§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3007201216363600
DOI 10.6846/TKU.2012.01327
論文名稱(中文) 製備鉑-二氧化鈰/碳甲醇氧化電催化劑與其性質分析
論文名稱(英文) Preparation and Characterization of Pt-CeO2/C Electrocatalysts for Methanol Oxidation Reaction
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 李盈層
研究生(英文) Ying-Tseng Li
學號 699400106
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-16
論文頁數 103頁
口試委員 指導教授 - 林正嵐
委員 - 吳永富
委員 - 蔡子萱
委員 - 林正嵐
委員 - 林達鎔
委員 - 張裕祺
關鍵字(中) 直接甲醇燃料電池
二氧化鈰
陽極催化劑
關鍵字(英) DMFC
Ceria
Electrocatalysts
第三語言關鍵字
學科別分類
中文摘要
本研究主要目的為製備甲醇燃料電池 (Direct Methanol Fuel Cell, DMFC) 的鉑-二氧化鈰/碳電催化劑並對其性質進行分析研究。
  利用多元醇還原法製備鉑-二氧化鈰/碳電催化劑並與商用鉑/碳電催化劑進行分析與比較。電催化劑所使用的碳載體 (XC-72)實驗前先利用氫氧化納水溶液進行鹼修飾或利用硝酸水溶液進行酸修飾,主要目的是為了改變碳載體表面結構而增加電催化劑上金屬或金屬氧化物的分散性。多元醇還原法是利用乙二醇為還原劑將鉑與二氧化鈰還原到碳載體表面而製備成高分散性的鉑-二氧化鈰/碳電催化劑。 
  本研究使用掃描式電子顯微鏡 (scanning electron microscope, SEM) 對電催化劑表面進行元素分析,分析結果顯示電催化劑表面鉑與二氧化鈰的實際值與理論值相當接近。穿透式電子顯微鏡 (transmission electron microscope, TEM) 結果顯示碳載體上的鉑與二氧化鈰分散的非常均勻,沒有任何聚集的情況發生。實驗結果顯示電催化劑上鉑的粒徑大約在3-4 nm 左右,與使用 X 光繞射分析儀 (X-ray diffractometer, XRD) 所計算出的粒徑大小相當吻合。
  碳載體經由硝酸修飾再利用乙二醇還原法所製備的電催化劑 Pt-CeO2/ Ca 利用循環伏安法 (cyclic voltammetry, CV) 進行甲醇氧化反應 (MOR) 效能測試,實驗結果顯示電催化劑的 MOR效能為商用 Pt (E-TEK)/C電催化劑的 2.5 倍。利用計時安培法 (chronoamperometry, CA) 測試電催化劑的穩定性,實驗結果顯示電催化劑 Pt-CeO2/ C 的穩定性也比商用 Pt (E-TEK)/C電催化劑還要佳。
  本研究對於製備電催化劑的方法、碳載體鹼或酸修飾或鉑與鈰在不同莫耳比下所製備出的電催化劑進行分析與比較,並將電催化劑的效能最佳化。
英文摘要
The research are the preparation and characterization of Pt-CeO2/C electrocatalysts for the methanol oxidation reaction (MOR) of a direct methanol fuel cell (DMFC).Pt-CeO2/C electrocatalysts have been synthesized by polyol method and compared with Pt/C (E-TEK) electrocatalysts. Carbon black (Vulcan XC-72) was pretreated with NaOH or HNO3 aqueous solution. A Polyol method is using ethylene glycol as the reducing agent to grows the Pt nanoparticles and CeO2 on the carbon black (CB), then get the Pt-CeO2/C nanocomposite electrocatalysts. Scanning electron microscopic (SEM) images with energy dispersive spectroscopic (EDS) reveal that the Pt and CeO2 contents in the samples are close to the nominal values. Transmission electron microscope (TEM) pictures showed a uniform distribution of platinum on the CB, and observed that the Pt nanoparticles diameter are around 3-4 nm almost close the result of consideration from X-ray diffraction (XRD). The Pt-CeO2/ Ca electrocatalysts by polyol method exhibit 2.5 times higher electrochemical activities for MOR in cyclic voltammetry (CV) experiments, compared with the Pt/C (E-TEK) electrocatalysts. The Pt-CeO2/C electrocatalysts also showed higher stability in chronoamperometry test (CA).In this report,we also compare the property of  Pe/Ce molar ratio and the difference way to pretreat CB effect in the experience.
第三語言摘要
論文目次
摘要.......................................................I
目錄.......................................................V
圖目錄...................................................VIII
表目錄....................................................XII
第一章 緒論.................................................1
1.1 前言...................................................1
1.2 燃料電池................................................2
1.3 直接甲醇燃料電池..........................................4
1.3.1 直接甲醇燃料電池工作原理.................................4
1.3.2 甲醇氧化機制...........................................6
1.4 燃料電池催化劑的探討......................................7
1.4.1 多元合金催化劑.........................................7
1.4.2 鉑-金屬氧化物催化劑.....................................8
1.5 研究方向及目標...........................................9
第二章 文獻回顧.............................................10
2.1 利用含浸法製備 Pt-CeO2/C 電催化劑.........................10
2.2 利用多元醇還原法製備 Pt-CeO2/C 電催化劑....................13
2.3 利用微乳化法製備Pt-CeO2/C 電催化劑........................19
第三章 實驗設備與步驟........................................26
3.1 實驗藥品...............................................26
3.2 實驗使用之分析儀器.......................................27
3.3 實驗架構與規劃..........................................28
3.4 Pt-CeO2/C電催化劑之製備.................................29
3.4.1 含浸法 (impregnation method).........................30
3.4.2 微乳化法 (microemulsion method)......................32
3.4.3 多元醇還原法 (polyol method)..........................34
3.4.4 碳載體前處理方法.......................................36
3.5   Pt-CeO2/C 電催化劑的性質與效能分析......................38
3.5.1 表面型態與性質分析.....................................38
3.5.2 電化學方法分析........................................39
第四章 結果與討論............................................47
4.1 電催化劑 Pt-CeO2/C 製備方法選擇..........................47
4.1.1 利用含浸法製備電催化劑..................................48
4.1.2 利用微乳化法製備電催化劑................................51
4.1.3 利用多元醇還原法製備電催化劑.............................54
4.1.4 電催化劑的製備方法比較與選擇.............................57
4.2 鉑與鈰在不同莫耳比對電催化劑的影響..........................59
4.2.1 表面型態與性質分析.....................................59
4.2.2 電化學分析...........................................66
4.3 碳載體鹼處理的影響比較....................................71
4.3.1 表面型態與性質分析.....................................71
4.3.2 電化學分析...........................................76
4.4 碳載體酸處理的影響比較....................................81
4.4.1 表面型態與性質分析.....................................81
4.4.2 電化學分析...........................................86
4.5 電催化劑效能最佳化.......................................90
4.5.1 電催化劑之MOR效能比較..................................90
4.5.2電催化劑之穩定性比較....................................92
第五章 結論................................................93
建議......................................................95
參考文獻...................................................96
圖目錄
圖1 - 1、甲醇燃料電池(DMFC)工作原理[3].........................5
圖2 - 1、Cyclic voltammograms of methanol oxidation in both forward and reverse  sweeps (A) and in forward sweep (B) on Pt–CeO2/carbon black composite anodes (a–c) and a commercially available Pt–Ru/carbon alloy anode (d) at 28℃ in the mixed solution of 0.5M H2SO4 aqueous solution and 0.5M methanol aqueous solution at 50 mV/s. Pt content in anodes (a–d): 3 mg..............................................................11
圖2 - 2、X-ray diffraction patterns of 9% CeO2/C, PC0, PC9 and PC12..................................................12
圖2 - 3、TEM images of CNTs-Pt (a) and CeO2 nanoparticles (b). (c) shows the........................................14
圖2 - 4、XRD patterns of (a) CNTs-Pt and (b) CeO2 nanoparticles.............................................15
圖2 - 5、CV curves for CNTs-Pt and CNTs-Pt + CeO2 in 1M HClO4 +1M.................................................15
圖2 - 6、Chronoamperometry curves for CNTs-Pt and CNTs-Pt + CeO2 in 1M................................................16
圖2 - 7、TEM images of CeO2/C nanocomposite (a) and Pt–CeO2/C catalysts with the molar ratio of Pt and Ce by (b) 1:1, (c) 2:1 and (d) 3:1..................................17
圖2 - 8、The stability of for the electrooxidation of methanol on Pt–CeO2/C catalysts...........................18
圖2 - 9、TEM image of Pt–CeO2/MWNT composites.............19
圖2 - 10、 XRD patterns of Pt–CeO2/MWNT composites........20
圖2 - 11、 Representative scanning TEM images and EDS elemental mapping analysis of (a) PC(6:4)-CBR and (b) PC(6:4)-RME...............................................21
圖2 - 12、(a) Initial mass activity and (b) durability for MOR on commercial Pt/C, commercial PtRu/C, PC(6:4)-CBR, and PC(6:4)-RME. For the durability comparison, the current density values at 0.5 V vs NHE were used from the anodic CV curves cycled between 100 and 1250 mV at a scan rate of 50 mV/s......................................................22
圖3 - 1、實驗流程圖。......................................................................................................................28
圖3 - 2、利用含浸法製備 Pt-CeO2/C-SBH 電催化劑之實驗流程圖。.....31
圖3 - 3、利用微乳化法製備 Pt-CeO2/C-RME 電催化劑之實驗流程圖。...33
圖3 - 4、 利用多元醇還原法製備 Pt-CeO2/C-EGR 電催化劑之實驗流程圖。	.........................................................35
圖3 - 5、碳載體鹼處理實驗流程圖。..............................36
圖3 - 6、碳載體酸處理實驗流程圖。..............................37
圖3 - 7、三極式電化學系統簡示圖。..............................40
圖3 - 8、Pt/C-EGR 電催化劑於 0.5 M 硫酸水溶液的循環伏安圖。......41
圖3 - 9、電催化劑 Pt/C-EGR 於 0.5 M H2SO4 +1.0 M CH3OH水溶液中的MOR      效能圖。..........................................42
圖3 - 10、電催化劑 Pt-CeO2/C-EGR在含飽和一氧化碳的0.5 M硫酸水溶液中的一氧化碳吸/脫附反應圖。.....................................45
圖3 - 11、電催化劑 Pt-CeO2/C-EGR的計時安培法曲線圖,掃描時間1000秒。	..........................................................46
圖4 - 1、電催化劑 Pt-CeO2/C 合成示意圖。........................................................47
圖4 - 2、Pt-CeO2/C-SBH 之 TEM 圖 (a) 25 K (b) 100 K。......49
圖4 - 3、Pt-CeO2/C-SBH (Pt-Ce = 20wt% )與 Pt(E-TEK)/C 於 0.5 M H2SO4 +1.0 M CH3OH 水溶液中之循環伏安圖。...................50
圖4 - 4、Pt-CeO2/C-RME 之 TEM 圖 (a) 40 K,(b) 100K。.......52
圖4 - 5、Pt-CeO2/C-RME (Pt-Ce = 20wt% ) 與Pt (E-TEK)/C 於 0.5 M H2SO4 +1.0 M CH3OH 水溶液中之循環伏安圖。...................53
圖4 - 6、Pt-CeO2/C-EGR 之TEM圖 (a) 40 K,(b) 100 K。........55
圖4 - 7、Pt-CeO2/C-EGR (Pt-Ce = 20wt% ) 與Pt (E-TEK)/C 於 0.5 M H2SO4 +1.0 M CH3OH 水溶液中之循環伏安圖。...................56
圖4 - 8、 利用不同方法製備之 Pt-CeO2/C 電催化劑的 Pt 含量比較圖。	..........................................................57
圖4 - 9、電催化劑Pt-CeO2/C 利用不同方法製備下的MOR 效能比較圖。...58
圖4 - 10、電催化劑Pt-CeO2/C 製備方式選擇圖。...................58
圖4 - 11、Pt-CeO2/C-EGR (Pt-Ce = 20wt%) Pt 與 Ce 在不同莫耳比下的XRD 圖譜;(a)純Pt (b)80:20 (c)60:40 (d)50:50。............61
圖4 - 12、Pt-CeO2/C-EGR之 Pt 與 Ce 不同莫耳比的粒徑比較。......61
圖4 - 13、Pt-CeO2/C-EGR (Pt-Ce = 20wt%, Pt :Ce = 80 : 20 (molar ratio)) 之TEM圖,(a) 100 K、(b) 800 K。.............63
圖4 - 14、Pt-CeO2/C-EGR (Pt-Ce = 20wt%, Pt :Ce = 60 : 40 (molar ratio)) 之TEM圖,(a) 100 K、(b) 800 K。.............64
圖4 - 15、Pt-CeO2/C-EGR (Pt-Ce = 20wt%, Pt :Ce = 50 : 50 (molar ratio)) 之TEM圖,(a) 100 K、(b) 800 K。.............65
圖4 - 16、Pt-CeO2/C-EGR不同莫耳比的EASA 計算比較。............67
圖4 - 17、Pt-CeO2/C-EGR不同莫耳比的MOR 效能比較。.............67
圖4 - 18、Pt-CeO2/C-EGR不同莫耳比的穩定性比較。...............68
圖4 - 19、Pt-CeO2/C-EGR不同莫耳比與商用 Pt(E-TEK)/C的 CO 脫附比較圖。.....................................................70
圖4 - 20、未修飾碳載體 (XC-72) 與鹼處理碳載體 (Cb) 的 FTIR 比較圖。	........................................................72
圖4 - 21、Pt-CeO2/Cb-EGR (Pt-Ce = 20wt%) Pt 與 Ce在不同莫耳比下的XRD 圖譜;(a)純Pt (b)80:20 (c)60:40 (d)50:50。..........74
圖4 - 22、Pt-CeO2/Cb-EGR 中 Pt 與 Ce 不同莫耳比的粒徑比較。....75
圖4 - 23、Pt-CeO2/ Cb -EGR不同莫耳比的MOR 效能比較。..........77
圖4 - 24、Pt-CeO2/Cb-EGR不同莫耳比的穩定性比較。...............78
圖4 - 25、Pt-CeO2/Cb-EGR不同莫耳比與商用 Pt(E-TEK)/C的 CO 脫附比較圖。.....................................................80
圖4 - 26、未修飾碳載體 (XC-72) 與酸處理碳載體 (Ca) 的 FTIR 比較圖。	..........................................................82
圖4 - 27、Pt-CeO2/Ca-EGR (Pt-Ce = 20wt%) Pt 與 Ce 在不同莫耳比下的XRD 圖譜;(a)純Pt (b)80:20 (c)60:40 (d)50:50。..........84
圖4 - 28、Pt-CeO2/Ch-EGR 中 Pt與 Ce 不同莫耳比的粒徑比較。.....85
圖4 - 29、Pt-CeO2/Ca-EGR不同莫耳比的MOR 效能比較。............86
圖4 - 30、Pt-CeO2/Ca-EGR不同莫耳比的穩定性比較。...............87
圖4 - 31、Pt-CeO2/Ca-EGR不同莫耳比與商用 Pt(E-TEK)/C的 CO 脫附比較圖。.....................................................89
圖4 - 32、利用不同碳載體修飾方法Pt-CeO2/C-EGR不同莫耳比的 MOR 效能比較圖。.....................................................91
圖4 - 33、利用不同碳載體製備電催化劑的穩定性比較圖。..............92
表目錄
表4 - 1、Pt-CeO2/C-SBH 的 EDS 表面元素分析結果。..............50
表4 - 2、Pt-CeO2/C-RME 的SEM表面元素分析表。..................53
表4 - 3、電催化劑 Pt-CeO2/C-EGR 的SEM表面元素分析表。..........56
表4 - 4、Pt-CeO2/C-EGR不同莫耳比的SEM表面元素分析。............59
表4 - 5、電催化劑Pt-CeO2/Cb-EGR不同莫耳比的SEM表面元素分析。.....73
表4 - 6、Pt-CeO2/ Cb -EGR不同莫耳比的EASA 計算比較。..........77
表4 - 7、電催化劑Pt-CeO2/Ca-EGR不同莫耳比的SEM表面元素分析。.....83
表4 - 8、電催化劑的 MOR 效能及 Pt 粒徑比較.....................91
參考文獻
[1] 衣寶廉, 燃料電池-原理與應用, 五南圖書出版公司 (2007)
[2] 黃鎮江, 燃料電池, 全華科技圖書股份有限公司 (2003)
[3] “DMFCs:From Fundamental Aspects to Technology Development”, Arico, A.S.; 	Srinivasan, S.; Antonucci, V.; Fuel Cells 2001, 1, 133.  
[4] “On the role of Ru and Sn as promoters of methanol electro-oxidation over Pt”, 	Freelink, T.; Visscher, W. Surf. Sci. 1995, 335, 353.  
[5] “Promotion of Carbon Supported Platinum-Ruthenium Catalyst for 	Electro-decomposition of Methanol”, Wang, K.W.; Huang, S.Y.; Yeh, C.T.; J. 	Phys. Chem. C 2007, 111, 5096.
[6] “Effect of heat treatment on PtRu/C catalyst for methanol electro-oxidation”, 	Xiong, L.; Manthiram, A.; Solid State Ionic 2005, 176, 385.
[7] “Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs”, 	Gojkovic, S. Lj.; Babic, B. M.; Radmilovic, V. R.; Krstajic, N. V.; J. Electroanal. 	Chem. 2010, 639, 161.
[8] “Effects of Alloyed and Oxide Phases on Methanol Oxidation of Pt-Ru/C 	Nanocatalysts of the Same Particle Size”, Godoi, D. R. M.; Villullas, H. M.; J. 	Phys. Chem. C 2009, 113, 8518.
[9] “Carbon fibers with cup-stacked-type structure: An advantageous support for 	Pt–Ru catalyst in methanol oxidation”, Moraes, I. R. M.; Silva, W. J.; Tronoto, S.; 	Rosolen, J. M.; J. Power Sources 2006, 160, 997.
[10] “Electrochemical characterization of platinum-ruthenium nanoparticles prepared 	by water-in-oil microemulsion”, Solla-Gullon, J.; Vidal-Iglesias, F. J.; Montiel, V.; 	Aldaz, A.; Electrochimica Acta 2004, 49, 5079.
[11] “Pt-Co supported on single-walled carbon nanotubes as an anode catalyst for 	direct methanol fuel cells”, Shen, J.; Hu, Y.; Li C.; Qin, C.; Ye, M.; Diam. Relat. 	Mat. 2011, 20, 1065.
[12] “Sythesis of Pt-Co nanoparticles on multi-walled carbon nanotubes for methanol 	oxidation in H2SO4 solution”, Amin, R.S.; El-Khatib, K.M.; Hameed, R.M.A.; 	Souaya, E. R. : Etman, M.A.; Appl. Catal. A-Gen. 2011, 407, 195.
[13] “Preparation of Pt-Co nanocatalysts on carbon nanotube electrodes for direct 	methanol fuel cells”, Hsieh, C.-T.: WEi, J.-L, Lin J.-Y.; Yang, B.-H.; Diam. Relat. 	Mat. 2011, 20, 1065.
[14] “Nano-architectured Pt-Mo anode electrocatalyst for high CO-tolerance in PEM 	Fuel cells”, Hu, J.E.; Liu, Z.; Eichhorn, B.W.; Jackson, G.S.; ECS Transactions 	2009, 19, 1.
[15] “CO oxidation on carbon-supported PtMo electrocatalysts:Effect of the platinum 	particle size”, Ordonez, L.C.; Roquero, P.; Sebastian, P.J.; Ramirez, J.; Int. J. 	Hydrog. Energy 2007, 32, 3147.
[16] “High energy ballmilled Pt-Mo catalysts for polymer electrolyte fuel cells and 	their tolerance to CO”, Gouerec, P.; Denis, M.C.; Guay, D.; Dodelet, J.P.; Schulz, 	R.;, J.Electrochem. Soc. 2000, 147, 3989.
[17] ”Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the 	electrooxidation of methanol”, Watanabe, M.; Uchida, M.; Motoo, S.; J. 	Electroanal. Chem., 1987, 229, 395.
[18] “Syntheses, characterization, and catalytic oxygen electroreduction activities of 	carbon-supported PtW nanoparticle catalysts”, Xing, L.; More, K.L.; He, T.; J. 	Power Sources 2010, 195, 2570.
[19] “Effect of a thermal treatment on the activity of carbon-supported Pt, Pt+W and 	Pt+Mo electrocatalysts for methanol oxidation reactions”, Gokaǧac, G.; Leger, 	J.-M.; Hahn, F.; J. Chem. Sci. 2001, 56, 1306.
[20] “Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium 	Catalyst in Aqueous Cesium Carbonate”, Rauhe, B.R.; McLarnon, F.R.; Cairns, 	E.J.; J. Electtrochem. Soc. 1995, 142, 1073.
[21] “One-Step Reverse Microemulsion Synthesis of Pt-CeO2/C Catalysts with 	Improved Nanomorphology and Their Effect on Methanol Electrooxidation 	Reaction”, Lee, E.; Manthiram, A. J. Phys. Chem.  2010, 114, 21833.
[22] “Preparation of Pt/CeO2/HCSs anode electrocatalysts for direct methanol fuel 	cells”, Zhao, Y.; Wang, F.; Tian, J.; Yang, X.; Zhan, L. Electrochimica Acta 2010, 	55. 8998.
[23] “Preparation and characterization of Pt–Rare Earth/C electrocatalysts using an 	alcohol reduction process for methanol electro-oxidation”, Neto, A. O.; 	Watanabe, A. Y.; Brandalise, M.; Tusi, M. M.; Rodrigues, R. M. de S.; Linardi, 	M.; Spinace, E. V.; Forbicini, C. A. L. G. O. J. Alloys and Compounds 2009, 476, 	288.
[24] “Preparation of Pt–CeO2/MWNT nano-composites by reverse micellar method 	for methanol oxidation”, Guo, D. J.; Cui, S. K.; Sun, H. J . Nanopart Res. 2009, 	11, 707.
[25] “A novel co-precipitation method for preparation of Pt-CeO2 composites on
	multi-walled carbon nanotubes for direct methanol fuel cells”, Guo, D. J.; Jing, 	Z. H. J. Power Sources 2010, 195, 3802.
[26] “Promotion of platinum–ruthenium catalyst for electro-oxidation of methanol by 	ceria”, Huang, S. Y.; Chang, C. M.; Yeh, C. T. J.  Catalysis 2006, 241, 400.
[27] “Promoting the current for methanol electro-oxidation by mixing Pt-based  	catalysts with CeO2 nanoparticles”,Wang, J.; Deng, X.; Xi, J.; Chen, L.; 	Zhu,  	W.; Qiu, X. J. Power Sources 2007, 170, 297.
[28] “Design of high-quality Pt-CeO2 composite anodes supported by carbon black 	for direct methanol fuel cell application”, Takahashi, M.; Mori, T.; Ye, F.; Vinu, 	A.; Kobayashi, H.; Drennan, J. J. Am. Ceram. Soc. 2007, 90. 1291.
[29] “Pt-CeO2/C anode catalyst for direct methanol fuel cells”, Scibioh, M. A.; Kim, 	S. K.; Lim, T. H.; Hong, S. A.; Ha, H. Y. Applied Catalysis B: Environmental 	2008, 84, 773.
[30] “Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation”, Wang, 	J.; 	Xi, J.; Bai, Y.; Shen, Y.; Sum, J.; Chen, L.; Zhu, W.; Qiu, X. J. Power 	Sources 	2007, 164, 555.
[31] “Preparation of Pt–CeO2/MWNT nano-composites by reverse micellar method 	for methanol oxidation”, Guo, D. J.; Cui, S. K.; Sun, H. J . Nanopart Res. 2009, 	11, 707.
[32] “Novel Nanoscale Ceria–Platinum Composite Electrodes for Direct Alcohol 	Electro-Oxidation”,Diaz, D. J.; Greenletch, N.; Solanki, A.; Karakoti, A.; Seal, S. 	Catal. Lett. 2007, 119, 319.
[33] “Promotion of Carbon-Supported Platinum-Ruthenium Catalyst for 	Electrodecomposition of Methanol”, Wang, K. W.; Huang, S. Y.; Yeh, C. T. J. 	Phys. Chem. 2007, 111. 5096.
[34] “Preparation and anode property of Pt-CeO2 electrodes supported on carbon 	black for direct methanol fuel cell applications”, Takahashi, M.; Mori, T.; Vinu, 	A.; Kobayayashi, H.; Drennan, J.; Ou, D. R. J. Mater. Res., Vol. 21, No. 9, Sep. 	2006
[35] “Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media”, 	Xu, C.; Shen, P. K. Chem. Commun. 2004, 2238.
[36] “A novel co-precipitation method for preparation of Pt-CeO2 composites on 	multi-walled carbon nanotubes for direct methanol fuel cells”, Guo, D. J.; Jing, 	Z. 	H. J. Power Sources 2010, 195, 3802.
[37] “Effect of ceria on carbon supported platinum catalysts for methanol 	electrooxidation”, Zhao, J.; Chen, W.; Zheng, Y. Mate. Chem. Phys. 2009, 113, 	591.
[38] “Pt-CeO2/C anode catalyst for direct methanol fuel cells”,Scibioh, M. A.; Kim, 	S. K.; Chu, E. A.; Lim, T. H.; Hong, S. A.; Ha, H. Y. App. Cata. B: Envir. 2008, 	84, 	773.
[39] “Promoting the current for methanol electro-oxidation by mixing Pt-based 	catalysts with CeO2 nanoparticles”, Wang, J.; Deng, X.; Xi, J.; Chen, L.; Zhu, 	W.; 	Qiu, X. J. Power Sources 2007, 170, 297.
[40] “Design of High-Quality Pt–CeO2 Composite Anodes Supported by Carbon 	Black for Direct Methanol Fuel Cell Application”, Takahashi, M.; Mori, 	T.; Ye, 	F.; Vinu, A. J. Am. Ceram. Soc. 2007, 90, 1291.
[41] “Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation”, Wang, 	J.; Xi, J.; Bai, Y.; Shen, Y.; Sun, J.; Chen, L.; Zhu, W.; Qiu, X. J. Power Sources 	2007, 164, 555.
[42] “Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation”, 	Xu, C.; Zeng, R.; Shen P. K.; Wei, Z. Electrochimica Acta. 2005, 51, 1031
[43] “Preparation and methanol oxidation catalysis of Pt-CeO2 electrode”,Campos, 	C. L.; Roldan, C.; Aponte, M.; Ishikawa, Y.; Cabrera, C. R. J. Elec. Chem. 	2005, 581, 206.
[44] “Physical and Electrochemical Characterizations of Microwave-Assisted Polyol 	Preparation of Carbon-Supported PtRu Nanoparticles”, Liu, Z.; Lee, J.Y.; Chen, 	W.; Han, M.; Gan, L.M.; Langmuir .2004, 20, 181.
[45] “Study of core–shell platinum-based catalyst for methanol and ethylene glycol 	oxidation”, Kaolan, D.; Alon, M.; Burstein. L.; Rosenberg, Yu.; Peled, E.;, J. 	Power Sources. 2011, 196, 1078.
[46] “Study on the formation of Pt/C catalysts by non-oxidized active carbon support 	and a sulfur-based reducing agent”, Antolini, E.; Cardellini, F.; Squadrito, G.; J. 	Mate. Sci. 2002, 37, 133.
[47] “Citric acid functionalized carbon materials for fuel cell applications”, Roh, 	C.K.; Lim, S.H.; Pan, H.; Lin, J.; Lee, J.Y.; J. Power Sources 2008, 176, 70-75.
[48] “Surface and electrochemical investigations of a fullerene soot”, Silva, S. A. M.; 	Perez, J.; Torresi, R. M.; Luengo, C. A.; Ticianelli, E. A.; Electrochim. Acta, 	1999, 44, 3565.
[49] “Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes 	pretreated with oxidative acids”, Li, L.; Wu, G.; Xu, B.-Q.; Carbon, 2006, 44, 	2973.
[50] “Acid/Base-Treated Activated Carbons: Characterization of Functional Groups 	and Metal Adsorptive Properties”, Chen, J.P.; Wu, S.; Langmuir, 2004, 20, 	2233.
[51] “Heat-Treated Carbon-Blacks as Supports for Platinum Catalysts”,Coloma, F.; 	Sepulveda-Escribano, A.; Rodriguez-Reinoso, F.; J.
	Catal.1995,154, 299.
[52] “Chemical modifi- cation of the inner walls of carbon nanotubes by HNO3 	oxidation”,Kyotani, T.; Nakazaki, S.; Xu, W. H.; Tomita, A.; Carbon 2001, 771.
[53] “Carbon nanotubes. and nanofibers in catalysis”,Serp, P.; Corrias, M.; Kalck, P.; 	Appl. Catal. A: General 2003, 253, 337.
[54] “The deposition of ultrafine platinum particles on carbon black by surface ion 	exchange—increase in loading amount”,Yasuda, K.; Nishimura, Y.; Materials 	Chem. and Phys. 2003, 82,921.
[55] “Surface Modification of Carbon Black by Oxidation and its Influence on the 	Activity of Immobilized Catalase and Iron-Phthalocyanines”, Sosa, R. C.; Parton, 	R. F.; Neys, P. E.; Lardinois, O.; Jacobs, P. A.; Rouxhet, P. G.; J. Mol. Catal. A: 	Chem. 1996, 110, 141.
[56] “Changes in surface chemistry of activated carbons by wet 	oxidation”,Moreno-Castilla, C.; Lopez-Ramon, M. V.; Carrasco-Marin, F.; 	Carbon 2000, 38, 1995.
[57] “”,Garcia, M. D.; Lopez-Garzon, F. J.; Perez-Mendoza, M.; J. Coll. Inter. Sci., 	2000, 222,233.
[58] “Synthesis and Characterization of Pt-WO3 as Methanol Oxidation Catalysts for 	Fuel Cells”,Jayaraman, S.; Jaramillo, T.F.; Baeck, S.-H.; McFarland, E.W.; J. 	Phys. Chem. B 2005, 109, 22958.
[59] “Carbon-coated tungsten oxide nanowires supported Pt nanoparticles for oxygen 	reduction”,Saha, M.S.; Zhang, Y.; Cai, M.; Sun, X.; Int. J. Hydrog. Energy 2011, 	XXX, 1.
[60] “Citric acid functionalized carbon materials for fuel cell applications”,Roh, C.K.; 	Lim, S.H.; Pan, H.; Lin, J.; Lee, J.Y.; J. Power Sources 2008, 176, 70.
[61] “PtRu Alloy and PtRu-WO3 Nanocomposite Electrodes for Methanol 	Electrooxidation Fabricated by a Sputtering Deposition Method”,Park, K.-W.; 	Choi, J.-H.; Ahn, K.-S.; Sung, Y.-E.; J. Phys. Chem. B, 2004, 108, 5989.
[62] “Electrocatalytic Activity and CO Tolerance Properties of Mesostructured 	Pt/WO3 Composite as an Anode Catalyst for PEMFCs”,Xiangzhi, C.; Limin, G.; 	Fangming, C.; Qianjun, H.; Jianlin, S.; J. Phys. Chem. C, 2009, 113, 4134.
[63] “Platinum/Mesoporous WO3 as a Carbon-Free Electrocatalyst with Enhanced 	Electrochemical Activity for Methanol Oxidation”,Cui, X.; Shi, J.; Chen, H.; 	Zhang, L.; Guo, L.; Gao, J.; Li, J.; J. Phys. Chem. B 2008, 112, 12024.
[64] “Electrocatalytic Activity and CO Tolerance Properties of Mesostructured 	Pt/WO3 Composite as an Anode Catalyst for PEMFCs”,Xiangzhi, C.; Limin, G.; 	Fangming, C.; Qianjun, H.; Jianlin, S.; J. Phys. Chem. C 2009, 113, 4134.
[65] “Influence of particle size on the properties of Pt-RuC catalysts prepared by a 	microemulsion method”,Godoi, D.R.M.; Perez, J.; Mercedes Villullas, H.; J. 	Electrochem. Soc. 2007, 154, B474. 
[66] “Bioinspired Synthesis of Homogenous Cerium Oxide Nanoparticles and Two- or 	Three-Dimensional Nanoparticle Arrays Using Protein Supramolecules”,Okuda, 	M.; Suzumoto, Y.; Yamashita, I.; Cryst. Growth Des. 2011, 11, 2540.
[67] “Mechanisms of carbon monoxide and methanol oxidation at single-crystal 	electrodes”, Lai, S.C.S.; Lebedeva, N.P.; Housmans, T.H.M.; Koper, M.T.M.; 	Top Catal. 2007, 46, 320.
[68] “The effect of particle size on the interaction of Pt catalyst particles with a carbon black support”, Lin, G.; Du, H.-D.; Li, B.-L.; Kang, F.-Y.; New Carbon Mater. 2010, 25, 53-59.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信