淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3007201310240700
中文論文名稱 高壓與常壓薄膜生物處理反應槽操作於不同污泥停留時間下透膜壓力之比較
英文論文名稱 Comparison of TMP in elevated and ambient pressure membrane bioreactors under various SRT
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 陳翊君
研究生英文姓名 Yi-Jyun Chen
學號 600480114
學位類別 碩士
語文別 中文
口試日期 2013-06-26
論文頁數 63頁
口試委員 指導教授-李奇旺
委員-陳孝行
委員-李柏青
中文關鍵字 薄膜處理程序  薄膜阻塞  透膜壓力  溶氧  汙泥停留時間  有機負荷  溶解性微生物產物  胞外聚合物 
英文關鍵字 MBR  Fouling  TMP  DO  SRT  COD loading  SMP  EPS 
學科別分類 學科別應用科學環境工程
中文摘要 MBR為薄膜分離機制與生物處理的結合,具處理水質佳、佔地面積小、汙泥產量少等優點。但薄膜阻塞一直是MBR程序最大問題。在固定的通量操作下,隨過濾時間增長而薄膜開始阻塞,導致TMP上升,若薄膜阻塞情形太嚴重會減短薄膜的使用壽命並提高操作成本。
文獻指出提高DO可降低薄膜阻塞,故本實驗利用加壓的方式,以3kg/cm2壓力提高密閉MBR反應槽的DO濃度,並設置常壓MBR反應槽做比對。於固定通量下,自反應槽中將固定量之汙泥廢置控制汙泥齡於60 day、5 day、15 day、15 day(實驗編號分別為D-1、D-2、D-3、D-4),之間的差異在於常壓MBR反應槽的掃流量控制,前三者為連續式,後者為間歇式。
本研究探討高壓MBR與常壓MBR反應槽的SMP與EPS濃度的變化,及間歇式與連續式提供薄膜空氣掃流量對薄膜阻塞的影響。實驗結果顯示,無論操作SRT的長短,SMP-PN及EPS-PN的濃度,沒有明顯的變化;而SMP-PS及EPS-PS濃度會隨SRT增加而減少。由TMP結果顯示,操作於D-1、D-2、D-3時,發現常壓MBR反應槽TMP較高壓MBR反應槽TMP容易上升,故以D-4將高壓MBR與常壓MBR反應槽皆以間歇式提供掃流量,發現間歇式掃流量能降低薄膜阻塞。
英文摘要 Membrane bioreactor combines physical mechanism of membrane separation and biological treatment. Compared to conventional biological treatment process, MBR has many benefits like a better treated water quality, a smaller footprint, less sludge production. However, MBR process is plagued by membrane fouling. Membrane fouling gets worse with progress of filtration, causing increase of TMP under a fixed flux condition. If the membrane fouling is too serious, then the life of the membrane will be shortened and as a result operating costs will increase.
According to literature, high DO level can reduce membrane fouling. In this study, high DO was achieved by operating MBR at elevated pressure of 3 kg/cm2 in confined reactor, and a MBR at ambient pressure was operated side by side for comparison purpose. Pre-determined amount of sludge was wasted from bioreactor to maintain SRT of 60 days, 5 days, 15 days, and 15 days, respectively. These experiments are denoted, respectively, as D-1, D-2, D-3 and D-4. The difference between D-3 and D-4 is aeration flow for membrane fouling control. The former has continuous aeration flow, while the latter has intermittent aeration flow.
This study explores effects of SMP and EPS in elevated and ambient pressure MBR on membrane fouling, and effects of continuous or intermittent aeration flow for controlling membrane fouling. Experimental results show that the concentration of SMP-PN and EPS-PN changed insignificantly with SRT; however the concentration of SMP-PS and EPS-PS decreased with increases of the SRT. Results show that TMP rising, i.e., membrane fouling, is faster for MBR operated at the ambient pressure than at the elevated pressure for experiment D-1, D-2, and D-3. One the other hand, TMP rising is comparable for both systems, indicating that intermittent aeration flow can mitigate membrane fouling.
論文目次 目錄
目錄 II
List of Figure V
List of Table VIII
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 活性污泥的組成及代謝作用 4
2.2 傳統活性污泥法、批次式生物處理程序與薄膜生物處理程序 5
2.3 薄膜的阻塞 7
2.4 積垢物的種類 8
2.5 薄膜阻塞與透膜壓力(Transmembrane pressure, TMP)的關係 8
2.6 SRT與操作參數的關係 10
2.6.1 SRT與MLSS 10
2.6.2 SRT與DO 10
2.6.3 SRT與SMP及EPS 10
2.7 薄膜積垢的控制 12
第三章 實驗方法 13
3.1 實驗設備及操作參數 13
3.1.1 活性污泥的來源 13
3.1.2 薄膜的介紹及膜組的製作 13
3.1.3 高壓MBR與常壓MBR反應槽 16
3.1.4 反應槽的操作 18
3.1.5 SRT的控制 21
3.1.6 人工廢液的配製 21
3.1.7 OLR的控制 22
3.2 試劑的配製 23
3.2.1 磷酸鹽緩衝溶液(Phosphate Buffered Saline, PBS) 23
3.2.2 多醣體(Polysaccharides, PS)檢量線配製 23
3.2.3 5 %的酚(phenol)溶液 23
3.2.4 蛋白質(Protein, PN)檢量線配製 24
3.2.5 蛋白質染劑 24
3.3 進、出流水質的採樣與分析項目 25
3.3.1 採樣 25
3.3.2 出流水質的pH量測 25
3.3.3 TMP的量測與數據整理 25
3.4 活性污泥的採樣方法與分析項目 31
3.4.1 採樣與MLSS的分析 31
3.5 活性污泥中溶液SMP、EPS的萃取與分析項目 31
3.5.1 PS的分析 31
3.5.2 PN的分析 32
3.6 總有機碳(Total organic carbon, TOC)分析 32
3.7 高壓MBR與常壓MBR反應槽薄膜的清洗 32
3.8 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 33
3.9 T檢驗(Student’s T test, T-test) 33
3.10 實驗流程 33
第四章 結果與討論 35
4.1 出流水質的pH 35
4.2 TMP 37
4.3 進出流水的TOC 44
4.4 SEM 47
4.5 MLSS 52
4.6 PS / PN 54
第五章 結論與建議 58
5.1 結論 58
5.2 建議 59
Reference 60


List of Figure
Figure 1.好氧微生物的代謝過程。 4
Figure 2.CMAS、SBR與MBR的示意圖。 6
Figure 3.薄膜積垢示意圖[11]。 7
Figure 4.為MBR阻塞機制三階段與TMP三階段的關係示意圖[15, 20]。 9
Figure 5.SMP/EPS的萃取與分析方法[22, 35]。 12
Figure 6.高壓MBR與常壓MBR反應槽內膜組的示意圖。 14
Figure 7.膜組的測漏,將膜組置於水面下並緩慢打入氣體,不可有氣泡產生。 15
Figure 8.高壓MBR與常壓MBR反應槽內膜組的實物圖,(a)薄膜以AB膠固定於內半徑0.9 cm的水管中,(b)膜組再固定於套銅牙中,(c)旋轉閥固定於反應槽底部的中心,(d)以內半徑2.5 cm及高約28 cm的圓形PVC管,固定膜組。 15
Figure 9.左:高壓MBR與常壓MBR反應槽內部已固定好的膜組;右:組裝完成的反應槽。 16
Figure 10.左為常壓MBR反應槽;右為高壓MBR反應槽之系統示意圖。 17
Figure 11.高壓MBR反應槽在1 hr的循環中,各項操作的時間示意圖(Influent, In.;Add Pressure, AP;Flow Time, FT;Intermittent Time, IT;Waste Sludge, WS;Dilution Artificial Wastewater, DAW)。 20
Figure 12.常壓MBR反應槽在1 hr的循環中,各項操作的時間示意圖(Influent, In.;Flow Time, FT;Intermittent Time, IT;Waste Sludge, WS;Dilution Artificial Wastewater, DAW)。 20
Figure 13.台灣銀箭公司所製作的空氣泵浦K-8000[42]。 20
Figure 14. 5% Phenol的配製方法。 24
Figure 15.上圖為裝置在高壓MBR反應槽薄組與蠕動幫浦之間的壓力計,下圖為壓力計的電流與壓力轉換的檢量線[43]。 27
Figure 16.上圖為高壓MBR反應槽壓力計連接在槽體與洩壓閥之間的壓力計,下圖為壓力計的電流與壓力轉換的檢量線[44]。 28
Figure 17.上圖為常壓MBR反應槽壓力計連接在薄膜與蠕動幫浦之間的壓力計,下圖為壓力計的電流與壓力轉換的檢量線[45]。 29
Figure 18.壓力計會將壓力轉換成訊號(電流),透過具RS232功能的三用電表顯示於電腦。 30
Figure 19.取高壓MBR反應槽於出流循環中各5 min FT與IT對壓力的關係圖。 30
Figure 20.高壓MBR與常壓MBR反應槽的實驗流程圖。 34
Figure 21.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,出流水質pH的關係圖。 36
Figure 22.高壓MBR與常壓MBR反應槽在SRT為D-1時,TMP對時間的關係圖。 38
Figure 23.高壓MBR與常壓MBR反應槽在SRT為D-2,TMP對時間的關係圖。 40
Figure 24.高壓MBR與常壓MBR反應槽在SRT為D-3 day,TMP對時間的關係圖。 41
Figure 25.高壓MBR與常壓MBR反應槽操作於相同掃流量時,在SRT為D-4,TMP對時間的關係圖。 43
Figure 26.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,進流水TOC(mg/L)的關係圖。 45
Figure 27.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,出流水TOC(mg/L)的關係圖。 45
Figure 28.傳統式不銹鋼雙面刀片。 47
Figure 29.未受污染的薄膜,(A)薄膜的表面,(B)薄膜的斷切面,(C)(D)為橫切式薄膜段切面,薄膜的膜層厚度約5.94 μm,支撐層厚度約88.85 μm。 48
Figure 30.乾燥完後的薄膜上段,(A)(B)薄膜的表面,覆蓋著一層薄薄類似膠體的cake,(C)(D)橫切式薄膜斷切面,使用過的薄膜,不易分辨薄膜層與支撐層的厚度,故以薄膜層加支撐層總厚度約89.10 μm。 49
Figure 31.乾燥完後的薄膜中段,(A)薄膜的表面,清楚發現有一層cake覆蓋在薄膜的表面,(B)(C)(D)皆為薄膜斷切面皆可發現,薄膜表面上有一層不固定厚度的cake。 50
Figure 32.乾燥完後的薄膜下段,(A)(B)薄膜的表面清楚看到厚厚一層的cake覆蓋著,(C)(D)薄膜斷切面的內部,發現薄膜內徑裡,也會有cake的產生。 51
Figure 33.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,MLSS的關係圖。 52
Figure 34.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,SMP-PS(mg/L)的關係圖。 54
Figure 35.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,SMP-PN(mg/L)的關係圖。 55
Figure 36.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,EPS-PS(mg/L)的關係圖。 56
Figure 37.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,EPS-PN(mg/L)的關係圖。 57 
List of Table
Table 1.中空式纖維膜的描述[41]。 13
Table 2.空氣泵浦的簡介。 20
Table 3.控制於不同SRT下之廢置的污泥量 21
Table 4.進流水的組成成份及濃度 22
Table 5.高壓MBR與常壓MBR反應槽在SRT分別控制在D-1、D-2、D-3及D-4時,OLR值。 22
Table 6.高壓MBR與常壓MBR反應槽在SRT分別控制為D-1、D-2、D-3及D-4時,pH值的P-value。 36
Table 7.於不同SRT下高壓MBE與常壓MBR反應槽之薄膜第一次清洗(day)。 43
Table 8.經高壓MBR與常壓MBR反應槽處理後的人工廢液中溶解性有機物的去除率。 46
Table 9.高壓MBR與常壓MBR反應槽在SRT分別為D-1、D-2、D-3及D-4時,MLSS的P value。 53
參考文獻 1. Nakatsuka, S.; Nakate, I.; Miyano, T., Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination 1996, 106, (1–3), 55-61.
2. Kang, Y.-T.; Cho, Y.-H.; Chung, E.-H., Development of the wastewater reclamation and reusing system with a submerged membrane bioreactor combined bio-filtration. Desalination 2007, 202, (1–3), 68-76.
3. Broeck, R. V. d.; Dierdonck, J. V.; Nijskens, P.; Dotremont, C.; Krzeminski, P.; Graaf, J. H. J. M. v. d.; Lier, J. B. v.; Impe, J. F. M. V.; Smets, I. Y., The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR). Journal of Membrane Science 2012, 401–402, (0), 48-55.
4. Semmens, R. M. B. M. J., Membrane bioreactor for wastewater treatment and reuse: a success story. Water Science and Technology 2003, (47), 1-5.
5. Min, K.-N.; Ergas, S. J.; Mermelstein, A., Impact od dissolved oxygen concentration on membrane filtering resistance and soluble organic matter characteristics in membrane bioreactors. Water Science and Technology 2008, 57.2, 161-165.
6. Droste, R. L., Theory and practice of water and wastewater treatment. 1996.
7. 王志仁, 薄膜處理技術去除天然有機物之研究. In 國立台北科技大學-環境規劃與管理 研究所: 2002; Vol. 碩士.
8. Le-Clech, P., Membrane bioreactors and their uses in wastewater treatments. Appl Microbiol Biotechnol 2010, 88, 1253-1260.
9. Droste, R. L.; Sanchez, W. A., Microbial activity in aerobic sludge digestion. Water Research 1983, 17, (9), 975-983.
10. Pignon, F.; Magnin, A.; Piau, J.-M.; Cabane, B.; Aimar, P.; Meireles, M.; Lindner, P., Structural characterisation of deposits formed during frontal filtration. Journal of Membrane Science 2000, 174, (2), 189-204.
11. Tansel, B.; Bao, W. Y.; Tansel, I. N., Characterization of fouling kinetics in ultrafiltration systems by resistances in series model. Desalination 2000, 129, (1), 7-14.
12. 陳宜秀, 天然有機物對於UF薄膜阻塞機制之探討. In 淡江大學-水資源及環境工程學系 研究所: 2002; Vol. 碩士.
13. Kimura, K.; Maeda, T.; Yamamura, H.; Watanabe, Y., Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water. Journal of Membrane Science 2008, 320, (1–2), 356-362.
14. 范姜仁茂; 莊連春; 曾迪華; 廖述良; 游勝傑; 梁德明, 薄膜生物反應器(MBR)於廢水處理之技術評析. 工業污染防治 2009, 109, 49-96.
15. Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F., Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research 2009, 43, (6), 1489-1512.
16. Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y., A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination 2013, 314, (0), 169-188.
17. Wang, Z.; Wu, Z.; Yin, X.; Tian, L., Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. Journal of Membrane Science 2008, 325, (1), 238-244.
18. Lin, H.; Liao, B.-Q.; Chen, J.; Gao, W.; Wang, L.; Wang, F.; Lu, X., New insights into membrane fouling in a submerged anaerobic membrane bioreactor based on characterization of cake sludge and bulk sludge. Bioresource Technology 2011, 102, (3), 2373-2379.
19. Sheikholeslami, R., Composite Fouling - Inorganic and Biological: A Review. Environmental Progress 1999, 18, 113-122.
20. Zhang, J.; Chua, H. C.; Zhou, J.; Fane, A. G., Factors affecting the membrane performance in submerged membrane bioreactors. Journal of Membrane Science 2006, 284, (1–2), 54-66.
21. Cho, B. D.; Fane, A. G., Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. Journal of Membrane Science 2002, 209, (2), 391-403.
22. Le-Clech, P.; Chen, V.; Fane, T. A. G., Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science 2006, 284, (1–2), 17-53.
23. Zhang Jinsong; Chua Hwee Chuan; Zhou Jiti; Fane, A. G., Effect of Sludge Retention Time on Membrane Bio‐Fouling Intensity in a Submerged Membrane Bioreactor. Separation Science and Technology 2006, 41, 1313-1329.
24. Laera, G.; Pollice, A.; Saturno, D.; Giordano, C.; Sandulli, R., Influence of sludge retention time on biomass characteristics and cleaning requirements in a membrane bioreactor for municipal wastewater treatment. Desalination 2009, 236, (1–3), 104-110.
25. Masse, A.; Sperandio, M.; Cabassud, C., Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time. Water Research 2006, 40, (12), 2405-2415.
26. Grelier, P.; Rosenberger, S.; Tazi-Pain, A., Influence of sludge retention time on membrane bioreactor hydraulic performance. Desalination 2006, 192, (1–3), 10-17.
27. Rosenberger, S.; Evenblij, H.; te Poele, S.; Wintgens, T.; Laabs, C., The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes—six case studies of different European research groups. Journal of Membrane Science 2005, 263, (1–2), 113-126.
28. Jin, Y.-L.; Lee, W.-N.; Lee, C.-H.; Chang, I.-S.; Huang, X.; Swaminathan, T., Effect of DO concentration on biofilm structure and membrane filterability in submerged membrane bioreactor. Water Research 2006, 40, (15), 2829-2836.
29. 曾枱瑋, 利用間歇式高壓生物反應器結合砂濾程序去除廢水中有機物之研究. In 淡江大學-水資源及環境工程學系 研究所: 2008; Vol. 碩士.
30. Farquharson, A.; Zhou, H., Relationships of activated sludge characteristics to fouling rate and critical flux in membrane bioreactors for wastewater treatment. Chemosphere 2010, 79, (2), 149-155.
31. BQ, L.; DM, B.; HE, K.; GG, L.; SN, L., A review of biofouling and its control in membrane separation bioreactors. Water Environmental Research 2004, 79, 425-436.
32. Laspidou, C. S.; Rittmann, B. E., A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research 2002, 36, (11), 2711-2720.
33. Dong, B.; Jiang, S., Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times. Desalination 2009, 243, (1–3), 240-250.
34. Huang, X.; Liu, R.; Qian, Y., Behaviour of soluble microbial products in a membrane bioreactor. Process Biochemistry 2000, 36, (5), 401-406.
35. Wang, Z.; Liu, L.; Yao, J.; Cai, W., Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere 2006, 63, (10), 1728-1735.
36. Wang, Z.; Wu, Z.; Tang, S., Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research 2009, 43, (9), 2504-2512.
37. Sablani, S. S.; Goosen, M. F. A.; Al-Belushi, R.; Wilf, M., Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 2001, 141, (3), 269-289.
38. 林博焜, 汙泥性質對薄膜生物反氣槽積垢特性之研究. In 朝陽科技大學-環境工程與管理系 研究所: 2007; Vol. 碩士.
39. 張永信, 薄膜程序用於工業區廢水回收之研究. In 國立成功大學-環境工程學系 研究所: 2008; Vol. 碩士.
40. Metzger, U.; Le-Clech, P.; Stuetz, R. M.; Frimmel, F. H.; Chen, V., Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes. Journal of Membrane Science 2007, 301, (1–2), 180-189.
41. Econity, ECONITY MF - Hollow Fiber Membrane. In http://econity.com/blog/econity-mf-hollow-fiber-membrane/, May, 2013.
42. Shiruba, 空氣泵浦. In http://www.pet-aqua.com.tw/producta-0f.html, May, 2013.
43. Cole-Parmer, Transmitter. In http://static.coleparmer.com/large_images/6807314.jpg, April,2013.
44. Durck, Transmitter. In http://www.cuthbertsonlaird.co.uk/images/imgProd/DruckPTX1400C.jpg, April,2013.
45. Cole-Parmer, Transmitter. In http://static.coleparmer.com/large_images/6807518.jpg, April,2013.
46. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F., Colorimetric Method for Determination of Sugars and Related Substances. Volume 1956, 350-356.
47. Raunkjar, K.; Hvitved-Jacobsen, T.; Nielsen, P. H., Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Research 1994, 28, (2), 251-262.
48. 小螞蟻的科學小舖, 用EXCEL計算student's t test之p value. In http://bioant.blogspot.tw/2009/12/excelstudent-t-testp-value.html, May, 2013.
49. Khongnakorn, W.; Wisniewski, C.; Pottier, L.; Vachoud, L., Physical properties of activated sludge in a submerged membrane bioreactor and relation with membrane fouling. Separation and Purification Technology 2007, 55, (1), 125-131.
50. Meng, F.; Shi, B.; Yang, F.; Zhang, H., Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors. Bioprocess and Biosystems Engineering 2007, 30, 359-367.
51. Ng, H. Y.; Hermanowicz, S. W., Membrane bioreactor operation at short solids retention times: performance and biomass characteristics. Water Research 2005, 39, (6), 981-992.
52. Meng, F.; Yang, F.; Xiao, J.; Zhang, H.; Gong, Z., A new insight into membrane fouling mechanism during membrane filtration of bulking and normal sludge suspension. Journal of Membrane Science 2006, 285, (1–2), 159-165.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信