方之順風向位移擾動值比較	43
圖5- 12干擾建物位於主要建物左前方之橫風向位移擾動值比較	44
圖5- 13干擾建物位於主要建物左方之順風向位移擾動值比較	45
圖5- 14干擾建物位於主要建物左方之橫風向位移擾動值比較	46
圖5- 15干擾建物位於主要建物左後方之順風向位移擾動值比較	47
圖5- 16干擾建物位於主要建物左後方之橫風向位移擾動值比較	48
圖5- 17干擾建物位於主要建物後方之順風向位移擾動值比較	49
圖5- 18干擾建物位於主要建物後方之橫風向位移擾動值比較	50
圖5- 19  C地況干擾建物位於主要建物前方之順風向位移擾動值	51
圖5- 20  C地況干擾建物位於主要建物前方之橫風向位移擾動值	51
圖5- 21  C地況干擾建物位於主要建物左前方之順風向位移擾動值	52
圖5- 22  C地況干擾建物位於主要建物左前方之橫風向位移擾動值	52
圖5- 23  C地況干擾建物位於主要建物左方之順風向位移擾動值	53
圖5- 24  C地況干擾建物位於主要建物左方之橫風向位移擾動值	53
圖5- 25  C地況干擾建物位於主要建物左後方之順風向位移擾動值	54
圖5- 26  C地況干擾建物位於主要建物左後方之橫風向位移擾動值	54
圖5- 27  C地況干擾建物位於主要建物後方之順風向位移擾動值	55
圖5- 28  C地況干擾建物位於主要建物後方之橫風向位移擾動值	55
參考文獻
[2-1] C. F. Cowdery, (1986), “Two topics of interesting experimental industrial aerodynamic”, symposium on wind effects on buildings and structures, National physical laboratory, Teddington.
[2-2] D. J. Cockrell and S. E. Lee, (1964), “Methods and consequences of atmospheric boundary layer simulation”, paper 13-AGARD conference proc. No.48 on aerodynamic of atmospheric shear flows, Munich.
[2-3] J. Counihan, (1970), “Further Measurements in a Simulated Atmospheric Bounday Layer”, Atmospheric Environment, Vol.4, pp.159-275.
[2-4] J. Counihan, (1970), “An Improved Method of Simulation Atmospheric Boundary Layer”, Atmospheric Environment, Vol.4, pp.159-275.
[2-5] J. Counihan, (1973), “Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7, pp.673-689.
[2-6] N. M. Standen, (1972), “A Spire Array for Generating Thick Turbulent Shear Layers for Natural Wind Simulation in Wind Tunnels”, Rep. LTR-LA-94, National Aeronautical Establishment, Ottawa, Canada.
[2-7] R. V. Barret, (1972), “A Versatile Compact Wind Tunnel for Industrial Aerodynamics”, Technical note, Atmospheric Environment, Vol.6, pp.491-495.
[2-8] N. J. Cook, (1973), “On Simulating the lower Third of the Urban Adiabatic Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7, pp.691-705.
[2-9] J. E. Cermak, J. A. Peterka, (1974), “Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections”, Center for Building Technology, IAT, National Bureau of Standards Washington, D.C., June.
[2-10] Irwin, H.P.A.H., (1981), “The Design of Spire for Wind Simulation”, J. of Wind Engineering and Industrial Aerodynamics, Vol.7, p361-366.
[2-11] A. Townsend, (1956), “The structure of turbulent shear flow”, Cambridge Univ. Press. Pp. 315
[2-12] Architectural Institute of Japan (AIJ). (2004)
[2-13] 建築物結構荷重規範(GB 50009). (2012)
[2-14] 林倚仲,2005,“干擾效應對高層建築設計風力的影響”,淡江大學土木工程研究所碩士論文。
[2-15] Gu, M., 2004, “Mean interference effects among tall buildings”, Engineering Structures 26 1173-1183.
[2-16] 盧博堅、鄭啟明、賴建志,1987,“邊界層中三方柱體群縱向與橫向排列所受風力之交互作用”,The Chinese Journal of Mechanics, Vol.11., pp.185-193.
[2-17] English, E. C., 1990, “Shielding factors from wind-tunnel studies of prismatic structures”, Journal of Wind Engineering and Industrial Aerodynamics, 36, 611-619
[2-18] Blessmann, J., Riera, J. D., 1985, “Wind excitation of neighboring tall buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 18, 91-103.
[2-19] Kareem, A., 1987, “The effect of aerodynamic interference on the dynamic response of prismatic structures”, J. Wind Eng. Ind. Aero., Vol.25., pp.365-372.
[2-20] Sakamoto, H., Haniu, H., 1988, “Effect of free-stream turbulence on Characteristics of fluctuating forces acting on two square prisms in tandem arrangement”, Trans. ASME, Vol. 110, 140-146.
[2-21] Sakamoto, H., Haniu, H., 1988, “Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer”, Journal of Wind Engineering and Industrial Aerodynamics, 31, 41-66.
[2-22] English, E. C., 1985, “Shielding factors from Wind-Tunnel studies of Mid-Rise and High-Rise structures”, Proceedings Fifth U. S. Conference on Wind Engineering.
[2-23] Khanduri, A. C., Stathopoulos, T., Bedard, C., 1998, “Wind-induced interference effects on buildings—a review of the state-of-the-art”, Eng. Struct., 20(7), 617–630.
[2-24] Khanduri, A. C., Stathopoulos, T., Bedard, C., 2000, “Generalization of wind-induced interference effects for two buildings”. WindStruct., 3, 255–266.
[2-25] Mara, T.G, Terry, B. K., Ho, T. C. E., Isyumov, N., 2014, “Aerodynamic and peak response interference factors for an upstream square building of identical height”, J. Wind Eng. Ind. Aerodyn., 133, 200–210.
[2-26] Xie, Z. N., Gu, M., 2004, “Mean interference effects among tall buildings”, Engineering Structures, 26, 1173-1183.
[2-27] Xie, Z. N., Gu, M., 2007, “Simplified formulas for evaluation of wind-induced interference effects among three tall buildings”, J. Wind Eng. Ind.Aerodyn., 95, 31-52.
[2-28] Huang, P., Gu, M., 2005, “Experimental study on wind-induced dynamic interference effects between two tall buildings”, Wind and structures, Vol.8, No.3, pp. 147-161.
[2-29] Davenport, A.G., “Gust loading factors”, J. of Structure Division, ASCE, Vol. 93, No.st3, June 1967, p11-34
[2-30] Vickery, B. J., 1996, “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream”, J. of Fluid Mech., Vol.22 p481-p494
[2-31] Kawai, H., 1992, “Vortex Induced Vibration of tall building”, J. of Wind Engineering and Industrial Aerodynamics, Vol.44-44, p117-p128
[2-32] Takeo Matsumoto, “ On the across-wind oscillation of tall building”, J. of Wind Engineering and Industrial Aerodynamics, 24(1986), p69-85
[2-33] Kwork, k.c.s., Melbourne, W, H., “Wind-induced Lock-in Excitation of tall structures”, of Structural Division, Vol. 107(1981), No.st1, p57-72
[2-34] 黎益肇、劉文欽,2007,“高層建築氣彈模型反應特性研究”,內政部建築研究所自行研究報告。
[2-35] 陳紀柔,2017,“高層建築於干擾效應下氣動力及氣彈力實驗結果比較”,淡江大學土木工程研究所碩士論文。
[2-36] Yuan-Lung Lo , Yong Chul Kim,2015, “Interference effects on across-wind response of square prism based on aero-elastic tests”
[3-1] A. G. Davenport, 1961, “The Relationship of Wind Structure to Wind Loading”, Proc. Symp. On Wind Effects on Buildings and Structures, Vol.1, National Physical Laboratory, Teddington, U.K. Her Majesty’s Stationary Office, London, pp.53-102.
[3-2] American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.
[3-3] Emil Simiu, Rebort H. Scanlan, 1986, “Wind Effects on Structures” 2nd edit.﹐John Wiley & Sons.
[3-4] J. Counihan, 1975, “Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972” , Atmospheric Environment, Vol.9, pp.871-905.
[3-5] esen, M., 1958, “The Model Law for Phenomena in Natural Wind” Ingeioen International Edition, Vol.2, No.4, pp.121-123.
[3-6] R. E. Whitbread, (1963), “Model Simulation of Wind Effects on Structures” Proceeding of the Conference on Wind Effects on Buildings and Structures, pp.284-306.
[3-7] J. M. Biggs, (1954), “Wind Load on Truss Bridges”, ASCE, pp.879.
[3-8] A. Hunt, (1982), “Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales” J. Wind Eng. Ind. Aero., Vol. 10, pp.137-163.
[3-9] Y. Nakamura, Y. Ohya, (1984), “The effects of turbulence on the mean flowpast two dimensional rectangular cylinders”, J. of Fluid. Mech., Vol.149, pp.255-27
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信