§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3008201217213700
DOI 10.6846/TKU.2012.01336
論文名稱(中文) 多吡啶氮異環碳烯釕錯合物之合成與性質研究
論文名稱(英文) Synthesis and characterization of Polypyrodyl N-Heterocyclic Carbene based Ruthenium complexs
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 劉仲晨
研究生(英文) Chung-Chen Liu
學號 698160032
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-18
論文頁數 87頁
口試委員 指導教授 - 王文竹
委員 - 林志彪
委員 - 李冠明
關鍵字(中) 氮異環碳烯
推電子能力

聯吡啶
關鍵字(英) N-heterocyclic carbene
σ-donation
Ruthenium
bipyridine
第三語言關鍵字
學科別分類
中文摘要
本論文合成出一系列含氮異環碳烯(N-Heterocyclic Carbene, NHC)的多吡啶配位子,分別為L1(L1=6-mimbp)、L2(L2=6-mbzimbp)以及L3(L3=6-mtimbp)並與分別與RuIIICl3以及RuIII(tpy)Cl3反應,得到homoleptic釕錯合物1(1 =[Ru(L1)2](PF6)2)、2(2 = [Ru(L2)2](PF6)2)、3(3 = [Ru(L3)2](PF6)2),以及heteroleptic釕錯合物4(4 = [Ru(L1)(tpy)](PF6)2)、5(5 = [Ru(L2)(tpy)](PF6)2)、6(6 =[Ru(L3)(tpy)](PF6)2)。以上化合物經由核磁共振光譜與質譜鑑定,並透過x-ray單晶繞射探討錯合物的幾何結構,以循環伏安法探討錯合物的電化學性質,利用吸收及放射光譜討論配位子及錯合物的光物理性質。

   從X-ray的實驗結果顯示,錯合物1、2、4在幾何結構上,皆為扭曲的正八面體,近似於Ru(tpy)2以及其他文獻中以NHC釕錯合物之結構,不過錯合物1、2、4中的Ru-Carbene的鍵長最短可到1.988 (5)A。電化學實驗中,錯合物1的氧化電位為1.23 V ,判定為二價釕至三價釕的氧化,還原電位為-1.27 V及-1.54 V,分別判定為聯吡啶第一個電子及第二個電子的還原。釕錯合物的吸收光譜中,配位子π→π*躍遷發生在250 nm及300 nm,MLCT發生在450-470 nm範圍內。

   放射光譜中,釕錯合物的3MLCT放光波長位在590-628 nm範圍內,其放光量子產率最高達0.0037,最低為0.00009,錯合物1-3的3MLCT生命期分別為90 ns,25 ns以及110 ns,顯示錯合物1-3的結構雖然與Ru(tpy)2¬相似,可是由於NHC上推電子能力的貢獻,擴大3MLCT及3MC的能量差,因此提升了放光效率以及激發態的生命期。
英文摘要
A series of New type Polypyridyl-N-Heterocyclic Carbene ligands, L1(L1=6-mimbp) 、L2(L2=6-mbzimbp)、L3(L3=6-mtimbp) and their Ruthenium complexes 1(1 =[Ru(L1)2](PF6)2)、2(2 = [Ru(L2)2](PF6)2)、3(3 = [Ru(L3)2](PF6)2)、4(4 = [Ru(L1)(tpy)](PF6)2)、5(5 = [Ru(L2)(tpy)](PF6)2)、6(6 =[Ru(L3)(tpy)](PF6)2) were synthesized and characterized by NMR and Mass. Through single crystal X-ray diffraction experiments, we confirmed all this type of Ruthenium complexs exhibit distorted octahedral structure, and the Ruthenium-carbene bond lengths were shortest in all other pyridyl type NHC Ruthenium complex. The electrochemical experimental data reveal that the imidazole NHC ligand contain good σ-donation and desatblized the HOMO energy level , benzimidazole NHC ligand contain good π-acception so stabilized HOMO energy level . In electron absorption spectra of complex 1-6, two strong absorption peak in UV were assigned as π→π* transition, absorption appeared around 450 nm to 470 nm were assigned as MLCT. In electronic emission spectra,emission peak near around were assigned as 3MLCT, by measuring the quantum yield and lifetime, the experiment results indicate that the NHC ligand could expand the energy gap between 3MC and 3MLCT so increase the emission quantum yield and lifetime of 3MLCT.
第三語言摘要
論文目次
目錄
中文摘要
英文摘要
第一章  序論
1-1多吡啶釕錯合物 1
1-2 氮異環碳烯配位子( N-Heterocyclic Carbene ligand ) 5
1-3 含吡啶氮異環碳烯之釕錯合物 6
1-4 研究動機 8

第二章  實驗與合成
2-1藥品 10
2-2儀器 11
2-3 配位子合成 13
2-4 錯合物合成 22

第三章  結果與討論
3-1 化合物合成討論 29
  3-1-1配位子合成 29
  3-1-2錯合物合成 31
3-2 核磁共振光譜 32
  3-2-1配位子核磁共振譜 32
  3-2-2錯合物核磁共振譜 33
3-3 錯合物質譜 45
3-4 錯合物晶體結構 51
3-5錯合物循環伏安法 59
3-6 電子吸收光譜 68
  3-6-1 配位子電子吸收光譜 68
  3-6-2 錯合物電子吸收光譜 68
3-7 電子放射光譜 74
  3-7-1 配位子電子放射光譜 74
  3-7-2 錯合物電子放射光譜 74
  3-7-3 錯合物放光量子產率 75
  3-7-4 錯合物放光生命期 76
第四章  結論 85
第五章  參考文獻 86
附錄 88


圖目錄
Scheme 1. Isomers of e- donor-acceptor substituted Ru(bpy)3 2
Scheme 2. Single isomer of e- donor-acceptor substituted Ru(tpy)2  2
Scheme 3. Difference of bite site and 3MC energy level between (a) Ru(bpy)3
              and (b) Ru(tpy)2  2
Scheme 4. Electron releasing-withdrawing group substituted Ru(tpy)2 3
Scheme 5. Aromatic ring substituted Ru(tpy)2 3
Scheme 6. 2nd chromophore substituted Ru(tpy)2 4
Scheme 7. (a)Cyclometallated and (b)Deprotonated triazole substituted Ru(tpy)2 4
Scheme 8. Strain reduced Ru(tpy)2 4
Scheme 9. Structure of series of [Ru(dqp)2]2+(PF6)2 5
Scheme 10 . Structure of Ardunego carbine 5
Scheme 11 . (a)Inductive effect and (b) Mesomeric effect in NHC 6
Scheme 12 . Structrure of (a)bip and (b)[Ru(bip)2]2+(X)2 , X=PF6-, BPh4-, Br- 6
Scheme 13 . Structrure of BCN, TCN and CTN  7
Scheme 14 . UV-Vis spectrum of BCN, TCN and CTN 7
Scheme 15 . Molecular structure design of L1(L1=6-mimbp),
          L2(L2=6-mbzimbp), L3(L3=6-mtimbp) 9
Scheme 16 . Molecular structure design of complex 1(1=[Ru(L1)2](PF6)2 )、2(2=[Ru(L2)2](PF6)2 )、3(3=[Ru(L3)2](PF6)2 )、4(4=[Ru(L1)(tpy)](PF6)2 )、5(5=[Ru(L2)(tpy)](PF6)2 )、6(6=[Ru(L3)(tpy)](PF6)2 ) 9
Figure 3.2.1. 1H-NMR spectrum of L1 in DMSO-d6 36
Figure 3.2.2. 1H-NMR spectrum of L1 in DMSO-d6 36
Figure 3.2.3. 1H-NMR spectrum of L2 in DMSO-d6 37
Figure 3.2.4. 1H-NMR spectrum of L2 in DMSO-d6 37
Figure 3.2.5. 1H-NMR spectrum of L3 in DMSO-d6 38
Figure 3.2.6. 1H-NMR spectrum of L3 in DMSO-d6 38
Figure 3.2.7. 1H-NMR spectrum of complex 1 in Acetone-d6 39
Figure 3.2.8. 1H-NMR spectrum of complex 1 in Acetone-d6 39
Figure 3.2.9. 1H-NMR spectrum of complex 2 in Acetone-d6 40
Figure 3.2.10. 1H-NMR spectrum of complex 2 in Acetone-d6 40
Figure 3.2.11. 1H-NMR spectrum of complex 3 in Acetone-d6 41
Figure 3.2.12. 1H-NMR spectrum of complex 3 in Acetone-d6 41
Figure 3.2.13. 1H-NMR spectrum of complex 4 in Acetone-d6 42
Figure 3.2.14. 1H-NMR spectrum of complex 4 in Acetone-d6 42
Figure 3.2.15. 1H-NMR spectrum of complex 5 in Acetone-d6 43
Figure 3.2.16. 1H-NMR spectrum of complex 5 in Acetone-d6 43
Figure 3.2.17. 1H-NMR spectrum of complex 6 in Acetone-d6 44
Figure 3.2.18. 1H-NMR spectrum of complex 6 in Acetone-d6 44
Figure 3.3.1. Electrospray mass spectrum of complex 1 45
Figure 3.3.2. Electrospray mass spectrum of complex 2 46
Figure 3.3.3. Electrospray mass spectrum of complex 3 47
Figure 3.3.4. Electrospray mass spectrum of complex 4 48
Figure 3.3.5. Electrospray mass spectrum of complex 5 49
Figure 3.3.6. Electrospray mass spectrum of complex 6 50
Figure 3.4.1. Single crystal strucure (top) and 
           coordination sphere (bottom)of complex 1 56
Figure 3.4.2. Single crystal strucure (top) and 
           oordination sphere (bottom)of complex 2 57
Figure 3.4.3. Single crystal strucure (top) and 
           coordination sphere (bottom)of complex 4 58
Scheme 11. Other NHC Ruthenium complexs 60
Figure 3.5.1. Predicted HOMO and LUMO energy level of complex 1-6 
           according to CV experiments 61
Figure 3.5.2. Cyclic voltammogram of complex 1 62
Figure 3.5.3. Cyclic voltammograms and differential pulse voltammograms of   
           complex 1 62
Figure 3.5.4 Cyclic voltammogram of 2 63
Figure 3.5.5.Cyclic oltammograms and differential pulse voltammograms of 
          complex 2 63
Figure 3.4.6. Cyclic voltammogram of 3 64
Figure 3.4.7. Cyclic voltammograms and differential pulse voltammograms 
          of complex 3 64
Figure 3.4.8. Cyclic voltammogram of 4 65
Figure 3.4.9. Cyclic voltammograms and differential pulse voltammograms
          of complex 4 65
Figure 3.4.10. Cyclic voltammogram of 5 66
Figure 3.4.11. Cyclic voltammograms and differential pulse voltammograms 
          of complex 5 66
Figure 3.4.12. Cyclic voltammogram of 6 67
Figure 3.4.13. Cyclic voltammograms and differential pulse voltammograms
          of complex 6 67
Scheme 12.  Other NHC Ruthenium complexes 70
Figure 3.6.1. UV-Vis spectra of L1-L3 in CH3CN 72
Figure 3.6.2. UV-Vis spectra of complex 1-3 and Ru(bpy)3 in CH3CN 72
Figure 3.6.3. UV-Vis spectra of complex 4-6 in CH3CN 73
Figure 3.7.1. UV-Vis and PL spectra of L1 in CH3CN  78
Figure 3.7.2. UV-Vis and PL spectra of L2 in CH3CN  78
Figure 3.7.3. UV-Vis and PL spectra of L3 in CH3CN 79
Figure 3.7.4. UV-Vis and PL spectra of complex 1 in CH3CN 79
Figure 3.7.5. UV-Vis and PL spectra of complex 2 in CH3CN  80
Figure 3.7.6. UV-Vis and PL spectra of complex 3 in CH3CN  80
Figure 3.7.7. UV-Vis and PL spectra of complex 4 in CH3CN 81
Figure 3.7.8. UV-Vis and PL spectra of complex 5 in CH3CN 81
Figure 3.7.9. UV-Vis and PL spectra of complex 6 in CH3CN 82
Figure 3.7.10. UV-Vis spectra of complex 1 and Ru(bpy)3 in CH3CN 82
Figure 3.7.11. PL spectra of complex 1 (intensity x 10) and Ru(bpy)3 in CH3CN 83
Figure 3.7.12. Life time measurment of complex 1 in CH3CN 83
Figure 3.7.13. Life time measurment of complex 2 in CH3CN 84
Figure 3.7.14. Life time measurment of complex 3 in CH3CN 84

 表目錄
Table 3.2.1. 1H-NMR chemical shift of bpy amd methyl in L1-L3 35
Table 3.2.2. 1H-NMR chemical shift of bpy amd methyl in complex 1-6 35
Table 3.2.3. 1H-NMR chemical shift of terpyridine in complex 4-6 35
Table 3.4.1. Crystal data and structural refinement for complex 1 52
Table 3.4.2. Crystal data and structural refinement for complex 2 53
Table 3.4.3. Crystal data and structural refinement for complex 4 54
Table 3.4.4. Bond length (A) between NHC ligand and Ru of complexe1、2 and 4 55
Table 3.4.5. Bond angle (°) between carbene-Ru-nitrogen and nitrogen-
          Ru-nitrogen of complexes 1、2 and 4. 55
Table 3.5.1. Electrochemical data of complexes  60
Table 3.6.1. UV-Vis spectroscopic data of ligands and complexes 71
Table 3.7.1 PL spectroscopic data of ligands and complexes  77
參考文獻
1. Juris, A.; Balzani, V.; Barigelletti, F. Coord. Chem. Rev. 1988, 84, 85.

2. Geoffrey F.; Strouse.; Peter A. Andenon.; Jon R. Schoonover.; Thomas J.; Meyer, J. Inorg. Chem. 1992, 3004.

3. Maria A,; Michael J.; Rohan J.; Tomas O.; J. Am. Chem. Soc. 2008, 130, 15533–15542.

4. Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269

5. Sun, L.; Hammarstrom, L.; Akermark, B.; Styring, S. Chem. Soc. Rev. 2001, 30, 36

6.Barigelletti, F.; Flamigni, L. Chem. Soc. Rev. 2000, 29, 1.

7. Elaine A.; Garry S.; Chem. Soc. Rev. 2005, 34, 133–142

8. Schwarz, J.; Bohm, V.P.W.; Grosche, M.; Herrmann, W.A.; Hieringer, W.;Raudaschl,S.; G. Chem. Eru. J. 2000, 1773-1780

9. M. Bortenschlager et al. J.Organ. Chem. 2005, 6233–6237.

10. Stephen T.; Liddle, S.; Polly L. Chem. Soc. Rev. 2007, 36, 1732–1744.

11. H. Jacobsen et al. Coordination Chemistry Reviews. 2009, 687–703.

12. Cezary S.; Michał B.; Karol Grela. Chem. Rev. 2009, 109, 3708–3742.

13. Tissa Sajoto.; Peter I. D.; Arnold Tamayo.; Muhammed Yousufuddin.; Robert B. Inorg. Chem, 2005, 44, 7792.

14. Hee-Jun P.; Kyeong Ha K.; Soo Young C.; Hyeong-Mook K. Inorg. Chem, 2010, 49, 7340.

15. Anthony J, A.; Richard L.; Michael K. J. Am. Chem. 1991, 113.  

16. Seung Uk S.; Kang Hyun P.; Young-Shin L.; Bo Yun K. Inorg. Chem, 2004, 43, 6896.

17. Chung-Yen L.;Jun-Han S.; Wen-Ren L. Dalton. Trans. 2011, 40, 6765.
18. Yi-Cheng L,; Chaochin S.; Wen-Ren L. Angew. Chem. Int. Ed. 2010, 49, 8161 –8164.

19. Christine D.; Frank R.; Doris K. Dalton. Trans. 2009, 7152.

20 Shoji, K.; Takkaki, K.; Tsyoshi O. Bull. Chem. Soc. Jpn. 1987, 60, 1159-1160.

21. Sanjeev K,; Daniel J.; Bhumika P.; Judith M, L. J. Med. Chem. 2008, 51, 4968–4977.

22. Jie Y.; Dhehinie S.;Gene A.; Ann Margret, A.  J. Am. Chem. Soc. 1997, 119, 5329-5336.

23. Xuefeng,Z.; Pengfei D.; Zhang, L; Minghua, L. Chem. Eru. J. 2011, 17,  3429 - 3437.


24. Guglielmo, G.; Ricevuto, V.; Giannetto, A.; Campagna, S. 
Gazz. Chim.Ital. 1989, 119, 457 - 460 

25. F. Schramm,; R. Chandrasekar,; T. A. Zevaco.; M. Rudolph, H.;
Goerls, W.; Poppitz, M. Eur. J. Inorg. Chem. 2009, 53–61.

26. Kiyoshi C. D. R.; Bryan D. K.;Aswani Y.; Barbora S. Inorg. Chem. 2011, 50, 5494.

27. 郭家良,碩士論文, 國立東華大學化學研究所, 民國89年5月。
28 李成祥, 博士論文, 國立東華大學研究所, 民國99年7月

29. The Organometallic Reader- Epic Ligand Survey: N-heterocyclic Carbenes

30. Henry, M. S.; Hoffman, M. Z. J. Am. Chem. Soc. 1977, 99, 5201-5203

31. Macarena P.; Jose’A. M.; Eva F.; Robert H.C.;
Eduardo P. Organometallics. 2003, 22, 1110-1114

32. Ester M.; Montserrat R.; Isabel R.; Anna R.; Teodor P. J. Am. Chem. Soc. 2006, 128, 5306

33. Andreas A. D.; Scott W.; William B. M. Chem commun. 2002, 1376
34. Viviane, F.; Samik, N,: Jianhua, W.; Marie-Pierre, S. Chem. Eru. J. 2011, 17,  39-44
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信