淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-3007200714125400
中文論文名稱 協同過濾演算法之實作與應用
英文論文名稱 Implementation and Application of Collaborative Filtering Algorithms
校院名稱 淡江大學
系所名稱(中) 資訊工程學系碩士班
系所名稱(英) Department of Computer Science and Information Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 林敬達
研究生英文姓名 Chin-Ta Lin
學號 694190116
學位類別 碩士
語文別 中文
口試日期 2007-06-21
論文頁數 73頁
口試委員 指導教授-蔣定安
委員-葛煥昭
委員-王鄭慈
中文關鍵字 推薦系統  協同過濾 
英文關鍵字 Recommend system  Collaborative Filtering 
學科別分類 學科別應用科學資訊工程
中文摘要 網路人力銀行之興起,不但打破了時空的限制,並使得企業利用網路低廉的成本,讓傳統要花大筆錢刊登徵才啟示、印製DM(廣告傳單)、製作電視廣告…等的開銷,都轉移到網際網路之上。故今日最大的問題不是資訊的取得,而是資訊超載。本研究目的是建立一套「協同過濾推薦系統」,提供即將畢業的青年學子,在投入職業場所時所需的方向與建議,希望藉由此機制推薦出學生們所感興趣的工作職缺,以減少在網路人力銀行上漫無目標的瀏覽而浪費時間,進而能找到其最適合的工作。
英文摘要 The rise of the network job bank, not only broke the restriction of the timespace, and make the enterprise made use of the cheap cost of the network, let the tradition wanted spend the expense that a money publishes the hiring apocalypse and prints to make the DM(the advertisement handbill),the manufacture television advertisement … ...etc., all transfer the internet.
Past biggest problem is not an information to obtain today, but the information overloads.
This research purpose builds up a set of" recommend system of collaborative filtering ", providing the youth student that will soon graduate, at the devotion occupation place the direction and suggestion needed, hope by this mechanism recommend the studentses to lack the interested in work job, with decrease is planless to browse and waste time on the network job bank, then can find out its most fit work.
論文目次 目錄
目錄 I
圖目錄 II
表目錄 III
第一章 緒論 1
1.1、研究背景 1
1.2、研究動機 2
1.3、研究目的 4
1.4、研究架構 4
第二章 文獻探討 5
2.1、推薦系統 5
2.1.1、何謂推薦系統 5
2.1.2、推薦系統的介面呈現 7
2.2、以內容為基礎的推薦系統 9
2.3、協同過濾 12
2.3.1、何謂協同過濾 12
2.3.2、協同過濾的優缺點 14
2.3.3、協同過濾運作機制 16
2.4、評比分類方式 20
第三章 研究方法 24
3.1、研究架構 24
3.2、研究設計 27
3.2.1、系統開發 27
3.2.2、實驗程序 33
3.3、系統展示 35
3.3.1、系統開發環境與工具 35
3.3.2、系統的介面與操作 36
第四章 實驗結果與分析 39
4.1、實驗資料分析 39
4.2、整體推薦成效評估 41
4.3、分群過濾變數與干擾變數間之關係 45
第五章 結論與未來方向 49
5.1、結論 49
5.2、未來研究方向 51
參考文獻 52
附錄—英文論文 59

圖目錄
圖 2.3.3-1 協同過濾流程圖 17
圖 3.2.1-1 系統流程圖 30
圖 3.3.2-1 理想職務票選活動首頁 36
圖 3.3.2-2 理想職務票選活動畫面 37
圖 4.2-1 協同過濾機制之成效比例 43
圖 4.3-1 性別與分群過濾變數比較表 46
圖 4.3-2 年級與分群過濾變數比較 47
表目錄
表 2.2-1 以內容為基礎的推薦系統整理表 11
表 2.3.3-1 評比方式的選擇分類 19
表 2.4-1 顯性評比的實例 20
表 2.4-2 隱性評比的來源 21
表 2.4-3 顯性評比與隱性評比的比較 23
表 3.2.1-1 票選活動評比資料表 31
表 3.2.1-2 系統內部分群推薦方式 32
表 3.2.2-1 系統隨機出現的問題 34
表 3.3.2-1 參與理想職務票選活動的同學人口結構 37
表 4.1-1 職務推薦實驗人口結構 40
表 4.2-1 分群過濾變數推薦成功比例 42
表 4.2-2 同學選擇職務推薦結果滿意數統計 42
表 4.2-3 「協同過濾」與「票選排行榜推薦機制」機制之比較 44
表 4.3-1 性別與分群過濾變數匯總表 46
表 4.3-2 職業別與分群過濾變數匯總表 48
參考文獻 1. 羅健銘,「協同過濾於網站推薦之研究」,台北科技大學商業自動化與管理研究所碩士論文,民國 90 年。
2. 張瀚仁,「個人化技術對虛擬社群發展之影響」,政治大學資訊管理學系碩士論文,民國 89 年。
3. 馮文正,「合作式網站推薦系統」,交通大學資訊科學系碩士論文,民國90年。
4. Akinyele,http://www.csee.umbc.edu/~jklabrou/courses/fall1999_691f/week10/john_akinyele_recommender_systems/491f_files/v3_document.htm,2002/3/1.
5. Arndt, J.,”Role of Product-Related Conversation in the Diffusion of A NewProduct, ” Journal of Marketing Research,1967,pp.291-295.
6. Balabanovic , M. and Shoham ,Y.,“Fab:Content-Based,Collaborative Recommendation,” Communications of the ACM, 40(3), 1997, pp. 66-72.
7. Badrul, S., George, K. , Joseph, K., and John, R., “Analysis of Recommendation Algorithm for E-Commerce,” Communication of ACM,2000.
8. Breese, J. S., Heckerman, D., and Kadie, C., “Empirical Analysis of Predictive Algorithm for Collaborative Filtering,” Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, 1998, pp. 43-52.
9. Brown J., Jacquelin J. and Peter H., Reingen,”Social Ties and World-of-Mouse Refferal Behavior,” Journal of Consumer Research (14), 1987, pp.350-362.
10. David, L.,Fifteenth National Conference on Artificial Intelligence. Available URL: http://aaai.org/Workshops/1998/wsparticipation-98.html#13, 1998
11. Dhillon, N.,”Achieving Effective Personalization and Customization Using Collaborative Filtering,”http://home1.gte.net/dhillos/cf., Oct. 1995.
12. Douglas W. and Gary, M.,”A Conceptual Framework for Text Filtering,”Medical Informatics and Computational Intelligence Laboratory Electronical Engineering Departmen”,May. 1996.
13. Engel,J. , James, F., Roger, D. Blackwell K., and Paul,W. Miniard,
ConsumerBehavior,7th edition,1993.
14. Fishbein, M. ,Ajzen, I. , Belief, k. ,”Attitude, Intention and Behavior:AnIntroduction to Theory and Research, Reading”, MA: Addison-Wesley,1975.
15. Foltz, Peter, W.,“Personalized Information Delivery:AnAnalysis of Information Filtering Methods,”Association for Computing Machinery. Communications of the ACM, New York, Vol. 35, Iss. 12; Dec. 1992,pp. 51-60.
16. Gilly, Mary C., John, L. Graham, Mary ,F. , Larua, J. Yale, “A Dyadic Study of Interpersonal Information Search,” Journal of the Academy of Marketing Science(25), Iss. 121998,pp.83-100.
17. Goldberg,D.,”Using Collaborative Filtering to Weave An Information Tapestry,” Association for Computing Machinery. Communications of the ACM, New York, Vol. 35, Iss. 12; Dec 1992; pg. 61-70.
18. Good, N., Schafer, J.B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, J. ,”Combining Collaborative Filtering with Personal Agents for Better Recommendations,” Proceedings of the 1999 Conference of the American Association of Artifical Intelligence (AAAI-99),1999, pp 439-446.
19. Hill,J., Larry, Stead, Mark, R., and GeorgeFurnas , “Recommending and valuating Choices in A Virtual Community of Use,” In Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems,1995,pp.194-201.
20. Hawkins ,G.,Fischer, G. W.,S.A.,”Strategy Compatibility , Scale Compatibility, and the Prominence Effect,” Journal of Experimental Psycho ; ogy: Human Perception and Performance(19),1992,
pp.580-597.
21. Heylighen , J.,http://pespmc1.vub.ac.be/HEYL.html,2002/3/1.
22. Hugstand, P., James W. , and Grand D. ,”The Effects of Social Risk on Consumer Information Search,”Journal of Service Marketing(1), 1987,pp.47-52.
23. Johathan L.,Herlocker, J., Konstan, J., and Riedl, J.,”Explaining Collaborative Filtering Recommendations,” ACM 2000 Conference on Computer Supported Cooperative Work , Dec. 2000.
24. Kautz, H., Selman, B., and Shah, M.,“Referral Web: Combining Social Networks and Collabarative Filtering,” Communications of the ACM, 40(3), 1997, pp.63-650.
25. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., and Riedl,J..”GroupLens: Applying Collaborative Filtering to Usenet News,”Communications of the ACM ,40(3),1997,pp.77-87.
26. Kotler, P.,Marketing Management, 7th edition,1999.
27. Miller, B., Riedl, J., and Konstan, J.,”Experiences with GroupLens: Making Usenet Useful Again,”Proceedings of the 1997 Usenix Winter Technical Conference. Jan. 1997.
28. Nichols, D.M.,“Implicit Rating and Filtering,” Fifth DELOS Workshop on Filtering and Collaborative Filtering, Budapest, Hungary,Nov. 1997.
29. Nicholas, J., Belkin,”Information Filtering and Information Retrieval: Two Sides,” Association for Computing Machinery,Communications of the ACM, Vol. 35, Iss. 12; Dec. 1992; pp.29-38.
30. Palme, J.,”Choice in the Implementation of Rating,” Fifth DELOS Workshop on Filtering and Collaborative Filtering, Budapest, Hungary,Nov. 1997.
31. Park, C. W., and Lessig, V. P., “Students and Housewives: Differences in Susceptibility to Reference Group Influence,” Journal of Consumer Research (4) , Sep. 1977, pp.102.
32. Raje, S. , Mukhopadhyay, M. ,Boyles, N. ,Patel, J. , Mostafa, “D-SIFTER:A Collaborative Information Classifier”, Proc. of Information, Communications and Signal Processing, vol. 2, 1997, pp. 820-824.
33. Pine II,B.J.,Peppers,D.,and Rogers,”Do You Want to You’re Your CustomerForever ?,”Harvard Business Review,1995,pp.103-114.
34. Resnick, P.,” Recommender systems,” Association for Computing Machinery. Communications of the ACM, New York, Vol. 40, Iss. 3; Mar. 1997; pp. 56-58.
35. Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., and Riedl, J.,”GroupLens: An Open Architecture for Collaborative Filtering of Netnews,” Proceedings of the 1994 Computer Supported Collaborative Work Conference,1994.
36. Rucker, J., Polanco, M. J., “Siteseer: Personalized Navigation for the Web,” Communications of the ACM, 40(3), 1997, pp. 73-76.
37. Schafer, J.B., Konstan, J., and Riedl, J.,”Electronic Commerce Recommender Applications,” Journal of Data Mining and Knowledge Discovery, vol. 5 nos. 1/2, 2000,pp.115-152.
38. Schafer, J.B., Konstan, J.,and Riedl, J., “Recommender Systems in
E-Commerce,” Proceedings of the ACM Conference on Electronic Commerce, Nov. 1999.
39. Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. “Analysis of Recommender Algorithms for E-Commerce, ”ACM E-Commerce 2000 Conference, Oct. 2000.
40. Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. “Application of Dimensionality Reduction in Recommender System -- A Case Study,” ACM WebKDD 2000 Web Mining for E-Commerce Workshop ,2000.
41. Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., and Riedl, J.,”Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System, ”Proceedings of the 1998 Conference on Computer Supported Cooperative Work, Nov. 1998.
42. Shardanand, J.,Patti,M. ,”Social Information Filtering: Algorithms for Automating Word of Mouth,” In Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems, 1995,pp.210-217.
43. Terveen, L., Hill, W., Amento, B., McDonald, D., and Creter, J.,”PHOAKS: A System for Sharing Recommendations,” Communications of the ACM, 40(3),1997, pp. 59- 62.
44. Yi, Y. , “A Critical Review of Consumer Satisfaction,” In Review in Marketing, Valarie A. Zeithaml. ed. Chicago:American Marketing Association,1990,pp.68-123
45. Shardanand, Upendra and Pattie Maes, “Social Information Filtering: Algorithms for Automating ‘Word of Mouth’,” Proc. CHI 95, ACM Press, New York, 1995, pp.210-217.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-31公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信