淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-3007201800494400
中文論文名稱 探究遊戲式學習對學生邏輯推理能力的影響
英文論文名稱 Exploring the Effects of Game-based Learning on Students' Logical Reasoning Ability
校院名稱 淡江大學
系所名稱(中) 教育科技學系碩士班
系所名稱(英) Department of Educational Technology
學年度 106
學期 2
出版年 107
研究生中文姓名 塗婕
研究生英文姓名 Jie, Tu
學號 605730125
學位類別 碩士
語文別 中文
口試日期 2018-07-05
論文頁數 128頁
口試委員 指導教授-吳純萍
指導教授-李世忠
委員-林千立
委員-林怡君
中文關鍵字 遊戲式學習  邏輯推理能力  鷹架設計 
英文關鍵字 Game-based learning  Logical reasoning ability  Scaffold design 
學科別分類 學科別社會科學教育學
中文摘要 問題解決是當給予個體一個難題時,個體透過反思與討論,將本身舊有的知識基模組織與精緻化,以產生新的認知來解決這個難題的一系列認知的過程。在問題類型中,邏輯問題是最基礎也是最重要的,在解決所有類型的問題之前,都需要先具備解決邏輯問題的能力,亦即邏輯推理的能力,因此如何提升邏輯推理能力是很重要的。根據相關研究指出,遊戲是激勵學習者的有效工具,遊戲提供學習者一個運有既有知識分析、推理並制定決策來解決問題的機會,並透過執行該決策是否通過關卡來檢視自己制定的策略有沒有效。由上述得知,以遊戲式學習提升邏輯推理能力具有潛在的效益。本研究以基礎程式邏輯概念為核心,設計並開發包含3D密室逃脫遊戲及機器人課堂遊戲之遊戲式學習模式,探究玩家藉由操作及執行遊戲關卡,是否會引發腦內邏輯推理的歷程,並藉由推理的過程產生相對應的外顯行為,成功解決遊戲問題並遷移至基礎程式邏輯測驗表現上。本研究採準實驗研究法,以新北市某國中一年級84位修習資訊課程的學生為樣本,將其分為實驗組一與實驗組二,分別介入遊戲式學習融入敘述式鷹架和遊戲式學習融入提問式鷹架,探討實驗組一與實驗組二於密室逃脫遊戲表現、機器人課堂遊戲表現及基礎程式邏輯後測三變項之差異。研究結果如下:使用遊戲式學習融入敘述式鷹架之實驗組一與使用遊戲式學習融入提問式鷹架之實驗組二,於密室逃脫遊戲表現上無顯著差異;但使用敘述式鷹架之實驗組一於機器人課堂遊戲表現及基礎程式邏輯後測表現上,皆顯著優於使用提問式鷹架之實驗組二。上述結果證實鷹架的設計應明確且直接,以幫助學習者更順利的產生邏輯推理歷程。並以此結果證實介入遊戲式學習時鷹架設計的原則與重要性。
英文摘要 Problem solving is a series of cognition process. During the processes, the individual would organize and elaborate knowledge they already have to a new scheme while giving them a puzzle. In all types of problem, logical problem is the most basic and important. The individual must have the ability of solving logical problem before solving all types of problem, the ability called logical reasoning ability, and it makes the ability more important. According to related research, game is an effective tool to excite learner, it provided an opportunity to analyzing, reasoning, and making decision. Through the result of conducting that decision, the learner could examine if the decision made by themself is effective. Above all, it has some potential benefits that learners enhance logical reasoning ability by game-based learning. This research based on the concept of basic program logic, design and develop a game-based learning mode that including 3D escaping game and machine car game. This study explores if learner can generate logical reasoning process by operating game mission, generate their behavior to finish game mission, and migrate to the test of basic program logic. This study adopted quasi-experimental research, samples of this study were 84 first grade students in New Taipei City. They were divided into experimental group 1 and experimental group 2, participated in two game-based learnings: straight scaffolding and questionable scaffolding. This study messureed the difference between group 1 and group 2 of game achievement in escaping game, machine car game. The results of research finding are: there are no significant finding in game achievement of 3D escaping game between group 1 and group 2. But in the achievement of machine car game and in the test of basic program logic, the group 1 performs significantly better than the group 2. This study suggests that the design of scaffolding must be clear and straightforward to help learner to engage in the process of logical reasoning. Based on the result, this research concludes the importance of scaffolding design in instructal game-based learning.
論文目次 目錄
第一章 緒論……………………………………………………………………… 1
第一節 研究背景與動機…………………………………………………… 1
第二節 研究目的及待答問題……………………………………………… 4
第三節 名詞解釋…………………………………………………………… 4
第四節 研究貢獻…………………………………………………………… 7
第五節 研究限制…………………………………………………………… 8
第二章 文獻探討………………………………………………………………… 9
第一節 邏輯推理能力……………………………………………………… 9
第二節 遊戲式學習………………………………………………………… 16
第三節 鷹架………………………………………………………………… 19
第四節 討論………………………………………………………………… 22
第三章 研究方法………………………………………………………………… 32
第一節 研究對象…………………………………………………………… 32
第二節 研究架構…………………………………………………………… 33
第三節 研究設計與流程…………………………………………………… 40
第四節 研究工具…………………………………………………………… 45
第五節 資料處理與分析…………………………………………………… 92
第四章 研究結果………………………………………………………………… 94
第一節 各變項間的得分情形……………………………………………… 94
第二節 介入課程後兩組實驗組遊戲表現之比較…………………………102
第三節 兩組實驗組於基礎程式邏輯測驗(後測)分數上的差異…………107
第五章 研究結論與建議…………………………………………………………109
第一節 研究結論……………………………………………………………110
第二節 未來研究建議………………………………………………………111
參考文獻………………………………………………………………………… 114
中文部份…………………………………………………………………… 114
英文部份…………………………………………………………………… 116
附錄一、密室逃脫滿意度問卷(節錄)………………………………………… 121
附錄二、基礎程式邏輯測驗(前測)(節錄)…………………………………… 122
附錄三、基礎程式邏輯測驗(後測)(節錄)…………………………………… 125
附錄四、家長同意書…………………………………………………………… 128


表目錄
表2-1-1 Jonassen問題型態描述表(一)……………………………………………10
表2-1-2 Jonassen問題型態描述表(二)……………………………………………11
表2-4-1 遊戲式學習提升問題解決能力之相關研究…………………………… 23
表2-4-2 鷹架理論於教育上的應用……………………………………………… 27
表3-2-1 解題次數、使用鷹架數量及分數對照表……………………………… 35
表3-2-2 教學主題、概念與課堂任務對照表…………………………………… 38
表3-3-1 研究設計………………………………………………………………… 40
表3-4-1 第一次密室逃脫關卡內容設計對應邏輯問題………………………… 47
表3-4-2 小卡足球賽內容設計對應邏輯問題…………………………………… 59
表3-4-3 第一次密室逃脫鷹架類型應用表……………………………………… 63
表3-4-4 小卡足球賽鷹架類型應用表…………………………………………… 76
表3-4-5 前測專家建議…………………………………………………………… 83
表3-4-6 後測專家建議…………………………………………………………… 83
表3-4-7 前、後測題目難度、鑑別度對表………………………………..……...84
表3-4-8 雙項細目表………………………………………………………..……. .86
表3-4-9 遊戲滿意度問卷對應題號一覽表……………………………..…….… 87
表3-4-10 KMO(Kaiser-Meyer-Olkin)取樣適當性檢定和Bartlett球型檢定…….88
表3-4-11 面向一因素分析…………………………………………………..…… 88
表3-4-12 面向二因素分析………………………………………………….……..89
表3-4-13 面向三因素分析………………………………………………….……. 90
表3-4-14 面向四因素分析………………………………………………….……. 90
表3-4-15 各面向信度分析對照表………………………………………….….… 92
表4-1-1 前測描述性統計資料………………........................................................ 94
表4-1-2 密室逃脫遊戲表現之描述性統計資料…………................................... 95
表4-1-3 小卡足球賽遊戲表現之描述性統計資料…………............................... 96
表4-1-4 終極賽車手遊戲表現之描述性統計資料…………............................... 98
表4-1-5 機器人競賽遊戲表現之描述性統計資料…………............................... 99
表4-1-6 基礎程式邏輯測驗後測之描述性統計資料………….......................... 100
表4-1-7 滿意度問卷描述性統計………….... ................ .................................... 101
表4-1-8 兩組實驗組於3D密室逃脫遊戲表現之共變數分析……................ 102
表4-1-9 兩組實驗組於機器人課堂遊戲過關數量之共變數分析...............… 103
表4-1-10 兩組實驗組於機器人課堂遊戲過關秒數之共變數分析…………….103
表4-1-11 機器人課程過關數量與基礎程式邏輯測驗後測之相關…………….105
表4-1-12 機器人課程操作秒數與基礎程式邏輯測驗後測之相關…………….106
表4-1-13 兩組實驗組之共變數分析……………………. ……………………. 107


圖目錄
圖2-1-1 破解問題的四種思考密技……………..………………………………….14
圖2-2-1 kiili經驗遊戲模式……………………………………..………………..17
圖2-3-1 分散性鷹架示意圖……………………………………………………… 20
圖2-3-2 重複性鷹架示意圖……………………………………………………… 21圖2-3-3 協同鷹架示意圖………………………………………………………… 21
圖3-2-1 研究架構圖……………………………………………………………… 33
圖3-3-1 研究流程圖……………………………………………………………… 41
圖3-3-2 實驗流程圖……………………………………………………………… 43
圖3-4-1 遊戲空間示意圖………………………………………………………… 46
圖3-4-2 關卡1-1示意圖………………………………………….……………… 51
圖3-4-3 關卡1-2示意圖………………………………………….……………… 52
圖3-4-4 關卡1-3示意圖………………………………………….……………… 53
圖3-4-5 關卡2-1示意圖………………………………………….……………… 54
圖3-4-6 關卡2-2示意圖………………………………………….……………… 55
圖3-4-7 關卡2-3示意圖……………………………………….………………….56
圖3-4-8 關卡3示意圖………………………………………….………………….57
圖3-4-9 小卡足球賽海報底圖………………………………………….………….58
圖3-4-10 關卡1-2正確程式指令積木……………………………..…….………..69
圖3-4-11 關卡1-3正確程式指令積木……………………………..…….………..70
圖3-4-12 關卡2-1正確程式指令積木……………………………..…….………..72
參考文獻 中文部份
于文正(2014)。鷹架具體程度對創意發想的影響。教育科學研究期刊,59(2),31-60。
呂建億(2011)。融入合作學習與創造思考教學模式來解決問題的科技活動-以創意彈珠軌道機構闖關遊戲為例。生活科技教育,44(6),52-72。
吳純萍、塗婕、李世忠(2018)。遊戲融入程式教學之鷹架設計。「十二年國民基本教育素養導向課程與教學實務」學術研討會發表之論文,私立東海大學附屬中學視聽教室。
孫春在(2013)。遊戲式數位學習。台北市:高等教育文化事業有限公司。
區國良、曾郁庭、沈大鈞(2017)。應用擴增實境於Google Maps對地圖資訊學習影響之研究。高雄師大學報:自然科學與科技類,42,31-58。
許淑玫(2008)。交互教學歷程中學生錯誤發問類型及教師鷹架建構之研究。師資培育與教師專業發展期刊,1(1),73-95。
教育部(2014)。十二年國民基本教育課程綱要總綱。
楊心怡(2013)。從認知負荷觀點探討鷹架輔助遊戲式學習於人體血液循環之研究。教育傳播與科技研究,106,65-78。
葉冰婷(譯)(2015)。破解問題的技術:日本思考研究所耗時20年鉅著,99%問題都可快速解決的四種思考秘技(原作者:今井繁之)。台北市:方言文化。
趙晨帆(2010)。遊戲玩家類型,可玩性與遊戲滿意度,及使用行為之研究─以免費線上休閒類遊戲為例(未出版之碩士論文)。國立中正大學,嘉義縣。
趙嘉浩、梁至中、蔡孟蓉(2017)。機器人課程教材鷹架對高中生未來關鍵學習能力的影響。數位學習科技期刊,9(3),95-114。
蔡福興、游光昭、蕭顯勝(2010)。影響數位遊戲式學習行為與學習遷移成效之因素探討。教育科學研究期刊,55(2),167-206。
盧秀琴、柯琳耀、洪榮昭(2009)。運用社區資源實施 5Why 鷹架式提問教學活動。教育實踐與研究,22(2),1-32。
賴錦緣(2016)。Alice程式設計環境中配對與個別之學習成效比較。中科大學報,3(1),177-190。
簡清華、蔡佳霏(2012)。結合鷹架教學與非例行性數學問題發展學生數學解題能力之研究。科學教育學刊,20(6) ,563-586。
謝立人、余安順、王國華(2007)。結合問題解決與合作學習策略實施於國中數學之行動研究。科學教育,13,130-151。
謝州恩(2013)。鷹架理論的發展,類型,模式與對科學教學的啟示。科學教育月刊,364,2-16。

英文部份
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47.
Abdu, R., Schwarz, B., & Mavrikis, M. (2015). Whole-class scaffolding for learning to solve mathematics problems together in a computer-supported environment. ZDM, 47(7), 1163-1178.
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review, 84(2), 191.
Bressler, D. M., & Bodzin, A. M. (2013). A mixed methods assessment of students' flow experiences during a mobile augmented reality science game. Journal of Computer Assisted Learning, 29(6), 505-517.
Bandura, A., & Walters, R. H. (1977). Social Learning Theory (Vol. 1). Englewood Cliffs, NJ: Prentice-hall.
Caillois, R. (2001). Man, Play, and Games. Chicago, IL: University of Illinois Press.
Chou, T. L., & Chanlin, L. J. (2014). Location-based learning through augmented reality. Journal of Educational Computing Research, 51(3), 355-368.
Cai, S., Chiang, F. K., Sun, Y., Lin, C., & Lee, J. J. (2017). Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interactive Learning Environments, 25(6), 778-791.
Comport, A. I., Marchand, E., Pressigout, M., & Chaumette, F. (2006). Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Transactions on Visualization and Computer Graphics, 12(4), 615-628.
Chen, C. H., Wang, K. C., & Lin, Y. H. (2015). The Comparison of Solitary and Collaborative Modes of Game-based Learning on Students' Science Learning and Motivation. Journal of Educational Technology & Society, 18(2).
Chiang, T. H. C., Yang, Stephen J. H., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352–365.

Dewey, J. (1997). How We Think. Boston, MA: Courier Corporation.
D'Zurilla, T. J., & Nezu, A. (1982). Social problem solving. Advances in Cognitive-behavioral Research and Therapy, 1, 201-274.
Eseryel, D., Ge, X., Ifenthaler, D., & Law, V. (2011). Dynamic modeling as a cognitive regulation scaffold for developing complex problem-solving skills in an educational massively multiplayer online game environment. Journal of Educational Computing Research, 45(3), 265-286.
Eseryel, D., Law, V., Ifenthaler, D., Ge, X., & Miller, R. (2014). An investigation of the interrelationships between motivation, engagement, and complex problem solving in game-based learning. Journal of Educational Technology & Society, 17(1).
Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment (CIE), 1(1), 20-20.
Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33(4), 441-467.
Hwang, G. J., Hung, C. M., & Chen, N. S. (2014). Improving learning achievements, motivations and problem-solving skills through a peer assessment-based game development approach. Educational Technology Research and Development, 62(2), 129-145.
Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students' learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895-1906.
Jonassen, D. H. (1999). Designing constructivist learning environments. Instructional Design Theories and Models: A New Paradigm of Instructional Theory, 2, 215-239.
Jonassen, D. H. (2000). Toward a Design Theory of Problem Solving. Educational Technology Research and Development, 48(4), 63-85.
Jonassen, D. H. (2006). A Constructivist's Perspective on. Educational Technology, Research and Development, 54, 1.
Jonassen, D. H. (2011). Learning to Solve Problems: A Handbook for Designing Problem-solving Learning Environments. New York, NY: Routledge.

Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, 2(2), 187-201.
Kim, H., & Ke, F. (2017). Effects of game-based learning in an OpenSim-supported virtual environment on mathematical performance. Interactive Learning Environments, 25(4), 543-557.
Karagiorgas, D. N., & Niemann, S. (2017). Gamification and Game-Based Learning. Journal of Educational Technology Systems, 45(4), 499-519.
Koutromanos, G., Sofos, A., & Avraamidou, L. (2015). The use of augmented reality games in education: a review of the literature. Educational Media International, 52(4), 253-271.
Lu, S. J., & Liu, Y. C. (2015). Integrating augmented reality technology to enhance children’s learning in marine education. Environmental Education Research, 21(4), 525–541.
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321-1329.
Norman, D. A. (1986). Cognitive engineering. User centered system design, 31, 61.
Obikwelu, C., Read, J., & Sim, G. (2013). Children's Problem-Solving in Serious Games: The" Fine-Tuning System (FTS)" Elaborated. Electronic Journal of E-Learning, 11(1), 49-60.
Polya, G. (2004). How to Solve It: A New Aspect of Mathematical Method (No. 246). Princeton, NJ: Princeton university press.
Royle, K. (2008). Game-based learning: A different perspective. Innovate: Journal of Online Education, 4(4), 4.
Smith, D. C., Cypher, A., & Tesler, L. (2001). Novice programming comes of age. In Your Wish Is My Command: Programming by Example.
Santos, M., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. (2014). Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Transactions on Learning Technologies, 7(1), 38–56
Siswono, T. Y. E., Kohar, A. W., Kurniasari, I., & Astuti, Y. P. (2016, February). An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving. In Journal of Physics: Conference Series, 693(1), 12-15.

Spires, H. A., Rowe, J. P., Mott, B. W., & Lester, J. C. (2011). Problem Solving and Game-Based Learning: Effects of Middle Grade Students' Hypothesis Testing Strategies on Learning Outcomes. Journal of Educational Computing Research, 44(4), 453-472.
Schmeichel, B. J., Vohs, K. D., & Baumeister, R. F. (2003). Intellectual performance and ego depletion: role of the self in logical reasoning and other information processing. Journal of Personality and Social Psychology, 85(1), 33.
Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. The journal of the Learning Sciences, 13(3), 305-335
Tiwari, A., Lai, P., So, M., & Yuen, K. (2006). A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Medical Education, 40, 547-554.
Tabak, I., & Reiser, B. J. (1997, December). Complementary roles of software-based scaffolding and teacher-student interactions in inquiry learning. In Proceedings of the 2nd international conference on Computer support for collaborative learning (pp. 292-301). International Society of the Learning Sciences.
Udall, A. J., & Daniels, J. E. (1991). Creating the Thoughtful Classroom. Tucson, AZ: Zephyr Press.
Umetsu, T., Hirashima, T., & Takeuchi, A. (2002). Fusion method for designing computer-based learning game. In Computers in Education. Proceedings. International Conference on IEEE. 124-128.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.
Wang, H. Y., Duh, H. B. L., Li, N., Lin, T. J., & Tsai, C. C. (2014). An investigation of university students’ collaborative inquiry learning behaviors in an augmented reality simulation and a traditional simulation. Journal of Science Education and Technology, 23, 682–691.
Wagner, D., Langlotz, T., & Schmalstieg, D. (2008, September). Robust and unobtrusive marker tracking on mobile phones. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (pp. 121-124). IEEE Computer Society.


Yang, Y. T. C. (2012). Building virtual cities, inspiring intelligent citizens: Digital games for developing students’ problem solving and learning motivation. Computers & Education, 59(2), 365–377.
Yoon, S. A., Elinich, K., Wang, J., Steinmeier, C., & Tucker, S. (2012). Using augmented reality and knowledge-building scaffolds to improve learning in a science museum. International Journal of Computer-supported Collaborative Learning, 7(4), 519-541.
Zhang, J., Sung, Y. T., Hou, H. T., & Chang, K. E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & Education, 73, 178–188.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2023-08-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信