淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3008201013590200
中文論文名稱 以毛細管電泳研究幾丁聚醣之乙醯化反應
英文論文名稱 Analysis of Acetylation reaction of Chitosan by Capillary Electrophoresis
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 98
學期 2
出版年 99
研究生中文姓名 曾詩穎
研究生英文姓名 Shih-Ying Tseng
學號 697160090
學位類別 碩士
語文別 中文
口試日期 2010-07-19
論文頁數 111頁
口試委員 指導教授-吳俊弘
委員-鄭建中
委員-李長欣
中文關鍵字 幾丁聚醣  去乙醯化程度  乙醯化反應  毛細管電泳 
英文關鍵字 Chitosan  Degree of deacetylation  Acetylation reaction  Capillary electrophoresis 
學科別分類 學科別自然科學化學
中文摘要 利用毛細管電泳(CE)在酸性緩衝溶液中可以快速且準確地測量幾丁聚醣去乙醯化程度(DDA);根據幾丁聚醣的電泳圖我們可以從其UV吸收峯的半高寬(W1/2,DDA)估計樣品的DDA分佈情形。以此新發展的CE方法,我們探討了幾丁聚醣分子量、DDA、濃度、反應溫度和時間等效應對幾丁聚醣乙醯化反應的影響。
相近DDA但不同分子量的四種幾丁聚醣樣品Chitosan10 (DDA 86.8%,Mv 130K)、 LMW(DDA 85.5%,Mv 800K)、MMW(DDA 87.4%,Mv 1310K)、HMW(DDA 83.0%,Mv 2290K)及分別將前述四種樣品經高溫強鹼去乙醯化至大約96% DDA,經不同醋酸酐/胺基 莫耳比例(AA/amine)的乙醯化反應後,每個樣品都可得到一系列不同DDA的幾丁聚醣產物,其AA/amine和LogDDA呈線性關係。從相同DDA但不同分子量的起始樣品經乙醯化反應所得之AA/amine和LogDDA線性關係相同,因此乙醯化反應之分子量效應不明顯。另外,我們將DDA為87.4%的MMW樣品分別進行去乙醯化和乙醯化反應,得到DDA分別為96.3%、70.6%和64.2%的樣品,前述線性關係亦成立,但其乙醯化反應之樣品DDA效應卻很明顯,亦即,幾丁聚醣初始DDA越大,則其乙醯化反應性越好。
另外,結合反應中止樣品製備法和CE分析法,我們得以探討分子量效應對乙醯化反應的動力學影響。此外,我們發現反應物濃度會影響乙醯化反應的平衡DDA值,在相同AA/amine時,較高幾丁聚醣濃度的乙醯化反應性較好,可得到較低DDA產物。而在相同AA/amine時,反應溫度(25~60 ℃)並不影響DDA值。我們也發現乙醯化反應時間在24小時內已達平衡。
將樣品經高溫強鹼去乙醯化至高DDA(∼96%),可大幅降低其DDA分佈,因此,先將樣品去乙醯化,再根據LogDDA和 AA/amine的線性關係進行乙醯化反應,我們可以製備具有所需要DDA的樣品,且此產物具有相對窄的DDA分佈。
英文摘要 The degree of deacetylation (DDA) of chitosan can be quickly and accurately determined in acidic buffer by capillary electrophoresis (CE). According to the electropherogram of chitosan, the DDA distribution can also be estimated from the half-width (W1 / 2, DDA ) of UV absorption peak. By using this newly developed CE-based method, we were able to investigate effects of chitosan molecular weight, DDA, concentration, reaction temperature and duration on the acetylation reaction of chitosan.
Acetylation reactions of different acetic anhydride to amine molar ratio (AA / amine) were carried out for Chitosan10 (DDA 86.8%, Mv 130K), LMW (DDA 85.5%, Mv 800K), MMW (DDA 87.4%, Mv 1310K), and HMW (DDA 83.0%, Mv 2290K), chitosan samples with different molecular weights but similar DDAs, as well as their respective derivatives obtained from deacetylation reactions to about 96% DDA in hot alkaline solution. For each sample, a series of acetylation products with different DDAs were obtained, and it was observed that AA / amine and the measured LogDDA has a linear relationship. We concluded that chitosan molecular weight has no apparent effect on acetylation reaction due to the same AA / amine – LogDDA linearity of chitosans with similar DDAs but different molecular weights. In addition, the AA / amine – LogDDA linearity also exists for the four chitosans having DDAs of 96.3%, 87.4%, 70.6% and 64.2% prepared from deacetylation and acetylation of MMW. However, the DDA effect on acetylation reaction is obvious, i.e., the higher the original DDA of chitosan, the more complete reactivity of its acetylation reaction.
On the other hand, by combining reaction quenching approach and CE analysis method, we were able to study the molecular weight effect on the kinetics of acetylation reaction. Moreover, we found that reactant concentration would affect the equilibrium DDA value of acetylation reaction. For reactions of the same AA / amine, chitosans with higher concentrations would have better reactivity and thus produce lower DDA chitosans. Nevertheless, the reaction temperature (25 ~ 60 oC) did not affect the DDA value. We also found that the acetylation reaction has reached equilibrium within 24 hours.
Through deacetylation reaction to high DDA (~ 96%) in hot alkaline solution, chitosan DDA distribution could be largely reduced. Therefore, first treating sample by deacetylation and then acetylation according to the AA / amine – LogDDA linearity, we can prepare chitosan sample with required DDA and relatively narrow distribution.
論文目次 目錄
目錄 I
圖目錄 V
表目錄 IX
第一章緒論 1
1.1前言 1
1.2研究動機 2
1.3幾丁質、幾丁聚醣簡介 3
1.3.1幾丁質、幾丁聚醣的來源及結構 3
1.3.2幾丁質與幾丁聚醣之溶解性質 5
1.3.3幾丁質與幾丁聚醣之應用 6
1.3.4幾丁質與幾丁聚醣之應用 7
1.3.5幾丁聚醣的去乙醯化程度之測定 10
1.4毛細管電泳簡介 19
1.4.1毛細管電泳介紹 19
1.4.2儀器裝置 19
1.4.3毛細管電泳的分離原理 20
1.4.3.1電泳遷移率(electrophoretic mobility) 20
1.4.3.2電滲透流 21
1.4.4毛細管電泳的分離方法 23
1.4.5樣品注入方式 25
1.4.6偵測方式 26
1.5以毛細管電泳測量幾丁聚醣之去乙醯化程度及其分子量之簡介 28
1.5.1以毛細管電泳測量幾丁聚醣之去乙醯化程度 28
1.5.2以毛細管電泳測量幾丁聚醣之黏度平均分子量 29
1.5.3幾丁聚醣經去乙醯化反應之物性測量 30
1.6本章參考資料 33
第二章實驗 38
2.1實驗藥品 38
2.2實驗條件 40
2.2.1毛細管電泳儀 40
2.2.2毛細管處理方式 40
2.2.3緩衝溶液配置 41
2.2.4以毛細管電泳測量幾丁聚醣之去乙醯化程度之條件 41
2.2.5利用核磁共振法測量幾丁聚醣之去乙醯化程度 42
2.3實驗步驟 44
2.3.1幾丁聚醣之去乙醯化反應 44
2.3.2幾丁聚醣之乙醯化反應 44
2.3.3幾丁聚醣之降解反應 46
2.4本章參考文獻 47
第三章 結果與討論 48
3.1校正曲線 48
3.1.1建立電泳遷移率對去乙醯化程度校正曲線 48
3.1.2校正曲線與幾丁聚醣之關係 51
3.1.3測試較低DDA校正曲線(DDA54.81%~26.46%)之適用性 53
3.2以核磁共振法測量DDA時溶劑和計算公式之選用 54
3.3 NMR和CE對低去乙醯化程度低溶解度樣品之DDA測量57
3.4乙醯化反應之分子量效應 62
3.4.1分子量效應Ι(~85%DDA原始幾丁聚醣) 62
3.4.2分子量效應Ⅱ(高去乙醯化程度幾丁聚醣) 65
3.5乙醯化反應之DDA效應 67
3.6幾丁聚醣DDA分佈之測定及比較 71
3.7利用去乙醯化和乙醯化反應縮小幾丁聚醣的DDA分佈範圍 75
3.8幾丁聚醣乙醯化反應之溫度、時間、濃度效應 76
3.9乙醯化反應之動力學 80
3.10結論 82
3.11本章參考資料 84


圖目錄
圖1-1、纖維素、幾丁質與幾丁聚醣化學結構式 4
圖1-2、幾丁質的三種型態 5
圖1-3、幾丁質製備流程 8
圖1-4、Broussignac方法的滴定曲線圖 10
圖1-5、(a) 幾丁聚醣13C CP-MAS NMR光譜圖(從A到D乙醯化程 度逐漸下降) (b) 幾丁聚醣15N CP-MAS NMR光譜圖(從A到D乙醯化程度逐漸下降) 18
圖1-6、毛細管電泳系統示意圖 20
圖1-7、毛細管內的電滲透流 22
圖1-8、毛細管電泳方式的平板流 23
圖1-9、流體動力方式的拋物線流 23
圖2-1、NMR光譜中各個吸收與其代表名稱 43
圖3-1、建立去乙醯化程度校正曲線之電泳圖,電泳條件列2.2.4 86
圖3-2、由14種幾丁聚醣標準品所建立之電泳遷移率對去乙醯化程度 (NMR測量結果)的校正曲線(dash line:將較高DDA範圍的線性關係外插至較低DDA範圍) 87
圖3-3、Chitosan 10乙醯化產物(AA/amine=0.8,DDA 34.69%)之1H NMR光譜圖。所使用溶劑分別為(A)D2O/DCl;(B)5% (v/v) D2O/CD3COOD 88
圖3-4、PCCH00024樣品之 1H NMR光譜圖,化學位移2.41 ppm的訊號是來自於醋酸的H-Ac 89
圖3-5、(A) LMW(DDA 96.3%)乙醯化產物(AA/amine=0.6, DDA 46.49%, 5 mg/mL, 60℃)及(B)MMW(DDA 96.3%)先乙醯化至DDA 70.6%,再經乙醯化反應之產物(AA/amine=0.8, DDA 31.68%, 10 mg/mL, 25℃) 之 1H NMR光譜圖 90
圖3-6、Chitosan 10 (a)降解0分鐘(b)降解30分鐘(c)降解120分鐘,再進行乙醯化反應至acetic anhydride/amine為1之電泳圖;(d) Chitosan 10先進行乙醯化反應至acetic anhydride/amine為1,再降解120分鐘之電泳圖 91
圖3-7、Chitosan 10 (a)降解0分鐘(c)降解30分鐘(d)降解120分鐘,再進行乙醯化反應至acetic anhydride/amine為1.2之電泳圖;(b)為(a)再經0.45 μm過濾膜過濾之電泳圖 92
圖3-8、Chitosan 10、LMW、MMW、HMW經一系列乙醯化反應產物之LogDDA對acetic anhydride/amine莫耳比圖 93
圖3-9、Chitosan 10、LMW、MMW、HMW先去乙醯化後,再經一系列乙醯化反應產物之LogDDA對acetic anhydride/amine莫耳比圖 94
圖3-10、不同去乙醯化程度MMW經一系列乙醯化反應產物之LogDDA對acetic anhydride/amine莫耳比圖 95
圖3-11、不同去乙醯化程度Chitosan 10經一系列乙醯化反應產物之LogDDA對acetic anhydride/amine莫耳比圖 96
圖3-12、Chitosan 10經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 97
圖3-13、LMW經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 98
圖3-14、MMW經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 99
圖3-15、HMW經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 100
圖3-16、Chitosan 10去乙醯化後,經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 101
圖3-17、LMW去乙醯化後,經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 102
圖3-18、MMW去乙醯化後,經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 103
圖3-19、HMW去乙醯化後,經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 104
圖3-20、MMW去乙醯化後乙醯化到64%經一系列acetic anhydride/ amine乙醯化反應產物之電泳圖 105
圖3-21、不同起始幾丁聚醣乙醯化反應半高寬(W1/2,DDA)比較圖 106
圖3-22、以去乙醯化和乙醯化反應縮小MMW樣品DDA的分佈之電泳圖 107
圖3-23、將圖3-22電泳圖轉換為DDA分佈圖,利用去乙醯化和乙醯化反應可以縮小幾丁聚醣的DDA分佈範圍 108
圖3-24、LMW先去乙醯化後,再以不同濃度經一系列乙醯化反應所得產物之LogDDA對acetic anhydride/amine莫耳比圖(LMW- deacetylation(DDA 96.3%, 10 mg/mL), acetic anhydride /amine=0, 0.2~1(25℃), acetic anhydride/amine =0.12(30℃);LMW- deacetylation(DDA 96.3%, 5 mg/mL), acetic anhydride /amine=0~1(25℃);LMW- deacetylation(DDA 96.3%, 1 mg/mL), acetic anhydride/amine=0.6~1(25℃), acetic anhydride /amine=0.12, 0.4(30℃)) 109
圖3-25、不同分子量高DDA(95%~97%)的幾丁聚醣以acetic anhydride/ amine=0.1進行乙醯化反應之DDA對時間的變化趨勢圖 110
圖3-26、不同分子量高DDA(95%~97%)的幾丁聚醣以acetic anhydride/ amine=0.8進行乙醯化反應之DDA對時間的變化趨勢圖 111


表目錄
表1-1、NaOH濃度對去乙醯化程度與黏度平均分子量的影響 30
表1-2、反應溫度及時間對去乙醯化程度和黏度平均分子量的影響31
表1-3、反應溫度對去乙醯化程度和黏度平均分子量的影響 32
表3-1、建立電泳遷移率-去乙醯化程度校正曲線之幾丁聚醣樣品及其相關測量物理量 50
表3-2、Chitosan 10先去乙醯化至DDA97%,再經乙醯化反應後的NMR和CE之DDA測量值比較 53
表3-3、以NMR測量幾丁聚醣DDA時溶劑和計算公式之比較 56
表3-4、以Bruker Top spin軟體的Fit type:Lorentzian,修正1H NMR光譜之H-Ac訊號所得幾丁聚醣樣品之DDA 57
表3-5、Chitosan 10與Chitosan 10經乙醯化(AA/amine=1.0)樣品在降解前後之DDA 60
表3-6、低DDA幾丁聚醣經NMR測量與毛細管電泳測量之DDA比較 61
表3-7、Chitosan10、LMW、MMW、HMW經一系列乙醯化反應後之DDA 64
表3-8、Chitosan 10(DDA97%)、LMW(DDA96.3%)、MMW(DDA96.3%)、HMW(DDA95%)經一系列乙醯化反應後之DDA 66
表3-9、不同去乙醯化程度MMW經一系列乙醯化反應後之DDA 69
表3-10、不同去乙醯化程度Chitosan 10經一系列乙醯化反應後之DDA 70
表3-11、(a)(b)不同起始物之一系列乙醯化產物的半高寬(W1/2,DDA)比較 73
表3-12、MMW去乙醯化和乙醯化樣品DDA分佈的比較 75
表3-13反應溫度對幾丁聚醣(LMW DDA 96.3%)乙醯化反應的影響 77
表3-14、反應時間對幾丁聚醣乙醯化反應的影響 78
表3-15、反應物濃度對不同幾丁聚醣之乙醯化反應的影響 79
表3-16、LMW(DDA 96.3%)乙醯化反應至第3分鐘加鹼沉殿的停止反應之試驗 81

參考文獻 1.6本章參考資料
1. Guinesi, L. S.; Cavalheiro, É. T. G., “ The use of DSC curves to
determine the acetylation degree of chitin/chitosan sample ”,
Thermochimica Acta, 2006, 444, 128-133.
2. Tsaih, M. L.; Chen, R. H., “ The effect of reaction time and
temperature during heterogenous alkali deacetylation on degree of
deacetylation and molecular weight of resulting chitosan ”,
Journal of Applied Polymer Science, 2003, 88, 2917-2923.
3. Tolaimate, A.; Desbrières, J.; Rhazi, M.; Alagui, A.; Vincendon, M.;
Vottero, P., “ On the influence of deacetylation process on the
physicochemical characteristics of chitosan from squid chitin ”,
Polymer, 2000, 41, 2463-2469.
4. Broussignac, P., “ Chitosan: a natural polymer not well known by the
Industry ”, Chemistry Industry Genie Chimica, 1968, 99, 1241-1247.
5. Tan, S. C.; Khor, E.; Tan, T. K.; Wong, S. M., “ The degree of
deacetylation of chitosan: advocating the first derivative
UV-spectrophotometry method of determination ”, Tlanta, 1998, 45,
713-719.
6. Jiang, X.; Chen, L.; Zhong, W., “ A new linear potentiometric titration
method for the determination of deacetylation degree of chitosan ”,
Carbohydrate Polymers, 2003, 54, 457-463.
7. Kittur, F. S.; Prashanth, H.; Sankar, K.U.; Tharanathan, R. N.,
“ Characterization of chiton,chitosan and their carboxymethyl
derivatives by differential scanning calorimetry ”, Carbohydrate
Polymers, 2002, 49, 185-193.
8. Muzzarelli, R. A. A.; Rocchetti, R., “ Determination of the degree of
cetylation of chitosans by first derivative ultraviolet
pectrophotometry ”, Carbohydrate Polymers, 1985, 5, 461-472.
9. Liu, D.; Wei, Y.; Yao, P.; Jiang L., “ Determination of the degree of
acetylation of chitosan by UV spectrophotometry using dual
standards ”, Carbohydrate Research, 2006, 341, 782-785.
10. Sabnis, S.; Block, H. L., “ Improved infrared spectroscopic method
for the analysis of degree of N-deacetylation of chitosan ”, Polymer
Bulletin, 1997, 39, 67-71.
11. Shigemasa, Y.; Matsuura, H.; Sashiwa, H.; Saimoto, H., “ Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin ”, International Journal of Biological Macromolecules, 1996, 18, 237-242.
12. Kasaai, M. R., “ A review of several reported procedures to determine
the degree of N-acetylation for chitin and chitosan using infrared
spectroscopy ”, Carbohydrate Polymers, 2008, 70, 497-508.
13. Yu, G.; Morin, F.G.; Nobes G.A.R.; Marchessault, R.H.,
“ Degree of acetylation of chitin and extent of grafting PHB on
chitosan determined by solid state 15N NMR ”, Carbohydrate
Polymers, 2005, 61, 155-161.
14. Heux, L.; Brugnerotto, J.; Desbriéres, J.; Versali, M. F.; Rinaudo,
M., “ Solid state NMR for determination of degree of acetylation of
chitin and chitosan ”, Biomacromolecules, 2000, 1, 746-751.
15. Kasaai, M. R., “ Determination of the degree of N-acetylation for
chitin and chitosan by various NMR spectroscopy techniques: A
review ”, Carbohydrate Polymers, 2010, 79, 801-810.
16. Lavertu, M.; Xia Z.; Serreqi, A.N.; Berrada, M.; Rodrigues A.;Wang,
D.; Buschmann M.D.; Gupta A., “ A validated 1H NMR method for
the determination of the degree of deacetylation of chitosan ”, Journal
of Pharmaceutical and Biomedical Analysis, 2003, 32, 1149-1158.
17. Ban, E.; Choi, O. K.; Ryu, J. C.; Yoo, Y. S., “ Capillary
electrophoresis of high-molecular chitosan: the natural carbohydrate
biopolymer ”, Electrophoresis, 2001, 22, 2217-2221.
18. 吳彰哲;黃瀚寧 科學發展, 2010年4月, 448期.
19. Ravindra, R.; Krovvidi, K. R.; Khan, A. A., “ Solubility parameter of
chitin and chitosan ”, Carbohydrate Polymers, 1998, 36, 121-127.
20. Sajomsang, W.; Gonil, P., “ Preparation and characterization of
α-chitin from cicada sloughs ”, Materials Science and Engineering
C30, 2010, 30, 357-363.
21. 朱怡靜 國立聯合大學 化學工程學系碩士班 2006.
22. (a) Lee, Y. M.; K., S. H.; K., S. J., “ Preparation and characteristics of
β-chitin and poly(vinyl alcohol) blend ”, Polymer, 1996, 37,
5897-5905. (b)Minke, R.; Blackwell, J., “ The structure of α-chitin ”,
Journal of Molecular Biology, 1978, 120, 167-181.
23. Majeti, N.V.; Ravi, K., “ A review of chitin and chitosan
Applications ”, Reactive & Functional Polymers, 2000, 46, 1-27.
24. Somorin, O.; Nishi, N.; Tokura, S.; Noguchi, J., “ Studies on
chitin. II. Preparation of benzyl and benzoylchitins ”, Polymer
Journal, 1979, 11, 391-396.
25. Yi, H; Wu, L. Q.; Bentley, W. E.; Ghodssi, R.; Rubloff, G. W.; Culver,
J. N., “ Biofabrication with chitosan ”, Biomacromolecules, 2005, 6, 2881–2894.
26. Shahidi, F.; Arachchi, J. K. V.; Jeon, Y. J., “ Food applications of
chitin and chitosans ”, Trends in Food and Technology, 1999, 10,
37-51.
27. No, H. K.; Meyers, S.P.; Prinyawiwatkul, W.; Xujfsr,
Z., “ Applications of chitosan for improvement of quality and shelf
life of foods: a review ”, Journal of Food Scien, 2007, 72, 87-100.
28. Synowiecki, J.; Al-Khateeb, NA., “ Production, properties, and some
new applications of chitin and its derivatives ”, Critical Reviews in
Food Science and Nutritio, 2003, 43, 145-171.
29. Tsigos, I.; Martinou, A.; Kafetzopoulos, D.; Bouriotis, V., “ Chitin
deacetylases: new, versatile tools in biotechnology ”, Trends in
Biotechnology, 2000, 18, 305-312.
30. Honarkar, H.; Barikani, M., “ Applications of biopolymers I:
chitosan ”, Monatshefte fuer Chemie, 2009, 140, 1403-1420.
31. Crini, G., “ Recent developments in polysaccharide-based materials
used as adsorbents in wastewater treatment ”, Progress in Polymer
Science, 2005, 30, 38-70.
32. Percot,A.; Viton, C.; Domard, A., “ Optimization of chitin extraction
from shrimp shells ”, Biomacromolecules, 2003, 4, 12-18.
33. Chang, K. L. Carbohydr. Res., “ Heterogeneous N-deacetylation of
chitin in alkaline solution ”, Carbohydrate Research, 1997, 303,
327-332.
34. Martinou, A.; Kafetzopoulos, D.; Bouriotis, V., “ Chitin deacetylation
by enzymic means: monitoring of deacetylation processes ”,
Carbohydrate Research, 1995, 273, 235-242.
35. 陳慶源 財團法人食品工業發展研究所出版 2001.
36. Lemos, NP.; Bortolotti, F.; Manetto, G.; Anderson, RA.; Cittadini,
F.; Tagliaro, F., “ Capillary electrophoresis: a new tool in forensic
medicine and science ”, Science & Justice, 2001, 41, 203-210.
37. Tagliaro, F.;Turrina, S.;Smith, F.P., “ Capillary electrophoresis:
principles and applications in illicit drug analysis ”, Forensic Science
Internationa, 1996, 77, 211-229.
38. Suntornsuk L., “ Capillary electrophoresis of phytochemical
substances ”, Journal of Pharmaceutical and Biomedical Analysis,
2002, 27, 679-698.
39. Lindeberg J., “ Capillary electrophoresis in food analysis ”, Food
Chemistry, 1996, 55, 73-94.
40. Anastos, N.;Barnett, NW.;Lewis, SW., “ Capillary electrophoresis
for forensic drug analysis: A review ”, Talanta, 2005, 67, 269-279.
41. 陳世峰 淡江大學 化學學系碩士班 2007.
42. Wang, W.; Bo, S.; Li, S.; Qin, W., “ Determination of the
Mark-Houwink equation for chitosans with different degrees of
deacetylation ”, International Journal of Biological Macromolecules,
1991, 13, 281-285.
43. 潘冠廷 淡江大學 化學學系專題研究報告 2007.

2.4本章參考文獻
1. Lavertu, M.; Xia Z.; Serreqi, A.N.; Berrada, M.; Rodrigues A.;Wang,
D.; Buschmann M.D.; Gupta A., “ A validated 1H NMR method for the
determination of the degree of deacetylation of chitosan ”, Journal of
Pharmaceutical and Biomedical Analysis, 2003, 32, 1149-1158.
2. Mima, S.; Miya, M.; Iwamoto, R. Yoshikawa S., “ Highly deacetylated
chitosan and its properties ”, Journal of Applied Polymer Science,
1983, 28, 1909-1917.
3. Qun, G.; Ajun, W.; Yong, Z., “ Effect of reacetylation and degradation
on the chemical and crystal structures of chitosan ”, Journal of Applied
Polymer Science, 2007, 104 , 2720-2728.
4. Hsu, S.C.; Don, T.M.; Chiu, W.Y., “ Free radical degradation of
chitosan with potassium persulfate ”, Polymer Degradation and
Stability, 2002, 75, 73-83.

3.11本章參考資料
1. Ban, E.; Choi, O. K.; Ryu, J. C.; Yoo, Y. S., “ Capillary electrophoresis
of high-molecular chitosan: the natural carbohydrate biopolymer ”,
Electrophoresis, 2001, 22, 2217-2221.
2. Schatz, C.;Viton, C.;Delair, T.; Pichot, C.; Domard, A., “ Typical
physicochemical behaviors of chitosan in aqueous Solution ”,
Biomacramolecules, 2003, 4, 641-648.
3. Sorlier, P.;Viton, C.;Domard, A., “ Relation between solution
properties and degree of acetylation of chitosan: role of aging ”,
Biomacromolecules, 2002, 3, 1336-1342.
4. Qun, G.; Ajun, W., “ Effects of molecular weight, degree of acetylation
and ionic strength on surface tension of chitosan in dilute solution ”,
Carbohydrate Polymers, 2006, 64, 29-36.
5. Schatz, C.; Pichot, C.; Delair, T.; Viton, C.; Domard, A., “ Static light
scattering studies on chitosan solutions: from macromolecular
chains to colloidal dispersions ”, Langmuir, 2003, 19, 9896-9903.
6. Lavertu, M.; Xia Z.; Serreqi, A.N.; Berrada, M.; Rodrigues A.;Wang,
D.; Buschmann M.D.; Gupta A., “ A validated 1H NMR method for
the determination of the degree of deacetylation of chitosan ”, Journal
of pharmaceutical and biomedical analysis, 2003, 32, 1149-1158.
7. Heux, L.; Brugnerotto, J.; Desbrières, J.; Versali, M. F.; Rinaudo,
M., “ Solid state NMR for determination of degree of acetylation of
chitin and chitosan ”, Biomacromolecules, 2000, 1, 746-751.
8. Kasaai, M. R., “ Determination of the degree of N-acetylation for
review ” Carbohydrate Polymers, 2010, 79, 801-810.
9. Fan, M.; Hu, Q.; Shen, K., “ Preparation and structure of chitosan
soluble in wide pH range ”, Carbohydrate Polymers, 2009, 78, 66-71.
10. Hsu, S.C.; Don, T.M.; Chiu, W.Y., “ Free radical degradation of
chitosan with potassium persulfate ”, Polymer Degradation and
Stability, 2002, 75, 73-83.
11. Qun, G.; Ajun, W.; Yong, Z., “ Effect of reacetylation and degradation
on the chemical and crystal structures of chitosan ”, Journal of
Applied Polymer Science, 2007, 104 , 2720-2728.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-09-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-09-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信