淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3008201316040600
中文論文名稱 鋼質仿生尾舵之改良
英文論文名稱 Improvement on steel-based bionic tail rudder
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 林威仲
研究生英文姓名 Wei-Chung Lin
學號 600370497
學位類別 碩士
語文別 中文
口試日期 2013-06-21
論文頁數 63頁
口試委員 指導教授-楊龍杰
委員-張天立
委員-韓謝忱
中文關鍵字 仿生  尾舵  雷射切割  毛細結構  聚對二甲苯  不鏽鋼 
英文關鍵字 Bionic  Tail rudder  Laser cutting  Comb shape structures  Parylene  stainless steel 
學科別分類 學科別應用科學機械工程
中文摘要 本研究的概念主要是參考孢子囊表面張力驅動的原理,並且延續先前的設計來改良並製作出仿生尾舵,其主要的目的是將仿生尾舵應用於微飛行器(micro air vehicle﹐MAV),使之能夠達到轉向的功能,其次因裝上仿生尾舵會增加負載,因此也將對MAV的負載進行改良。
仿生尾舵材料是使用40μm厚的不鏽鋼片,並委託外面雷射切割工廠製作,成功製作出仿生尾舵的成品。為了要使驅動的角度增大,故使用表面親水改質-沉積聚對二甲苯的方式,讓仿生尾舵的毛細結構間隙能完全吸附充滿工作液體,驅動的角度能夠提升。負載性能則是以國防大學升力較大的蝙蝠拍翼機做參考,之後將仿生尾舵裝置垂直尾翼上試看驅動的情形,期望裝上仿生尾舵能夠讓MAV達到轉向的功能,且能同時降低用電的需求量,以呈現仿生的樣貌。
英文摘要 This thesis mainlu presents an animation of the sporangial motion for making bionic tail actuators of flapping micro-air-vehicles(FMAVs) regarding energy saving. A SUS-304 steel foil of 40μm thick is used as the working substrate. The actuation area of 40-50 comb-shaped cantilevers is designed to have the maximum actuating angle change about several degrees. Nd-YAG laser machining with air cooling and water cooling respectively are performed to cut off the surface tension-driven actuators. Surface modification including parylene coating and oxygen plasma treatment are added to enlarge the actuation stroke angles up to 10˚-12˚ for practical usage in flight direction control.
Secondly, the payload modification of the FMAVs is also addressed. The added payload is for the make up of the bionic tail actuator. The design method is to assign the center of gravity in the middle of the FMAV. The tail area is so close to the flapping wing area as to generate the approximately equivalent lift to the flapping lift. The flight test of the new FMAV with wingspan of 25.5cm verifies the above design.
論文目次 目錄
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 MAV簡介 1
1-2 文獻回顧 2
1-3 研究目的 7
1-4 各章提要 10
第二章 微拍翼機之酬載性能改良 11
2-1 事前工作 11
2-2組裝製作與實飛測試 18
2-3與金探子做比較 22
第三章 仿生尾舵之制動性能改良 23
3-1 改良項目及原因 24
3-2仿生尾舵之設計 28
3-3雷射切割機台 29
3-4雷射切割所遇到的問題 30
第四章 仿生尾舵之實驗量測 38
4-1 驅動實驗設備介紹 38
4-2 實測仿生尾舵驅動測試 40
4-3 表面改質 41
4-4 角度及各參數值 42
4-5 實測仿生尾舵安裝至微飛行器上 43
4-6加熱仿生尾舵 45
4-7 風洞設備介紹 50
4-8 量測仿生尾舵安裝尾翼上之數據 54
第五章 結論 56
5-1結論 56
參考文獻 58
附錄A儲存槽設計 62
附錄B梯形慣性矩方程式推導 63

圖目錄
圖1-1 微飛行器之分類:(a)定翼式(Black Widow),(b)旋翼式,(c)拍翼式 1
圖1- 2類孢子囊制動之原理 : (a) 液體充滿毛細微結構時,孢子囊元件呈現閉和狀態;(b) 仿孢子囊環狀之毛細微結構會因液體蒸發表面張力改變而張開 3
圖1-3孔雀開屏式毛微細結構示意圖 4
圖1-4孔雀開屏式毛細微結構: (a)未受液體驅動之形貌; (b)經驅動液體(水)沾附而變形之形貌 4
圖1-5毛細驅動微型控制鉸鍊示意圖 5
圖1-6控制鉸鍊受液滴沾附: (a)液滴沾附前;(b)液滴沾附後 5
圖1-7改良仿生尾舵為30˚夾角 6
圖1-8沉積parylene之不鏽鋼毛細微結構彎折角度: (a)未受液滴沾附角度為37°;(b)受液滴沾附角度為27° 6
圖1-9本研究群研製之T字形尾翼MAV 7
圖1-10本研究群研發的金探子MAV: (a)整體視圖; (b) 尾翼順時針擺動; (c)尾翼逆時針擺動 8
圖1-11荷蘭團隊所研製的微飛行器Delfly 8
圖1-12論文架構 10
圖2-1國防大學的蝙蝠拍翼機 14
圖2-2柏努利效應造成之升力 14
圖2-3國防大學蝙蝠拍翼機之機頭攻角 15
圖2-4國防大學蝙蝠拍翼機之尾翼攻角 15
圖2-5蝙蝠拍翼機之升、推力分析 16
圖2-6蝙蝠翼膜(上)、金探子翼膜(下) 16
圖2-7蝙蝠尾翼(上)、金探子尾翼(下) 17
圖2-8尾翼裝置拍翼機:蝙蝠尾翼(上)、金探子尾翼(下) 17
圖2-9蝙蝠拍翼機(上視圖) 18
圖2-10蝙蝠拍翼機(側視圖) 19
圖2-11實際飛行路徑;順序由a ~ f 20
圖2-12實驗飛行路徑;順序由a ~ f 21
圖3-1仿生尾舵之架構 23
圖3-2主幹寬度與加強化桿件之位置 25
圖3-3熱源流經的路徑(無主幹寬度) 25
圖3-4淡江大學機械工廠之線切割機 26
圖3-5垂直尾翼示意圖 27
圖3-6尾翼實體圖:(a)組裝前、(b)組裝後,紅圈為鑽孔位置 27
圖3-7無主幹寬度之毛細微結構 28
圖3-8崇電雷射公司之SYNOVA - LCS300 29
圖3-9有積碳之毛細微結構橫截面圖 31
圖3-10有積碳之毛細微結構俯視圖 31
圖3-11已清除積碳之毛細微結構橫截面圖 32
圖3-12已清除積碳之毛細微結構俯視圖 32
圖3-13單懸臂梯形橫截面圖1 35
圖3-14單懸臂梯形橫截面圖2 35
圖3-15梯形橫剖面示意圖 36
圖3-16新設計的仿生尾舵: (a)示意圖;(b)實體圖 37
圖4-1驅動實驗設備: (a)驅動量測端;(b)畫面擷取端;(c)畫面輸出端 39
圖4-2仿生尾舵驅動角度;(a)未受液體驅動角度為65˚;(b)受液體驅動角度為60˚ 40
圖4-3懸臂量間驅動變化;(a)未受液體驅動為5˚;(b)受液體驅動為3˚ 40
圖4-4表面改質仿生尾舵驅動角度: (a)未受液體驅動角度為62˚;(b)受液體驅動角度為50˚ 41
圖4-5安裝仿生尾舵示意圖 43
圖4-6切割強化桿件示意圖 43

圖4-7將仿生尾舵裝置尾翼上實際圖: (a)驅動前;(b)驅動後角度為7˚ 44
圖4-8加熱仿生尾舵架構 45
圖4-9加熱仿生尾舵變化情形 46
圖4-10滴入丙酮驅動變化 47
圖4-11滴入乙醇驅動變化 48
圖4-12滴入異丙醇驅動變化 49
圖4-13開路式低速風洞 50
圖4-14LW-9028雙軸力規 51
圖4-15六軸力規 52
圖4-16風洞整體實驗架構 53
圖4-17側向力方向之定義 53
圖4-18側向力比較圖 (雙軸力規) 54
圖4-19側向力比較圖 (六軸力規) 55
圖A1小型儲存槽 62

表目錄
表2-1 翼膜與尾翼相關數據 18
表2-2金探子與蝙蝠拍翼機各項數據 22
表4-1 毛細 微結構的設計參數、驅動角度及楊氏模數 42
參考文獻 [1] 李旺龍,“您不知道的早知道仿生學”,知識饗宴,2008年5月。
[2] Black Widow, UAS Advanced Development Center, from
http://www.avinc.com/ADC_Project_Details.asp?Prodid=48
[3] I. Kroo and P. Kunz, “ Meso-scale flight and miniature rotorcraft development,” chapter 23 of Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Ed. by T. J. Mueller, AIAA, 2001.
[4] P. Scott, “ A bug’s lift,” Scientific American, Vol. 280, no. 4, pp.51-54, 1999.
[5] R. T. Borno and M. M. Maharbiz, “A distributed actuation method basd on Young-Laplace forces,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers’05), Seoul, Korea, June 5-9, pp.125-128, 2005.
[6] R. Tang, S. Chen, and H. Chen,“ Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Chinese Academy of Sciences, Vol. 189, pp. 143-150, 2013.
[7] E. G. Holczer, Zsolt Fekete, and Peter Fűrjes, “ Surface modification of PDMS based microfluidic systems by tensides,” Materials Science Forum, Vol. 729, pp. 361-366, 2013.
[8] 劉冠君,“圓管挫曲式微型閥門之研製”,淡江大學機械與機電工程學系碩士論文,2006年6月。
[9] P. Ray, “ SU8 / modified MWNT composite for piezoresistive sensor application,” Materials Research Society Symposium Proceedings, Vol. 1299, pp. 135-140, 2011.

[10] http://web.mit.edu/6.777/www/matprops/su-8.htm,引用日期:2012/7/13。
[11] L.J. Yang and K.C. Lin, “ SU-8 buckled-type microvalves switched by surface tension forces,” Proceedings of the 2nd IEEE International Conference on Nano Micro Engineered and Molecular Systems ( IEEE NEMS 2007 ), pp.105-108, 2007.
[12] L. J. Yang and K. C. Liu, “ Surface tension-driven microvalues with large rotating stroke,” Tamkang Journal of Science and Engineering, Vol. 10, No. 2, pp. 144-146, 2007.
[13] 黃建博,“創新毛細驅動微型控制鉸鍊”,淡江大學機械與機電工程學系碩士論文,2008 年 6 月。
[14] 詹東霖,“仿生尾舵之設計與製造”,淡江大學機械與機電工程學系碩士論文,2012年6月。
[15] L. J. Yang, “ Steel –based tail actuators for for MAVS, ” Proc. of IEEE NEMS 2013, Suzhou, China, pp. 49-51, Apr. 7-11, 2013.
[16] 何仁揚,“拍撲式微飛行器之製作及其現地升力之量測研究”,淡江大學機械與機電工程學系碩士論文,2005年6月。
[17] L. Beker, O. Zorlu, H. Kulah, “A room temperature, zero force, wafer-level attachment method for MEMS integration,” Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Article number 6474229, pp. 267-270, 2013.
[18] TU Delft, Delfy, 參考網站:
http://www.delfly.nl/?site=DI&menu=&lang=nl
[19] A. Vakil, and S. I. Green, “Stagnation pressure, the Bernoulli equation, and the steady-flow energy equation,” International Journal of Mechanical Engineering Education, Vol. 39, No. 2, pp. 130-138, Apr. 2011.
[20] 房柏廷,“應用合拍機制於微飛行器之研製”,淡江大學機械與機電工程學系碩士論文,2009年6月。
[21] P. Eliasson, J. B. Vos, A. D. Ronch, M. Zhang, A. W. Rizzi, “ Virtual aircraft design of transcruiser - Computing break points in pitch moment curve,” 28th AIAA Applied Aerodynamics Conference;Chicago, IL; Jun. 28 - Jul. 1, pp. 2010-4366, 2010.
[22] M.W. Sun, G. Jiao, R. Yang, and Z. Chen, “ADRC for statically unstable longitudinal flight dynamics,” Proceedings of the 30th Chinese Control Conference, Article number 6000703, pp. 6274-6280, 2011.
[23] 楊龍杰,“振翅高飛—論拍翼機之研製”,科學月刊,第44卷第1期,pp. 34-38,2013年1月。
[24] 徐振貴,“拍翼式微飛行器之設計、製造與測試整合”,淡江大學機械與機電工程學系博士論文,2008年6月。
[25] 國防大學蝙蝠拍翼機:
http://www.youtube.com/watch?v=Wbbm3yH4hMc
[26] J. Kim and M. Lee, “ Manufacture of environmentally-friendly flame-retardant paper with polyethylene terephthalate (PET) short cut fiber,” Journal of Korea TAPPI, Vol. 44, No. 5, pp. 14-20, 2012.
[27] L. Xie, Q. Dai, G. Du, Q. Deng, and G. Liu, “ Study on surface modification of polyethylene terephthalate(PET) film by RF-AR/O2 plasma treatment,” Applied Mechanics and Materials, Vol. 200, pp. 94-98, 2012.
[28] 高崇瑜,“應用精密模造技術於微飛行器套件組之設計與製造” 淡江大學機械與機電工程學系碩士論文,2009年6月。

[29] L. J. Yang, C. Y. Kao, and C. K. Huang, “ Development of flapping ornithopters by precision injection molding, ” Applied Mechanics and Materials, Vol. 163, pp. 125-132, 2012.
[30] 崇電雷射科技股份有限公司
http://www.ruentex.com.tw/trend-web/files/chinese.htm
[31] Synova - Innovative Laser Systems
http://www.synova.ch/
[32] M. Niinomi, M. Nakai, J. Hieda, Zhao. Xiaoli, and Zhao. Xfeng, “ Titanium alloys with changeable Young's modulus for preventing stress shielding and springback,” Biomaterials Science: Processing, Properties and Applications II: Ceramic Transactions, Vol. 237, pp. 65-72, 2012.
[33] W. Tillmann, U. Selvadurai, and W. Luo, “ Measurement of the Young's modulus of thermal spray coatings by means of several methods,” Journal of Thermal Spray Technology, Vol. 22 pp. 1-9, 2012.
[34] J. M. Gere, and S. P. Timoshenko, Mechanics of Materials, Wadsworth Publishing Co Inc; 2nd edition, pp. 724-728, 1984
[35] 瑞領科技股份有限公司
http://www.longwin.com/big5/about.html
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-09-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-09-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信