§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3007201514011700
DOI 10.6846/TKU.2015.01106
論文名稱(中文) ZnO/Ni/C 磁性光觸媒粉體之合成、分析和光催化性質探討
論文名稱(英文) ZnO/Ni/C Magnetic Photocatalysts: Synthesis, Characterization and Photocatalytic Performance
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 林若琪
研究生(英文) Ruo-Chi Lin
學號 601400038
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-14
論文頁數 64頁
口試委員 指導教授 - 余宣賦
委員 - 張裕祺
委員 - 尹庚鳴
關鍵字(中) 氧化鋅
金屬鎳
光催化能力
磁性
關鍵字(英) ZnO
metal Ni
photocatalysis performance
magnetism
第三語言關鍵字
學科別分類
中文摘要
ZnO/Ni/C 磁性光觸媒粉體經由水熱技術製備而成。起始溶液中醋酸鋅、硝酸鎳與檸檬酸的莫爾比為6:1:4,且總金屬離子的莫爾濃度為0.1 M。藉由2 M 氨水調整起始溶液之pH值後,在180 ℃進行2 個小時的水熱反應,接著等冷卻至室溫後再藉由離心與冷凍乾燥之方式得到固態前驅粉體。藉熱分析探討前驅粉體之熱行為表現,並以此分析結果決定粉體在氮氣氣氛中煆燒的溫度。煆燒之樣品以X-ray 繞射分析儀(XRD)、同步熱重與熱示差掃描分析儀(TG-DSC)、傅立葉轉換紅外線光譜儀(FTIR)、光致螢光光譜儀(PL) 和掃描式電子顯微鏡(SEM) 來分析其粉體特性,並對MB 水溶液進行光催化能力測試。由實驗結果發現起始溶液之pH 值與煆燒溫度會影響ZnO 的結晶度和ZnO 與Ni 之重量比。最後結果指出ZnO/Ni/C 磁性光觸媒粉體在起始溶液之pH 值為4 (未添加氨水),且煆燒溫度為600 ℃ 時擁有最佳的光催化效果(0.017 m3/(kg.s))。
英文摘要
ZnO/Ni/C magnetic photocatalytic particles were prepared using a hydrothermal technique. The aqueous solutions, having the molar ratios of Zn(CH3COO)2‧2H2O:Ni(NO3)2‧6H2O:C3H4OH(COOH)3 = 6:1:4 and the molar concentration of the total metallic ions (Zn2+ and Ni2+) = 0.1 M, were prepared. The pH of the solution was adjusted using 2 M NH4OH(aq). The solutions were then hydrothermally treated at 180 ℃ for 2 h. After centrifugally filtering and freeze-drying, the dried solid precursors were obtained and then thermally analyzed to investigate their thermal behavior, followed by calcining the solid precursors in N2 atmosphere at different temperatures. The calcined specimens were characterized using x-ray diffractometer (XRD), fourier transform infrared spectroscope (FTIR), scanning electron microscope (SEM) and photoluminescence spectroscope (PL). The photocatalytic performance of the prepared ZnO/Ni/C particles was evaluated by monitoring the ability to photocatalytically decompose the methylene blue in water under the irradiation of 365 nm UV light. Effects of pH values of the aqueous solution and calcination temperatures on the degree of crystallinity of ZnO and the weight ratio of ZnO to Ni in the ZnO/Ni/C magnetic photocatalytic particles were studied. The results indicated that the ZnO/Ni/C magnetic photocatalytic particles prepared by calcining the solid precursor obtained from the solution of pH = 4 (without NH4OH additions) in the nitrogen atmosphere at 600 ℃ possessed the best photocatalytic ability to decompose methylene, having a specific reaction rate, based on the mass of the photocatalyst used, 0.017 m3/(kg.s).
第三語言摘要
論文目次
主目錄
論文提要內容:	I
Abstract:	II
主目錄	III
圖目錄	V
表目錄	VII
第一章	緒論	1
第二章	文獻回顧	5
2-1.	光觸媒與光催化的原理	5
(1).	摻雜(doping)	6
(2).	複合(coupling)	6
2-2.	氧化鋅(ZnO) 基本性質、晶體結構	7
2-3.	ZnO 粉體之製備	10
2-3-1.	水熱/溶劑熱法(Hydrothermal / Solvothermal method)	10
2-3-2.	溶膠-凝膠法(Sol-Gel method)	12
2-3-3.	多元醇法(Polyol method)	14
2-3-4.	噴霧熱解法(Spray Pyrolysis method)	15
2-4.	磁性光觸媒粉體之發展及製備	15
第三章	實驗步驟	23
3-1.	實驗藥品	23
3-2.	ZnO/Ni/C磁性光觸媒粉體之製備	24
3-3.	特性分析	26
3-4-1.	X-ray 繞射分析儀(X-ray diffractometer, XRD)	26
3-4-2.	同步熱重與熱示差掃描分析儀(Simultaneous thermogravimetry-differential scanning calorimetry, TG-DSC)	27
3-4-3.	掃描式電子顯微鏡(scanning electron microscope, SEM) 	28
3-4-4.	傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)	28
3-4-5.	光致螢光光譜儀(photoluminescence spectroscopy, PL)	29
3-4.	光催化活性實驗	29
第四章	結果與討論	32
4-1.	水熱法製備之ZnO/Ni/C粉體之特性分析與光催化能力	32
(a).	粉體特性分析	32
(b).	光催化能力	41
4-2.	pH 值對ZnO/Ni/C 粉體之影響	46
4-3.	ZnO/Ni/C 粉體之磁性值	56
第五章	結論	57
第六章	參考文獻	58

 
圖目錄
圖1-1. 不同光觸媒半導體於pH=1 之能隙分佈圖	2
圖1-2. 光觸媒相關研究領域	3
圖1-3. 金屬氧化反應之Ellingham plot	4
圖2-1. 六方晶系纖鋅礦結構	9
圖2-2. ZnO-MNs 成長示意圖 (a) ZnO 的生成、(b) ZnO-MNs的生成、(c) 洗滌後之ZnO-MNs、(d) ZnO-MNs的SEM和(e)物質間形成之關係鍵結	12
圖3-1. ZnO/Ni/C粉體製備之流程圖	25
圖4-1. P4 (未添加氨水) 前驅粉體之熱分析圖。	34
圖4-2. P4 (未添加氨水) 所得前驅粉體加熱至不同溫度下之FTIR 圖。	35
圖4-3. P4 (未添加氨水) 前驅粉體在氮氣氣氛下加熱至不同溫度之XRD 圖。	37
圖4-4. 平均晶粒尺寸與ZnO/Ni 重量分率對P4 (未添加氨水) 在不同煆燒溫度之關係圖。	38
圖4-5. P4 (未添加氨水) 於不同煆燒溫度之PL 圖。	38
圖4-6. P4 (未添加氨水) 所得前驅粉體於不同煆燒溫度下之SEM 圖(倍率為100 k):(a) 前驅粉體、(b) 500 oC、(c) 550 oC、(d) 600 oC。	40
圖4-7. 不同煆燒溫度的P4 粉體於365-nm 紫外光照射30 分鐘時MB 濃度之關係圖。	41
圖4-8. P4 煆燒粉體於不同煆燒溫度之光降解的MB 濃度隨時間變化。	42
圖4-9. P4 粉體之kAm 值對煆燒溫度之變化關係。	45
圖4-10. 不同起始溶液之pH 值經水熱反應後所製得前驅物粉體之FTIR 圖。	47
圖4-11. 不同起始溶液pH 值經水熱反應後所製得前驅物粉體之熱分析圖,(a) DSC 圖和(b) TG 圖。	49
圖4-12.起始溶液之pH 值經水熱法再經過氮氣氣氛下煆燒600 oC之XRD 圖。	51
圖4-13. 起始溶液之pH 值經水熱法後在氮氣氣氛下煆燒600 oC 之ZnO 晶粒尺寸關係圖。	52
圖4-15. 起始溶液之pH 值經水熱法後在氮氣氣氛下煆燒600 oC 之SEM 圖(倍率為100 k):(a) pH= 4、(b) pH= 7 和(c) pH= 9。	54
圖4-16. 前驅粉體經過氮氣氮氣氣氛下煆燒600 oC 後光催化反應之kAm 值對起始溶液之pH 值。	55
圖4-17. P4 (未添加氨水) 於不同煆燒溫度:(a) 500 oC(N2)、(b) 550 oC(N2)、(c) 600 oC(N2) 與起始溶液之pH 值經水熱法再經過氮氣氣氛下煆燒600 oC:(d) P7-600 oC(N2)、(e) P9-600 oC(N2) 之磁性表現圖。	56

 
表目錄
表2-1. ZnO物理性質	9
表3-1. 實驗使用之主要化學藥品	23
表3-2. 所有材料的莫爾配比	24
表3-3. 反應溶液於水熱反應前後之pH 值變化	25
表3-4. 所使用分析儀器的用途	26
表4-1. 為P4 (未添加氨水) 傅氏紅外線吸收光譜(FT-IR) 之官能基吸收峰	36
表4-2. P4 (未添加氨水)、P7 和P9 之前驅乾燥粉體的傅氏紅外線吸收光譜(FT-IR) 之官能基	48
參考文獻
[1]	A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," nature, pp. 37-8, 1972.
[2]	S. N. Frank and A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," The Journal of Physical Chemistry, vol. 81, pp. 1484-1488, 1977.
[3]	A. L. Linsebigler, G. Lu, and J. T. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results," Chemical reviews, vol. 95, pp. 735-758, 1995.
[4]	馬振基, 奈米材料科技原理與應用: 全華科技圖書, 2005.
[5]	M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis," Chemical reviews, vol. 95, pp. 69-96, 1995.
[6]	Y. Ohko, K. Hashimoto, and A. Fujishima, "Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films," The Journal of Physical Chemistry A, vol. 101, pp. 8057-8062, 1997.
[7]	A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, pp. 1-21, 2000.
[8]	M. Gopal, W. M. Chan, and L. De Jonghe, "Room temperature synthesis of crystalline metal oxides," Journal of Materials Science, vol. 32, pp. 6001-6008, 1997.
[9]	M. M. Ba-Abbad, A. A. H. Kadhum, A. Bakar Mohamad, M. S. Takriff, and K. Sopian, "The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique," Journal of Alloys and Compounds, vol. 550, pp. 63-70, 2/15/ 2013.
[10]	S. S. Alias, A. B. Ismail, and A. A. Mohamad, "Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation," Journal of Alloys and Compounds, vol. 499, pp. 231-237, 6/11/ 2010.
[11]	L. Wu, Y. Wu, and L. Wei, "Preparation of ZnO nanorods and optical characterizations," Physica E: Low-dimensional Systems and Nanostructures, vol. 28, pp. 76-82, 2005.
[12]	D. Beydoun, R. Amal, G. K.-C. Low, and S. McEvoy, "Novel photocatalyst: titania-coated magnetite. Activity and photodissolution," The Journal of Physical Chemistry B, vol. 104, pp. 4387-4396, 2000.
[13]	M. Barsoum and M. Barsoum, Fundamentals of ceramics: CRC Press, 2002.
[14]	H.-F. Lin, S.-C. Liao, and S.-W. Hung, "The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst," Journal of photochemistry and photobiology A: Chemistry, vol. 174, pp. 82-87, 2005.
[15]	R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," science, vol. 293, pp. 269-271, 2001.
[16]	D. Li and H. Haneda, "Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition," Journal of photochemistry and photobiology A: Chemistry, vol. 155, pp. 171-178, 2003.
[17]	N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka, "Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors," Journal of Photochemistry and Photobiology A: Chemistry, vol. 85, pp. 247-255, 1995.
[18]	W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. Ping’an, et al., "Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO 2 coupled photocatalysts," Applied Catalysis B: Environmental, vol. 39, pp. 269-279, 2002.
[19]	Y. Xu, H. Xu, H. Li, J. Xia, C. Liu, and L. Liu, "Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO," Journal of Alloys and Compounds, vol. 509, pp. 3286-3292, 2011.
[20]	K. Hirano, H. Asayama, A. Hoshino, and H. Wakatsuki, "Metal powder addition effect on the photocatalytic reactions and the photo-generated electric charge collected at an inert electrode in aqueous TiO 2 suspensions," Journal of Photochemistry and Photobiology A: Chemistry, vol. 110, pp. 307-311, 1997.
[21]	Y. Nakato, K. Ueda, H. Yano, and H. Tsubomura, "Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion," The Journal of Physical Chemistry, vol. 92, pp. 2316-2324, 1988.
[22]	J. Lu, H. Wang, S. Dong, F. Wang, and Y. Dong, "Effect of Ag shapes and surface compositions on the photocatalytic performance of Ag/ZnO nanorods," Journal of Alloys and Compounds, vol. 617, pp. 869-876, 2014.
[23]	林敬二, 楊美惠, 楊寶旺, 廖德章, and 薛敬和, 化學大辭典, 1994.
[24]	H. Schulz and K. Thiemann, "Structure parameters and polarity of the wurtzite type compounds Sic—2H and ZnO," Solid State Communications, vol. 32, pp. 783-785, 1979.
[25]	黃淑綺, "以反應式濺鍍製備氧化鋅薄膜及其摻雜之研究," 撰者, 2006.
[26]	曹茂盛, 關長斌, and 徐甲強, 奈米材料導論: 學富文化事業有限公司, 2002.
[27]	A. Moulahi and F. Sediri, "ZnO nanoswords and nanopills: Hydrothermal synthesis, characterization and optical properties," Ceramics International, vol. 40, pp. 943-950, 2014.
[28]	P. Tonto, O. Mekasuwandumrong, S. Phatanasri, V. Pavarajarn, and P. Praserthdam, "Preparation of ZnO nanorod by solvothermal reaction of zinc acetate in various alcohols," Ceramics International, vol. 34, pp. 57-62, 2008.
[29]	R. Razali, A. K. Zak, W. A. Majid, and M. Darroudi, "Solvothermal synthesis of microsphere ZnO nanostructures in DEA media," Ceramics International, vol. 37, pp. 3657-3663, 2011.
[30]	D. M. Mattox, "Sol-gel derived, air-baked indium and tin oxide films," Thin Solid Films, vol. 204, pp. 25-32, 1991.
[31]	S. Alias, A. Ismail, and A. Mohamad, "Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation," Journal of Alloys and Compounds, vol. 499, pp. 231-237, 2010.
[32]	M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, and K. Sopian, "The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique," Journal of Alloys and Compounds, vol. 550, pp. 63-70, 2013.
[33]	A. K. Zak, W. A. Majid, M. Mahmoudian, M. Darroudi, and R. Yousefi, "Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study," Advanced Powder Technology, vol. 24, pp. 618-624, 2013.
[34]	F. Fievet, J. Lagier, and M. Figlarz, "Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process," MRS Bull, vol. 14, pp. 29-34, 1989.
[35]	P. Toneguzzo, G. Viau, O. Acher, F. Fiévet‐Vincent, and F. Fiévet, "Monodisperse ferromagnetic particles for microwave applications," Advanced Materials, vol. 10, pp. 1032-1035, 1998.
[36]	S. Sun, C. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science, vol. 287, pp. 1989-1992, 2000.
[37]	Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science, vol. 298, pp. 2176-2179, 2002.
[38]	B. Wiley, Y. Sun, B. Mayers, and Y. Xia, "Shape‐Controlled Synthesis of Metal Nanostructures: The Case of Silver," Chemistry-A European Journal, vol. 11, pp. 454-463, 2005.
[39]	C. Feldmann and H. O. Jungk, "Polyol‐Mediated Preparation of Nanoscale Oxide Particles," Angewandte Chemie International Edition, vol. 40, pp. 359-362, 2001.
[40]	C. Feldmann and C. Metzmacher, "Polyol mediated synthesis of nanoscale MS particles (M= Zn, Cd, Hg)," J. Mater. Chem., vol. 11, pp. 2603-2606, 2001.
[41]	R. Harpeness, O. Palchik, A. Gedanken, V. Palchik, S. Amiel, M. Slifkin, et al., "Preparation and characterization of Ag2E (E= Se, Te) using the sonochemically assisted polyol method," Chemistry of materials, vol. 14, pp. 2094-2102, 2002.
[42]	Z. Jingwei, Z. Pengli, L. Zhiwei, C. Jianmin, W. Zhishen, and Z. Zhijun, "Fabrication of polycrystalline tubular ZnO via a modified ultrasonically assisted two-step polyol process and characterization of the nanotubes," Nanotechnology, vol. 19, p. 165605, 2008.
[43]	J. Zhang, P. Zhu, J. Li, J. Chen, Z. Wu, and Z. Zhang, "Fabrication of octahedral-shaped polyol-based zinc alkoxide particles and their conversion to octahedral polycrystalline ZnO or single-crystal ZnO nanoparticles," Crystal Growth and Design, vol. 9, pp. 2329-2334, 2009.
[44]	C. Tian, W. Li, K. Pan, Q. Zhang, G. Tian, W. Zhou, et al., "One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance," Journal of Solid State Chemistry, vol. 183, pp. 2720-2725, 2010.
[45]	N. Kavasoglu and A. S. Kavasoglu, "Metal–semiconductor transition in undoped ZnO films deposited by spray pyrolysis," Physica B: Condensed Matter, vol. 403, pp. 2807-2810, 2008.
[46]	S. Golshahi, S. Rozati, R. Martins, and E. Fortunato, "P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration," Thin Solid Films, vol. 518, pp. 1149-1152, 2009.
[47]	S. D. Lee, S.-H. Nam, M.-H. Kim, and J.-H. Boo, "Synthesis and photocatalytic property of ZnO nanoparticles prepared by spray-pyrolysis method," Physics Procedia, vol. 32, pp. 320-326, 2012.
[48]	D. Beydoun and R. Amal, "Implications of heat treatment on the properties of a magnetic iron oxide–titanium dioxide photocatalyst," Materials Science and Engineering: B, vol. 94, pp. 71-81, 2002.
[49]	D. Beydoun, R. Amal, G. Low, and S. McEvoy, "Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide," Journal of Molecular Catalysis A: Chemical, vol. 180, pp. 193-200, 2002.
[50]	M. Ma, Y. Zhang, X. Li, D. Fu, H. Zhang, and N. Gu, "Synthesis and characterization of titania-coated Mn Zn ferrite nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 224, pp. 207-212, 2003.
[51]	Y. S. Chung, S. B. Park, and D.-W. Kang, "Magnetically separable titania-coated nickel ferrite photocatalyst," Materials Chemistry and Physics, vol. 86, pp. 375-381, 2004.
[52]	S.-w. Lee, J. Drwiega, D. Mazyck, C.-Y. Wu, and W. M. Sigmund, "Synthesis and characterization of hard magnetic composite photocatalyst—Barium ferrite/silica/titania," Materials chemistry and physics, vol. 96, pp. 483-488, 2006.
[53]	T. A. Gad-Allah, S. Kato, S. Satokawa, and T. Kojima, "Role of core diameter and silica content in photocatalytic activity of TiO 2/SiO 2/Fe 3 O 4 composite," Solid State Sciences, vol. 9, pp. 737-743, 2007.
[54]	S. W. Wang, S. M. Xu, S. Z. Chen, and J. M. Xu, "Preparation of TiO2/SiO2/(γ-Fe2O3-SiO2) Magnetic Photocatalyst," Key Engineering Materials, vol. 336, pp. 1960-1963, 2007.
[55]	B. Sunkara and R. Misra, "Enhanced antibactericidal function of W 4+-doped titania-coated nickel ferrite composite nanoparticles: A biomaterial system," Acta biomaterialia, vol. 4, pp. 273-283, 2008.
[56]	S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, "Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity," The Journal of Physical Chemistry C, vol. 113, pp. 553-558, 2008.
[57]	C. Shifu, Z. Wei, L. Wei, Z. Huaye, and Y. Xiaoling, "Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe 2 O 4/n-ZnO," Chemical Engineering Journal, vol. 155, pp. 466-473, 2009.
[58]	P. M. Álvarez, J. Jaramillo, F. López-Piñero, and P. K. Plucinski, "Preparation and characterization of magnetic TiO 2 nanoparticles and their utilization for the degradation of emerging pollutants in water," Applied Catalysis B: Environmental, vol. 100, pp. 338-345, 2010.
[59]	V. Tyrpekl, J. P. Vejpravová, A. Roca, N. Murafa, L. Szatmary, and D. Nižňanský, "Magnetically separable photocatalytic composite γ-Fe 2 O 3@ TiO 2 synthesized by heterogeneous precipitation," Applied Surface Science, vol. 257, pp. 4844-4848, 2011.
[60]	J. Xia, A. Wang, X. Liu, and Z. Su, "Preparation and characterization of bifunctional, Fe 3 O 4/ZnO nanocomposites and their use as photocatalysts," Applied Surface Science, vol. 257, pp. 9724-9732, 2011.
[61]	K. Laohhasurayotin, S. Pookboonmee, D. Viboonratanasri, and W. Kangwansupamonkon, "Preparation of magnetic photocatalyst nanoparticles—TiO 2/SiO 2/Mn–Zn ferrite—and its photocatalytic activity influenced by silica interlayer," Materials Research Bulletin, vol. 47, pp. 1500-1507, 2012.
[62]	A. Wilson, S. Mishra, R. Gupta, and K. Ghosh, "Preparation and photocatalytic properties of hybrid core–shell reusable CoFe 2 O 4–ZnO nanospheres," Journal of magnetism and magnetic materials, vol. 324, pp. 2597-2601, 2012.
[63]	Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, et al., "Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity," Journal of Hazardous Materials, vol. 262, pp. 404-411, 11/15/ 2013.
[64]	R. Shao, L. Sun, L. Tang, and Z. Chen, "Preparation and characterization of magnetic core–shell ZnFe 2 O 4@ ZnO nanoparticles and their application for the photodegradation of methylene blue," Chemical Engineering Journal, vol. 217, pp. 185-191, 2013.
[65]	Y. Chen, D. Zeng, K. Zhang, A. Lu, L. Wang, and D.-L. Peng, "Au–ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties," Nanoscale, vol. 6, pp. 874-881, 2014.
[66]	Y. Chen, D. Zeng, M. B. Cortie, A. Dowd, H. Guo, J. Wang, et al., "Seed‐Induced Growth of Flower‐Like Au–Ni–ZnO Metal–Semiconductor Hybrid Nanocrystals for Photocatalytic Applications," Small, 2014.
[67]	X. Feng, H. Guo, K. Patel, H. Zhou, and X. Lou, "High performance, recoverable Fe3O4ZnO nanoparticles for enhanced photocatalytic degradation of phenol," Chemical Engineering Journal, vol. 244, pp. 327-334, 5/15/ 2014.
[68]	S. Singh, K. C. Barick, and D. Bahadur, "Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4–ZnO nanocomposite," Powder Technology, vol. 269, pp. 513-519, 1// 2015.
[69]	M. Shekofteh-Gohari and A. Habibi-Yangjeh, "Facile preparation of Fe3O4@AgBr–ZnO nanocomposites as novel magnetically separable visible-light-driven photocatalysts," Ceramics International, vol. 41, pp. 1467-1476, 1// 2015.
[70]	Q. Xie, J. Li, Q. Tian, and R. Shi, "Template-free synthesis of zinc citrate yolk–shell microspheres and their transformation to ZnO yolk–shell nanospheres," Journal of Materials Chemistry, vol. 22, pp. 13541-13547, 2012.
[71]	Q. Xie, Y. Ma, X. Zhang, L. Wang, G. Yue, and D.-L. Peng, "ZnO/Ni/C composite hollow microspheres as anode materials for lithium ion batteries," Journal of Alloys and Compounds, vol. 619, pp. 235-239, 2015.
[72]	W. L. Bragg, "The diffraction of short electromagnetic waves by a crystal," in Proceedings of the Cambridge Philosophical Society, 1914, pp. 43-57.
[73]	柯以侃, 儀器分析: 新文京圖書出版, 2005.
[74]	F. Paulik and J. Paulik, "Thermoanalytical examination under quasi-isothermal—quasi-isobaric conditions," Thermochimica acta, vol. 100, pp. 23-59, 1986.
[75]	W. W. Wendlandt, Thermal Analysis, 1 ed., 1992.
[76]	楊永盛、楊宗慶, 電子顯微鏡原理與應用: 文京圖書出版, 1975.
[77]	胡竣傑, "室溫濺鍍氧化鋅薄膜之發光特性研究," 撰者, 2005.
[78]	G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts: John Wiley & Sons, 2004.
[79]	許樹恩 and 吳泰伯, X 光繞射原理與材料結構分析: 民全行政院國家科學委員會精密儀器發展中心, 1993.
[80]	H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, "Annealing effect on the property of ultraviolet and green emissions of ZnO thin films," Journal of Applied Physics, vol. 95, pp. 1246-1250, 2004.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信