§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3009201511070000
DOI 10.6846/TKU.2015.01114
論文名稱(中文) 利用TE極化波照射穿牆導體之成像研究
論文名稱(英文) Imaging of Through-Wall Conductors by Transverse Electric Wave Illumination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 辜偉翔
研究生(英文) Wei-Siang Gu
學號 602440322
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-06-11
論文頁數 48頁
口試委員 指導教授 - 丘建青
委員 - 方文賢
委員 - 李慶烈
關鍵字(中) 穿牆成像
TE極化波
逆散射
關鍵字(英) Inverse Scattering
Through-Wall imaging
SADDE
第三語言關鍵字
學科別分類
中文摘要
本論文使用自我適應之動態差異型演化法應用於TE極化波照射穿牆導體之逆散射問題。針對物體照射TE (Transverse Electric) 極化波在穿牆導體的逆散射進行探討。在此使用傅立葉級數展開及描述物體的形狀,利用在導體表面的邊界條件及在物體外部量測的散射場,可推導出非線性積分方程式。將散射場積分方程式透過動差法求得散射場相關資訊,藉由此散射場相關資訊與自我適應之動態差異型演化法,將逆散射問題轉化為求解最佳化問題,重建出穿牆導體之形狀。
     對於自我適應之動態差異型演化法,在數值模擬顯示中,即使最初的猜測值與實際散射體的形狀相差甚遠,我們仍可求得不錯的形狀函數,成功的重建出物體的形狀。而且在數值模擬顯示中,量測的散射場即使加入高斯分布雜訊的存在,依然可以得到良好的重建結果,研究證實其有良好的抗雜訊能力。
英文摘要
This thesis presents an inverse scattering problem for recovering the shape of Through-Wall conducting cylinders behind the wall by self-adaptive dynamic differential evolution (SADDE). The Through-Wall conducting cylinders of unknown  shapes are behind the wall and illuminated by the transverse electric (TE) plane wave from another space.
   Based on the boundary condition and the measured scattered field, the nonlinear integral equation is derived and the imaging problem is reformulated into optimization problem. The self-adaptive dynamic differential evolution is employed to find out the global extreme solution of the object function. Numerical results show that the shape of the conductors can be well reconstructed.
第三語言摘要
論文目次
第一章	簡介	1
1.1  研究動機與相關文獻	1
1.2  本研究之貢獻	10
1.3  各章內容簡述	11
第二章	穿牆導體的逆散射理論	12
2.1  正散射的理論公式推導	12 
    2.2  數值方法	20
2.2.1  動差法於積分方程式的應用	20
第三章	隨機式全域最佳化演算法	22
    3.1  自我適應之動態差異型演化法	22
第四章	數值分析及模擬結果	30
    4.1  自我適應之動態差異型演化法在逆散射的應用	30
    4.2  環境模擬介紹	31
    4-3  自我適應之動態差異型演化法重建穿牆導體影像	32
第五章	結論	41
參考文獻	43

圖目錄
圖 2-1  穿牆導體的示意圖	18
圖 2-2  源(Line Source)在第三層的二維示意圖	19
圖 3-1  自我適應之動態差異型演化法流程圖	23
圖 3-2  自我適應之動態差異型進化法中突變方法一的示意圖	25
圖 3-3  自我適應之動態差異型進化法中突變方法二的示意圖	26
圖 3-4  自我適應之動態差異型進化法中的交配向量於一個二維目
        標函數等位線圖描述的示意圖	28
圖 4-1  SADDE重建例子一柱體形狀的情形	33
圖 4-2  SADDE重建例子一柱體的形狀參數相對誤差變化趨勢圖	34
圖 4-3  SADDE重建例子一柱體DR值隨相對雜訊位準變化的情形	34
圖 4-4  SADDE重建例子二柱體形狀函數的情形	36
圖 4-5  SADDE重建例子二柱體的形狀參數相對誤差變化趨勢圖	36
圖 4-6  SADDE重建例子二柱體DR值隨相對雜訊位準變化的情形	37
圖 4-7  SADDE重建例子三柱體形狀的情形	39
圖 4-8  SADDE重建例子三柱體的形狀參數相對誤差變化趨勢圖	39
圖 4-9  SADDE重建例子三柱體DR值隨相對雜訊位準變化的情形	40
參考文獻
[1]	E. Wolf, “Three-dimensional structure determination of      semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
[2]	O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[3]	S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
[4]	T. Rubæk, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
[5]	M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
[6]	J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
[7]	 A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, Vol. 6, pp. 635-641, Aug.1990.
[8]	V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, Vol. 9, pp. 579–621, 1993.
[9]	O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[10]	D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Arc. Ration. Mech. Anal., Vol. 119, pp. 59–70, 1992.
[11]	S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003.
[12]	M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam Hilger Series on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
[13]	A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
[14]	A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
[15]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[16]	S. Boutami,; M. Fall, , “Calculation of Free-Space Periodic Green’s Function Using Equivalent Finite Array,” IEEE Transactions on Antennas and Propagation.,Vol. 60, pp.4725-4731,2012.
[17]	D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review ,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, pp. 343- 353, Mar. 1997.
[18]	J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
[19]	P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011. 
[20]	R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans.   Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[21]	N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982. 
[22]	T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[23]	D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
[24]	D. Colton, H. Haddar and Piana," The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, vol. 19, pp. 105-137, December 2003.
[25]	M. Brignone and M. Piana, " The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method," Inverse Problems, vol. 21, pp. 207-222, February 2005.
[26]	T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[27]	R. Solimene, F. Soldovieri, G. Prisco, and R. Pierri “Three-Dimensional Through-Wall Imaging Under Ambiguous Wall Parameters,” IEEE Transactions on Geoscience and Remote Sensing,  Vol. 47, No. 5, pp. 1310-1317, May. 2009.
[28]	Yazhou Wang, and Fathy, A.E.  “Advanced System Level Simulation Platform for Three-Dimensional UWB Through-Wall Imaging SAR Using Time-Domain Approach” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, pp. 1986-2000, May. 2012.
[29]	F. Soldovieri, R. Solimene, and G. Prisco  ” A Multiarray Tomographic Approach for Through-Wall Imaging” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 4, pp. 1192-1199, Apr. 2008.
[30]	F. Soldovieri and R. Solimene “Through-Wall Imaging via a Linear Inverse Scattering Algorithm” IEEE Transactions on Geoscience and Remote Sensing, Vol. 4, No. 4, pp. 513-517, Oct. 2007.
[31]	L. Li, W. Zhang, and F. Li “A Novel Autofocusing Approach for Real-Time Through-Wall Imaging Under Unknown Wall Characteristics” IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, pp. 423-431, Jan. 2010.
[32]	Q. Huang, L. Qu, B. Wu, and G. Fang ” UWB Through-Wall Imaging Based on Compressive Sensing” IEEE Transactions on Geoscience and Remote Sensing,Vol. 48, No. 3, pp. 1408-1415, Mar. 2010.
[33]	R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[34]	T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
[35]	R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
[36]	X. Chen, K. Huang and X.-B. Xu, “Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method:” Progress In Electromagnetic Research. PIER 53, pp. 283-298, 2005.
[37]	A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
[38]	R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[39]	A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
[40]	A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[41]	A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44,  Issue 1,  pp. 116 – 125, Jan. 2006.
[42]	K. A. Michalski, “Electromagnetic Imaging of Circular-Cylindrical Conductors and Tunnels Using A Differential Evolution Algorithm,”   Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
[43]	M. Dehmollaian, “Through-Wall Shape Reconstruction and Wall Parameters Estimation Using Differential Evolution,” IEEE Geoscience and Remote Sensing Letter, Vol. 8, 201-205, 2011.
[44]	I. T. Rekanos, “Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
[45]	A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[46]	G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[47]	M. Donelli and A. Massa, ”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques Vol. 53,  Issue 5,  pp.1761 – 1776, May 2005.
[48]	T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B,  pp.852 – 855, 2005.
[49]	M. Donelli, G.. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44,  Issue 2, pp.298 – 312, Feb. 2006.
[50]	M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
[51]	C. C. Chiu, C. H. Sun and W. L. Chang “Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder.”, International Journal of Applied Electromagnetics and Mechanics Vol. 35, No.4, pp. 249-261,Apr. 2011.
[52]	Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[53]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999. 
[54]	R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.
[55]	C. H. Sun and C. C. Chiu “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, Issue 5, pp. 579–585,  Sept. 2013.
[56]	C. C. Chiu, C. H. Sun, C. L. Li and C. H. Huang, “Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder in Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, pp. 2302–2315, Apr. 2013.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信