淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-3007201411231000
中文論文名稱 大型人形機器人雙足行走步態之設計與實現
英文論文名稱 Design and Implementation of Biped Walking Gait for Adult-Sized Humanoid Robots
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 周民偉
研究生英文姓名 Min-Wei Chou
學號 601460032
學位類別 碩士
語文別 中文
口試日期 2014-06-30
論文頁數 66頁
口試委員 指導教授-鄭吉泰
委員-郭重顯
委員-許駿飛
中文關鍵字 大型人形機器人  直流無刷馬達驅動器  行走步態  中樞模式產生器 
英文關鍵字 Adult-Sized Humanoid Robots  BLDC motor driver  Walking Gait  CPG 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文實現大型人形機器人之雙足行走步態。本論文依照130公分高的人形,來設計具有10個自由度的仿人類之雙足機器人。本論文大致分為三大部分:(1)機構設計、(2)電控設計以及(3)步態設計。在機構設計部分,本論文結合直流無刷馬達與諧和式減速機來設計馬達,並在機器人的左、右腳各安置5顆馬達,踝關節2顆、膝蓋1顆、髖關節2顆,以此10個自由度來實現行走步態。在電控設計部分則是開發一套直流無刷馬達驅動器與大型人形機器人之電控架構。步態設計則是以中樞模式產生器的方法開發出正弦函數振盪器以模擬步態軌跡並以3D模擬來驗證動作的正確性。本論文所實現之機器人可透過工業電腦來進行步態演算,並以逆運動學計算出馬達所要執行的角度與速度,再送至馬達驅動器以驅動直流無刷馬達,來完成設計的步態動作。
英文摘要 Design and implementation of biped walking gait for adult-sized humanoid robots is proposed in this thesis. A 10 degree of freedom biped robot based on 130 cm tall human is designed in this thesis. There are three design objectives including: (1) Mechanical design, (2) Electrical design, and (3)Walking gait design. Brushless DC motor (BLDC) and harmonic drive are applied to implement the joint. Each leg has 6 degree of freedom, two for the ankle, one for knee and three for hip. For electrical design, a BLDC driver and the electrical system for the whole robot is accomplished. In order to design the walking gait, a simplified sine oscillator with central pattern generator (CPG) is applied in this thesis. A 3D simulation system is completed for verifying the walking gait. The proposed robot is able to calculate the walking gait in an industrial computer and send the rotate angle and velocity of the motor to the motor driver board for controlling the motor.
論文目次 中文摘要 I
英文摘要 II
目錄 V
圖目錄 VIII
表目錄 XI
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 9
1.3 論文架構 11
第2章 大型人形機器人之機構設計 12
2.1 設計概念 12
2.2 自由度 14
2.3 馬達與減速機 14
2.4 關節設計 16
2.5 應力分析 17
第3章 大型人形機器人之電控設計 18
3.1 機電系統架構 18
3.2 工業電腦 19
3.3 FPGA(Field-Programmable Gate Array) 20
3.4 馬達驅動器 21
3.4.1 DRV8302-HC-C2-KIT 21
3.4.2 HIWINBoard 22
3.5 感測器 27
3.6 電源規劃 28
第4章 大型人形機器人之步態設計 30
4.1 步態系統架構 30
4.1.1 步態處理器 31
4.1.2 步態週期狀態 33
4.1.3 步態函數 38
4.1.4 逆運動學 38
4.2 步態軌跡 38
4.2.1 步態軌跡規劃 39
4.2.2 步態軌跡方程式 43
4.3 逆運動學 52
第5章 實驗結果 54
5.1 3D步態模擬 54
5.2 實際步態運動觀測 56
第6章 結論與未來展望 59
第7章 參考文獻 61

圖1.1、蛇形機器人 2
圖1.2、壁虎機器人StickyBot 3
圖1.3、魚形機器人RoboPike 3
圖1.4、鳥形機器人SmartBird 4
圖1.5、狗形機器人BigDog 4
圖1.6、本田公司的人形機器人(a)E系列、(b)2000年ASIMO、(c)2011年ASIMO 5
圖1.7、早稻田大學的雙足人形機器人(a)WABOT-1、(b)WABIAN-2R、(c)WABIAN-2R的腳趾機構 6
圖1.8、AIST的雙足機器人(a)HRP-1、(b)HRP-4C、(c)HRP-4 7
圖1.9、KAIST的雙足機器人(a)KHR-1、(b)KHR-2、(c)Albert HUBO 8
圖1.10、波士頓動力的雙足機器人(a)PETMAN、(b)Atlas 9
圖2.1、大型人形機器人腳部機構,正視圖(左)及右視圖(右) 12
圖2.2、大型人形機器人實體圖 13
圖2.3、自由度分配 14
圖2.4、馬達與減速機(a)429271、(b)CSD-2UF 15
圖2.5、各關節機構(a)髖關節、(b)膝關節、(c)踝關節 16
圖2.6、踝關節與髖關應力分析 17
圖2.7、膝關節應力分析 17
圖3.1、大型人形機器人機電系統架構 18
圖3.2、PICO831 19
圖3.3、H3C120-V6核心板 20
圖3.4、TI的馬達驅動器與控制卡(a)DRV8302-HC-C2-KIT、(b)Piccolo F28035 controlCARD 22
圖3.5、HIWINBoard 23
圖3.6、HIWINBoard(a)HIWINBoard_TOP、(b)HIWINBoard_BOTTOM 23
圖3.7、HIWINBoard方塊模組圖 26
圖3.8、磁旋轉編碼器(a)AS5145示意圖、(b)AS5145電路板 27
圖3.9、EE-SX672 28
圖3.10、電源系統(a)腳部鋰電池、(b)超級電容、(c)主控端鋰電池 29
圖4.1、步態系統架構圖 30
圖4.2、步態處理器流程圖 33
圖4.3、單步步態週期狀態流程圖 35
圖4.4、連續步態週期狀態流程圖 37
圖4.5、腰部及腳部軌跡示意圖 39
圖4.6、大型人形機器人示意圖 40
圖4.7、雙足機器人站立示意圖:(a)正視圖、(b)右方側視圖和(c)上視圖 40
圖4.8、完整步態行走示意圖:(a)上視圖、(b)右方側視圖和(c)正視圖 42
圖4.9、腰部振盪器模擬圖(a)單步步態(b)連續步態 45
圖4.10、右腳振盪器模擬圖(a)單步步態(b)連續步態 48
圖4.11、左腳振盪器模擬圖(a)單步步態(b)連續步態 51
圖4.12、3D立體末端點軌跡模擬 51
圖4.13、機器人雙足座標軸示意圖(a)正視圖(b)側視圖 52
圖5.1、3D模擬步態圖 56
圖5.2、大型人形機器人步態測試側視圖(上)正視圖(下) 57
圖5.3、馬達角度誤差圖 58

表1.1、ASIMO系列規格表 5
表1.2、HRP系列規格表 7
表1.3、KHR系列規格 8
表2.1、鋁合金6061-T6規格表 13
表2.2、碳纖維棒 13
表2.3、429271規格表 15
表2.4、CSD-2UF規格表 15
表3.1、PICO831詳細規格表 20
表3.2、H3C120-V6核心板規格表 21
表3.3、鋰電池及超級電容規格 29
表4.1、腰部振盪器參數表 44
表4.2、腰部參數値 44
表4.3、連續步態的右腳振盪器參數表 47
表4.4、連續步態的右腳振盪器參數表 47
表4.5、左腳振盪器參數表 50
表4.6、左腳參數表 50
表5.1、大型人形機器人雙足模擬參數表 54
表5.2、大型人形機器人雙足實測參數表 57



參考文獻 [1]URL: http://en.wikipedia.org/wiki/Robotics/
[2]URL:http://en.wikipedia.org/wiki/I,_Robot/
[3]URL: http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/hykjqb/wenzhang/list_n.asp?id=7513&sid=1
[4]陳均聖,雙足機器人之機電整合與軌跡控制,國立台灣大學工學院機械工程學系碩士論文(指導教授:林沛群),2010。
[5]盧兆慶,雙足機器人之步態規劃與感測器系統建置,國立台灣大學工學院機械工程學系碩士論文(指導教授:林沛群),2011。
[6]URL:http://www.3mech.titech.ac.jp/ma_hirose/ma_hirose_e.html#link/
[7]S. Hirose and M. Mori, “Biologically inspired snake-like robots,” IEEE International Conference on Robotics and Biomimetics, pp. 1-7, 2004.
[8]URL: http://www.expo21xx.com/automation21xx/17936_st3_university/default.htm
[9]S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli and M. R. Cutkosky, “Whole body adhesion: hierarchical, directional and distributed control ofadhesive forces for a climbing robot,” IEEE International Conference on Robotics and Automation, pp. 1268-1273, 2007.
[10]C. M. Wallstrom and McLetchie, “Drag Reduction of an Elastic Fish Mode,” OCEANS Proceedings, vol. 5, pp.2938-2944, 2003.
[11]“A Flapping of Wings” SCIENCE, vol. 335 pp. 1430-1433, 2012.
[12]URL: http://www.festo.com/cms/en_corp/11369.htm
[13]D. Wooden, M. Malchano, K. Blankespoor, A. Howard, A. A. Rizzi and M. Raibert, “Autonomous Navigation for BigDog,” IEEE International Conference on Robotics and Automation,pp. 4736-4741, 2010.
[14]URL: http://world.honda.com/ASIMO/
[15]Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K.Fujimura, “The intelligent ASIMO: system overview and integration,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2478-2483, 2002.
[16]URL: http://www.takanishi.mech.waseda.ac.jp/top/research/wabian/index.htm
[17]Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H.ok. Lim and A. Takanishi, “Development of a new humanoid robot WABIAN-2” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp. 79-81, 2006.
[18]URL: http://www.aist.go.jp/index_en.html/
[19]URL: http://www.aist.go.jp/aist_e/latest_research/2009/20090513/20090513.html/
[20]URL: http://global.kawada.jp/mechatronics/hrp4.html/
[21]N. Kanehira, T. Kawasaki, S. Ohta, T. Ismumi, T. Kawada, F. Kanehiro, S. Kajita and K. Kaneko, “Design and experiments of advanced leg module (HRP-2L) for humanoid robot (HRP-2) development,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2455-2460, 2002.
[22]K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota and T. Isozumi, “Design of prototype humanoid robotics platform for HRP,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2431-2436, 2002.
[23]K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi and T. Isozumi, “Humanoid robot HRP-2,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1083-1090, 2004.
[24]K. Akachi, K. Kaneko, N. Kanehira, S. Ota, G. Miyamori, M. Hirata, S. Kajita and F. Kanehiro, “Development of humanoid robot HRP-3P,”IEEE-RAS International Conference on Humanoid Robots, pp. 50-55, 2005.
[25]K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori and K. Akachi, “Humanoid robot HRP-3,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2471-2478, 2008.
[26]K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka and S. Kajita, “Cybernetic human HRP-4C,” IEEE-RAS International Conference on Humanoid Robots, pp. 7-14, 2009.
[27]K. Kaneko, F. Kanehiro, M. Morisawa, K. Akachi, G. Miyamori, A. Hayashi and N.Kanehira, “Humanoid robot HRP-4 - Humanoid robotics platform with lightweight and slim body,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4400-4407, 2011.
[28]J. H. Kim and J. H. Oh, “Walking control of the humanoid platform KHR-1 based on torque feedback control,” IEEE International Conference on Robotics and Automation, vol. 1, pp. 623-628, 2004.
[29]I. W. Park, J. Y. Kim, S. W. Park and J. H. Oh, “Development of humanoid robot platform KHR-2 (KAIST humanoid robot-2),” IEEE/RAS International Conference on Humanoid Robots, vol. 1, pp. 292-310, 2004.
[30]I. W. Park, J. Y. Kim, J. Lee and J. H. Oh, “Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO),” IEEE-RAS International Conference on Humanoid Robots, pp. 321-326, 2005.
[31]B. K. Cho and J. H. Oh, “Practical experiment of balancing for a hopping humanoid biped against various disturbances” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4464-4470, 2010.
[32]URL: http://www.bostondynamics.com/robot_Atlas.html
[33]URL: http://www.bostondynamics.com/robot_petman.html
[34]M. D. Waard, M. Inja and A.Visser, “Analysis of flat terrain for the Atlas robot,” RoboCup Iran Open International Symposium and the 3rd Joint Conference of AI & Robotics, pp. 1-6, 2013.
[35]L. A. Kurniawan “Prototype Implementation for an Adult-Size Biped Robot with Tendon-Driven Joints,” 國立台灣科技大學電機工程系碩士論文(指導教授:郭重顯),2014。
[36]林群祐,具3自由度腰部動態平衡控制之大型人形機器人之設計與實現,國立成功大學電機工程學系碩士論文(指導教授:李祖聖),2014。
[37]C. T. Cheng, S. A. Li, C. C. Wong, L. F. Chen, M. W. Chou, and Y. Y. Hu “One-Leg Lifting Method for Humanoid Robots based on SOPC Design,” International Automatic Control Conference, pp. 115-119, 2013.
[38]C. C. Wong and C. C. Liu, “FPGA realization of inverse kinematics for biped robot based on CORDIC,” Electronics Letters, vol. 49, No. 5, pp. 332-334, 2013.
[39]C. T. Cheng, H. C. Chen, Y. Y. Hu, and C. C. Wong, “Fuzzy balancing control of a small-size humanoid robot based on accelerometer,” International Journal of Fuzzy Systems, vol.12, no.3, pp.146-153, 2009.
[40]C. T. Cheng, C. C. Wong, Y. Y. Hu, L. F. Chen and I. H. Tseng“Gait Pattern Generation for Humanoid Robot based on the Amplitude Adjustable Oscillators,” International Symposium on Robotics, 2012.
[41]J. Or and A. Takanishi “A biologically inspired CPG-ZMP control system for the real-time balance of a single-legged belly dancing robot,” Proceedings. of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 931-936, 2004.
[42]王紹帆,雙足機器人的設計與實現,國立台灣大學工學院機械工程學系碩士論文(指導教授:林沛群),2010。
[43]陳立峰,基於手部運動之人形機器人平衡控制,淡江大學電機工程學系碩士班(指導教授:翁慶昌、李世安),2013。
[44]L. Righetti and A. J. Ijspeert, “Programmable central pattern generators: An application to biped locomotion control,”Proceedings of 2006 IEEE International Conference on Robotics and Automation, pp. 1585-1590, 2006.
[45]I. Ha, Y. Tamura and H. Asama, “Gait pattern generation and stabilization for humanoid robot based on coupled oscillators,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3207-3212, 2011.
[46]J. Perry, Gait Analysis: Normal and Pathological Function, Downey, CA: Rancho Los Amigos Medical Center, 1992.
[47]Y. T. Su, K.Y. Chong, and T. H. S. Li, “Design and implementation of fuzzy policy gradient gait learning method for walking pattern generation of humanoid robots, ”International Journal of Fuzzy Systems, vol. 13, no. 4, pp. 369–382, 2011.
[48]G. Taga, Y. Yamaguehi and H. Shimizu, “Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.” Biological Cybernetics, vol. 65, no. 3, pp.147–159, 1991.
[49]K. Tsuchiya, S. Aoi, and K. Tsujita. 2003. “Locomotion control of a biped locomotion robot using nonlinear oscillators.” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October 27–31.
[50]S. Miyakoshi, G. Taga, Y. Kuniyoshi, and A. Nagakubo. 1998. “Three dimensional bipedal stepping motion using neural oscillators-towards humanoid motion in the real world.” Proceedings of the 1998IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, BC, Canada, October 13–17.
[51]G. Endo, J. Nakanishi, J. Morimoto and G. Cheng, “Experimental studies of a neural oscillator for biped locomotion with QRIO,”IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18–22, 2005.
[52]I. Ha, Y. Tamura, and H. Asama, “Gait pattern generation and stabilization for humanoid robot based on coupled oscillators,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, September 25–30, 2011.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-08-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-08-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信