§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3008201616374100
DOI 10.6846/TKU.2016.01097
論文名稱(中文) 結合子空間演算法及隨機式全域最佳化演算法重建二維介質物體
論文名稱(英文) Dielectric Objects Reconstruction by Combining Subspace-based Algorithm with Randomly Global Optimization Algorithm
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 顏健佑
研究生(英文) Chien-Yu Yen
學號 603440081
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-20
論文頁數 82頁
口試委員 指導教授 - 丘建青
委員 - 方文賢
委員 - 林丁丙
關鍵字(中) 微波成像
子空間演算法
全域演算法
自我適應之差異型演化法
關鍵字(英) Microwave Imaging
Subspace-based Algorithm
Global Optimal Algorithm
Self-Adaptive Dynamic Differential Evolution (SADDE)
第三語言關鍵字
學科別分類
中文摘要
本論文探討子空間演算法(Subspace-based algorithm)應用於自由空間中二維介質物體之逆散射問題。處理逆散射問題的方法中,子空間演算法特別不同的地方在於計算上使用到奇異值分解(Singular value decomposition , SVD),運用子空間的概念,將感應電流分成確定性部分及不確定性部分,確定性部分對於逆散射提供良好初始猜測值,逆散射只針對不確定性部分做運算及最佳化,這部分是子空間演算法的精華,可以在計算上減少未知數的數量,有效降低計算成本及簡化計算過程。最佳化演算法方面再使用自我適應之動態差異型演化法(Self-Adaptive Dynamic Differential Evolution, SADDE),避免像使用共軛梯度法(Conjugate Gradient method, CG)或牛頓法(Newton's Method)會容易陷入區域極值的問題,雖然避免了區域極值的問題,但計算時間卻會增加,因此利用子空間演算法本身簡化計算降低成本的優點再配合SADDE之強健性和搜尋速度,收斂至更佳的結果,並增加對雜訊的抗性。此外同時比較子空間演算法分別搭配SADDE和基因演算法(Genetic Algorithm, GA)之結果顯示子空間演算法在演算法方面搭配SADDE有較佳的重建結果。另外進一步討論子空間演算法對於複雜非均勻介電物體的重建及對於雜訊的優良抗性,研究模擬之數值結果顯示,此數值方法運用於重建複雜非均勻介電物體之材質特性分佈,皆能得到良好之重建結果,且無論加入雜訊等級的大小,儘管已使數據與正確值相差甚大,皆能藉由子空間演算法之參數調整,收斂至更良好之重建結果。
英文摘要
This thesis presents the two-dimensional electromagnetic imaging problem by Subspace-based algorithm. Subspace-based algorithm is different with methods of processing inverse scattering problem by contrast source inversion (CSI). The essence of the subspace-based optimization method is that part of the contrast source is determined from the spectrum analysis without using any optimization when the rest is determined by optimization method. By applying the singular value decomposition (SVD) to the field equation, the induced current is divided into the signal space and the noise space. This feature can reduce the number of unknowns and computing costs to speed up the convergence of the algorithm. We also transform the inverse scattering problem into optimization problem and solved by Self-Adaptive Dynamic Differential Evolution (SADDE). SADDE can process numerous unknowns of electromagnetic imaging problems. Different scatterers and environment will be used to investigate whether Subspace-based algorithm can keep stability of reconstruction or not. We will also compare Genetic Algorithm (GA) to show the robustness and the searching speed of SADDE.
第三語言摘要
論文目次
目錄
第一章 簡介	1
1.1 研究動機與相關文獻	1
1.2 本研究之貢獻	11
1.3 各章內容簡述	12
第二章 非均勻介電物體之電磁成像	13
2.1 理論推導	13
2.2 數值方法	16
2.2.1 動差法於積分方程式之應用	16
2.2.2 散射場之計算與驗證	18
第三章  子空間演算法	23
第四章  隨機式全域最佳化演算法	28
4.1 自我適應之動態差異型演化法(Self-Adaptive Dynamic Differential Evolution)	28
4.2 基因演算法 (Genetic Algorithm)	37
第五章 數值分析及模擬結果	49
第六章 結論	76
參考文獻	78
圖目錄
圖2.1  二維介質物體在自由空間的示意圖	15
圖2.2  推導圓柱形均勻介電物體之解析散射場值示意圖	21
圖2.3  模擬正散射場值驗證之示意圖	22
圖4.1  自我適應之動態差異型進化法流程圖	30
圖4.2  自我適應之動態差異型進化法中突變方法一的示意圖	32
圖4.3  自我適應之動態差異型進化法中突變方法二的示意圖	33
圖4.4  自我適應之動態差異型進化法中的交配向量於一個二維目標函數等位線圖描述的示意圖	35
圖4.5  遺傳演算法之流程圖	39
圖5.1  模擬之環境結構圖	50
圖5.2  例子一之介電係數分佈圖。 (a) (b) (c)	53
圖5.2  例子一之介電係數分佈圖。 (d) (e) (f)	54
圖5.3  矩陣G2之特徵值	55
圖5.4  (a)不同L值之目標函數值與呼叫函數次數比較圖	56
圖5.4  (b) SADDE和GA之目標函數值與呼叫函數次數比較圖	57
圖5.5  例子二之介電係數分佈圖。 (a) (b) (c)	60
圖5.5  例子二之介電係數分佈圖。(d)	61
圖5.6  SADDE和GA之目標函數值與呼叫函數次數比較圖	62
圖5.7  例子三之介電係數分佈圖。(a) (b)	64
圖5.8  子空間演算法配合SADDE加入不同雜訊等級之重建結果。  (a) (b)	66
圖5.8  子空間演算法配合SADDE加入不同雜訊等級之重建結果。  (c) (d)	67
圖5.9  加入雜訊等級0.1%並選擇以不同L值之重建結果。         (a) (b)	69
圖5.9  加入雜訊等級0.1%並選擇以不同L值之重建結果。         (c) (d)	70
圖5.10 例子四之介電係數分佈圖。(a) (b)	73
圖5.10 例子四之介電係數分佈圖。(c) (d)	74
圖5.11  SADDE和GA之目標函數值與呼叫函數次數比較圖	75


表目錄
表4.1 基因演算法相關之名詞解釋與中英對照表	47
參考文獻
參考文獻
[1]	E. Wolf, “Three-dimensional structure determination of semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
[2]	O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[3]	S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
[4]	T. Rubæk, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
[5]	M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
[6]	J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
[7]	S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003.
[8]	A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
[9]	A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
[10]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[11]	S. Boutami,; M. Fall, , “Calculation of Free-Space Periodic Green’s Function Using Equivalent Finite Array,” IEEE Transactions on Antennas and Propagation.,Vol. 60, pp.4725-4731,2012.
[12]	J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
[13]	P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011. 
[14]	R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[15]	R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” in Proc. RADC Spectral Estimation Workshop, Rome, pp.243-258, NY.1979.
[16]	M. Viberg, B. Ottersten, B. Wahlberg, L. Ljung, " A statistical perspective on state-space modeling using subspace methods ",  the 30th IEEE Conference on Decision and Control, 1991, Vol. 2, no Piscataway, NJ, United States, 1337-1342.
[17]	Y.I. Abramovich, N.K. Spencer , " Performance breakdown of subspace-based methods in arbitrary antenna arrays: GLRT-based prediction and cure ", IEEE Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on  (Volume:2 ), pp.117-120,2004.
[18]	X. Chen, "Application of signal-subspace and optimization methods in reconstructing extended scatterers", Journal of the Optical Society of America, A, Vol.26, pp.1022-6, 2009
[19]	Chen X,S. P. Yeo, " Application of the Subspace-based Optimization Method in the framework of the Method of Moments: Transverse electric case ",IEEE Microwave Conference, 2009. APMC 2009. Asia Pacific,pp.980-983, 7-10 Dec. 2009.
[20]	X. Chen, " The role of regularization parameter of subspace-based optimization method in solving inverse scattering problems",IEEE Microwave Conference, 2009. APMC 2009. Asia Pacific,pp.1549-1552, 7-10 Dec. 2009.
[21]	Y. Zhong and X. Chen, "Twofold subspace-based optimization method for solving inverse scattering problems", Inverse Problems, Vol.25, ID: 085003 (11 pages), 2009.
[22]	X. Ye, X. Chen, Y. Zhong, and K. Agarwal, "Subspace-based optimization method for reconstructing perfectly electric conductors", Progress in Electromagnetic Research, Vol. 100, pp. 119-128, 2010.
[23]	X. Chen, "Subspace-based Optimization Method for Solving Inverse Scattering Problems", IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, pp. 42-49, 2010.
[24]	K. Agarwal, L. Pan and X. Chen, "Subspace-based optimization method for reconstruction of two-dimensional complex anisotropic dielectric objects", IEEE Trans. Microwave Theory and Technique, Vol. 58, pp. 1065-74, 2010.
[25]	Y. Zhong, X. Chen, and K. Agarwal, "An Improved Subspace-based Optimization Method and its Implementation in Solving Three-dimensional Inverse Problems", IEEE Transactions on Geoscience and Remote Sensing, Vol. 48 pp. 3763-8, 2010.
[26]	X. Chen, " Reconstructing perfectly electric conductors by the subspace-based optimization method with continuous variables", IOPscience Inverse Problems 27 (2011) 055011 (14pp)
[27]	J. Shen, Y. Zhong, X. Chen, and L Ran, "Inverse scattering problems of reconstructing perfectly electric conductors with TE illumination", IEEE Trans. on Antennas and Propagation, Vol. 61, pp. 4713-4721, 2013.
[28]	K. Xu, Y. Zhong, R. Song, X. Chen, and L. Ran, "Multiplicative-Regularized FFT Twofold Subspace-Based Optimization Method for Inverse Scattering Problems", IEEE Trans. Geoscience and Remote Sensing, Vol. 53, pp. 841-850, 2015.
[29]	T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
[30]	R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
[31]	R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[32]	A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
[33]	A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[34]	M. Dehmollaian, “Through-Wall Shape Reconstruction and Wall Parameters Estimation Using Differential Evolution,” IEEE Geoscience and Remote Sensing Letter, Vol. 8, 201-205, 2011.
[35]	A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[36]	Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[37]	C. C. Chiu, C. H. Sun and W. L. Chang “Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder.”, International Journal of Applied Electromagnetics and Mechanics Vol. 35, No.4, pp. 249-261,Apr. 2011.
[38]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999. 
[39]	A. Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[40]	J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Transactions on Antennas and Propagation. Vol. 13, pp. 334-341, May 1965.
[41]	William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in FORTRAN, Second Edition. The Press Syndicate of the University of Cambridge, 1992.
[42]	R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.
[43]	C. H. Sun and C. C. Chiu “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, Issue 5, pp. 579–585,  Sept. 2013.
[44]	C. C. Chiu, C. H. Sun, C. L. Li and C. H. Huang, “Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder in Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, pp. 2302–2315, Apr. 2013. 
[45]	D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning. Addison Wesley, 1989.
[46]	J. Michael Johnson and Yahya Rahmat-Samii, ”Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, Vol. 39, No.4, pp.7-21, Aug. 1997.
[47]	J.A. Vasconcelos, J. A. Ramírez, R. H. C. Takahashi, and R. R. Saldanha, “Improvements in genetic algorithms,” IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3414-3417, Sept. 2001.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信