§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3006202014392000
DOI 10.6846/TKU.2020.00899
論文名稱(中文) 枯草桿菌 TKU049 所生產果膠酶的純化與定性
論文名稱(英文) Purification and characterization of a pectinase from Bacillus subtilis TKU049
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 2
出版年 109
研究生(中文) 謝孝婷
研究生(英文) Hsiao-Ting Hsieh
學號 607160248
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2020-06-05
論文頁數 42頁
口試委員 指導教授 - 王三郎
共同指導教授 - 阮文邦
委員 - 呂誌翼
委員 - 王全祿
關鍵字(中) 枯草桿菌
果膠
果膠酶
關鍵字(英) Bacillus subtilis
pectin
pectinase
第三語言關鍵字
學科別分類
中文摘要
由於果膠酶的重要生物技術用途,在食品和飲料行業具有廣闊的工業前景。本研究使用的菌株Bacillus subtilis TKU049係從淡江大學土壤中篩選出來,探討香蕉皮、橙皮、柚子皮、麥麩,米糠以及咖啡渣等六種農業副產品作為B. subtilis TKU049生產果膠酶之碳和氮的之可行性。 結果顯示於含有1.5%果膠的培養基中培養三天,B. subtilis TKU049所產生果膠酶活性最高(1.19 U / mL)。 SDS-PAGE分析純化所得TKU049果膠酶之分子量為60.5 kDa。 TKU049果膠酶之最適反應溫度及酸鹼值分別為60°C和pH 9,酸鹼穩定性則是pH6至pH10。
此外,於無機鹽對TKU049果膠酶酵素活性影響方面,Mn2+、Mg2+、Ca2+以及Fe2+金屬離子具促進酵素活性之作用。 而界面活性劑EDTA、Triton X-100、Tween 40以及Tween 20則對酵素活性影響不大。
英文摘要
Pectinases have tremendous industrial prospects to be used in the fields of food and beverage. In this study, pectin and six types of agricultural by-products (banana peel, orange peel, pomelo peel, wheat bran, rice bran, and coffee ground) were used as the sole carbon and nitrogen sources for pectinase production by Bacillus subtilis TKU049 which was isolated from the soil of Tamkang University. B. subtilis TKU049 produced highest pectinase activity of 1.19 U/mL when cultured for three days on a medium containing 1.5% of pectin. The molecular mass of TKU049 pectinase was determined to be 60.5 kDa by SDS-PAGE.     TKU049 pectinase displayed optimal activity at 60 °C and pH 9, with a pH range of stability from 6 to 10. The enzyme activity of TKU049 pectinase was stimulated with Mn2+, Mg2+, Ca2+, and Fe2+ metal ions. Additionally, the TKU049 pectinase was stable in the presence of EDTA, Triton X-100, Tween 40, and Tween 20.
第三語言摘要
論文目次
誌謝	I
中文摘要	II
英文摘要	III
目錄	IV
圖目錄	VII
表目錄	VIII
第一章 緒論	1
第二章 文獻回顧	2
2.1枯草桿菌之簡介	2
2.2果膠	2
2.3果膠酶	4
2.4果膠酶的應用	4
第三章 材料與方法	7
3.1實驗菌株	7
3.2藥品與試劑	7
3.3實驗儀器	7
3.4生產菌株之篩選與分離	8
3.5革蘭氏染色	8
3.6菌種之鑑定	9
3.6.1 rDNA 序列分析	9
3.6.2 API 菌種之鑑定	9
3.7果膠酶活性測定	10
3.8果膠酶生產條件探討	10
3.8.1碳源種類之影響	10
3.8.2碳源濃度之影響	11
3.8.3培養溫度之影響	11
3.8.4培養基酸鹼值之影響	11
3.9果膠酶之分離與純化	12
3.9.1粗酵素液的備製	12
3.9.2離子交換樹脂層析法	12
3.9.3蛋白質電泳分析	12
3.10 酵素之特性分析	13
3.10.1酵素最適反應溫度	13
3.10.2酵素熱安定性	13
3.10.3酵素最適反應pH	13
3.10.4酵素之pH安定性	14
3.10.5金屬離子與抑制劑對酵素活性之影響	14
3.10.6界面活性劑對酵素活性之影響	15
第四章 結果與討論	16
4.1 果膠酶生產之菌種鑑定	16
4.2 果膠酶生產條件之探討	18
4.2.1碳源種類之影響	18
4.2.2碳源濃度之影響	19
4.2.3培養溫度之影響	20
4.2.4培養基酸鹼值之影響	21
4.2.5較適培養條件結果與比較	22
4.3果膠酶純化與分離	23
4.3.1粗酵素液製備	24
4.3.2離子交換層析	24
4.3.3純化與分離之綜合結果	26
4.3.4蛋白質電泳分析	27
4.4果膠酶之特性分析	29
4.4.1酵素最適反應溫度及熱安定性	29
4.4.2酵素最適反應pH及pH安定性	31
4.4.3金屬離子與抑制劑對酵素活性之影響	34
4.4.4界面活性劑對果膠酶之影響	35
第五章 結論	36
參考文獻	37

圖目錄
圖2. 1 低(a)和高(b)甲基化果膠物質的結構(主鏈)以及參與降解酶之作用點	3
圖4. 1 Bacillus subtilis TKU049之顯微鏡照片	16
圖4. 2不同碳源對B. subtilis TKU049生產果膠酶之影響	18
圖4. 3果膠濃度對B. subtilis TKU049生產果膠酶之影響	19
圖4. 4培養溫度對B. subtilis TKU049生產果膠酶之影響	20
圖4. 5培養pH值對B. subtilis TKU049生產果膠酶之影響	21
圖4. 6  B. subtilis TKU049 果膠酶之分離純化流程圖	23
圖4. 7果膠酶之Macro-Prep High Q層析圖譜	25
圖4. 8果膠酶之純化SDS-PAGE分析圖	28
圖4. 9果膠酶之最適反應溫度及熱安定性	30
圖4. 10果膠酶之最適反應pH及pH安定性	32

表目錄
表2. 1果膠酶生產菌種類	5
表2. 2果膠酶的應用	6   
表3. 1緩衝溶液種類	14
表4. 1TKU049之16S rDNA 部分基因序列	17
表4. 2API鑑定結果	17
表4. 3B. subtilis TKU049 生產果膠酶之較適培養條件	22
表4. 4B. subtilis TKU049果膠酶之純化總表	26
表4. 5芽孢桿菌菌株產生的果膠酶之特性比較	33
表4. 6金屬離子對果膠酶活性之影響	34
表4. 7界面活性劑對果膠酶活性之影響	35
參考文獻
1.	Alaña, A., Alkorta, I., Domínguez, J. B., Llama, M. J., Serra, J. L. (1990). Pectin lyase activity in a Penicillium italicum strain. Applied and Environmental Microbiology, 56, 3755-3759. 	
2.	Alimardani-Theuil, P., Gainvors-Claisse, A., Duchiron, F. (2011). Yeasts: an attractive source of pectinases—from gene expression to potential applications: a review. Process Biochemistry, 46, 1525-1537. 
3.	Alkorta, I., Garbisu, C., Llama, M. J., Serra, J. L. (1998). Industrial applications of pectic enzymes: a review. Process Biochemistry, 33, 21-28. 	
4.	Angayarkanni, J., Palaniswamy, M., Murugesan, S., Swaminathan, K. (2002). Improvement of tea leaves fermentation with Aspergillus spp. pectinase. Journal of Bioscience and Bioengineering, 94, 299-303. 
5.	Beulah, D., Sunitha, E., Srilakshmi, T. (2015). Production, purification and assay of pectinase enzyme from Aspergillus niger. Helix, 1, 673-645. 	
6.	Blanco, P., Sieiro, C., Villa, T. G. (1999). Production of pectic enzymes in yeasts. FEMS Microbiology Letters, 175, 1-9. 	
7.	Caffall, K. H., Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344, 1879-1900. 	
8.	Dey, A., Karmakar, M., Ray, R. R. (2011). Extracellular thermostable polygalacturonase from Bacillus sp. AD 1. Der Pharmacia Lettre, 3, 358-367. 	
9.	Ducasse, M.A., Williams, P., Canal-Llauberes, R.M., Mazerolles, G. R., Cheynier, V., Doco, T. (2011). Effect of macerating enzymes on the oligosaccharide profiles of Merlot red wines. Journal of Agricultural and Food Chemistry, 59, 6558-6567. 	
10.	Edwards, M. C., Doran-Peterson, J. (2012). Pectin-rich biomass as feedstock for fuel ethanol production. Applied Microbiology and Biotechnology, 95, 565-575. 	
11.	Garcıća Maceira, F. I., Di Pietro, A., Roncero, M. I. G. (1997). Purification and characterization of a novel exopolygalacturonase from Fusarium oxysporum f. sp. lycopersici. FEMS Microbiology Letters, 154, 37-43. 	
12.	Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J., Mahajan, R. (2016). Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech, 6, 47. 	
13.	Hoondal, G., Tiwari, R., Tewari, R., Dahiya, N., Beg, Q. (2002). Microbial alkaline pectinases and their industrial applications: a review. Applied Microbiology and Biotechnology, 59, 409-418. 	
14.	Huang, Q., Allen, C. (1997). An exo-poly-alpha-D-galacturonosidase, PehB, is required for wild-type virulence of Ralstonia solanacearum. Journal of Bacteriology, 179, 7369-7378. 	
15.	Iconomou, D., Arapoglou, D., Israilides, C. (2010). Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing. Grasas Y Aceites, 61, 303-311. 	
16.	Ishii, S., Yokotsuka, T. (1975). Purification and properties of pectin lyase from Aspergillus japonicus. Agricultural and Biological Chemistry, 39, 313-321. 	
17.	Jahan, N., Shahid, F., Aman, A., Mujahid, T. Y., Qader, S. A. U. (2017). Utilization of agro waste pectin for the production of industrially important polygalacturonase. Heliyon, 3, e00330. 	
18.	Jayani, R. S., Saxena, S., Gupta, R. (2005). Microbial pectinolytic enzymes: a review. Process Biochemistry, 40, 2931-2944. 	
19.	Jayani, R. S., Shukla, S. K., Gupta, R. (2010). Screening of bacterial strains for polygalacturonase activity: its production by Bacillus sphaericus (MTCC 7542). Enzyme Research, ID306785. 	
20.	Kashyap, D., Chandra, S., Kaul, A., Tewari, R. (2000). Production, purification and characterization of pectinase from a Bacillus sp. DT7. World Journal of Microbiology and Biotechnology, 16, 277-282. 	
21.	Kaur, G., Kumar, S., Satyanarayana, T. (2004). Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresource Technology, 94, 239-243. 	
22.	Manachini, P., Fortina, M., Parini, C. (1987). Purification and properties of an endopolygalacturonase produced by Rhizopus stolonifer. Biotechnology Letters, 9, 219-224. 	
23.	Mercimek Takcı, H. A., Turkmen, F. U. (2016). Extracellular pectinase production and purification from a newly isolated Bacillus subtilis strain. International Journal of Food Properties, 19, 2443-2450. 
24.	Murad, H., Azzaz, H. (2011). Microbial pectinases and ruminant nutrition. Research Journal of Microbiology, 6, 246-269. 	

25.	Murthy, P. S., Naidu, M. M. (2011). Improvement of Robusta coffee fermentation with microbial enzymes. European Journal of Applied Sciences, 3, 130-139. 	
26.	Namasivayam, E., Ravindar, J., Mariappan, K., Akhil, J., Mukesh, K., Jayaraj, R. (2011). Production of extracellular pectinase by Bacillus cereus isolated from market solid waste. Journal of Bioanalysis & Biomedicine, 3, 70-75. 
27.	Nozaki, K., Miyairi, K., Hozumi, S., Fukui, Y., Okuno, T. (1997). Novel exopolygalacturonases produced by Alternaria mali. Bioscience, Biotechnology, and Biochemistry, 61, 75-80. 	
28.	Oumer, O. J., Abate, D. (2017). Characterization of pectinase from Bacillus subtilis strain Btk 27 and its potential application in removal of mucilage from coffee beans. Enzyme Research, 2017, 6869047. 	
29.	Oumer, O. J., Abate, D. (2018). Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Research International, 2018, 2961767. 	
30.	Pepperberg, I. M. (2004). Cognitive and communicative capacities of grey parrots — implications for the enrichment of many species. Animal Welfare, 13, S203-S208. 	
31.	Ricca, E., Cutting, S. M. (2003). Emerging applications of bacterial spores in nanobiotechnology. Journal of Nanobiotechnology, 1, 6. 	
32.	Rodriguez-Palenzuela, P., Burr, T., Collmer, A. (1991). Polygalacturonase is a virulence factor in Agrobacterium tumefaciens biovar 3. Journal of Bacteriology, 173, 6547-6552. 	
33.	Roosdiana, A., Prasetyawan, S., Mahdi, C., Sutrisno, S. (2013). Production and characterization of Bacillus firmus pectinase. The Journal of Pure and Applied Chemistry Research, 2, 35-41. 	
34.	Saharan, R., Sharma, K. P. (2019). Production, purification and characterization of pectin lyase from Bacillus subtilis isolated from moong beans leaves. Biocatalysis and Agricultural Biotechnology, 21, 101306. 	
35.	Shahcheraghi, S., Nowruzi, J., Shahhoseini, M., Javadi, G., Moradi, H. (2010). Investigation of pXO plasmid frequency in non-pathogenic Bacilluses by observating plasmid and protein bands in electrophoresis. Journal of Microbiology and Biotechnology, 2, 41-48. 	
36.	Sieiro, C., García-Fraga, B., López-Seijas, J., Da Silva, A. F., Villa, T. G. (2012). Microbial pectic enzymes in the food and wine industry. Food Industrial Processes-Methods and Equipment, 2, 1-18. 	
37.	Singh, A., Yadav, R. D., Kaur, A., & Mahajan, R. (2012). An ecofriendly cost effective enzymatic methodology for deinking of school waste paper. Bioresource Technology, 120, 322-327. 	
38.	Singh, S. A., Plattner, H., Diekmann, H. (1999). Exopolygalacturonate lyase from a thermophilic Bacillus sp. Enzyme and Microbial Technology, 25, 420-425. 	
39.	Swain, M., Ray, R. (2010). Production, characterization and application of a thermostable exo-polygalacturonase by Bacillus subtilis CM5. Food Biotechnology, 24, 37-50. 	
40.	Tierny, Y., Bechet, M., Joncquiert, J. C., Dubourguier, H. C., Guillaume, J. B. (1994). Molecular cloning and expression in Escherichia coli of genes encoding pectate lyase and pectin methylesterase activities from Bacteroides thetaiotaomicron. Journal of Applied Bacteriology, 76, 592-602. 	
41.	Wang, Q., Fan, X., Hua, Z., Gao, W., Chen, J. (2007). Influence of combined enzymatic treatment on one-bath scouring of cotton knitted fabrics. Biocatalysis and Biotransformation, 25, 9-15. 	
42.	Will, F., Bauckhage, K., Dietrich, H. (2000). Apple pomace liquefaction with pectinases and cellulases: analytical data of the corresponding juices. European Food Research and Technology, 211, 291-297. 	
43.	Yadav, S., Yadav, P. K., Yadav, D., Yadav, K. D. S. (2009). Purification and characterization of pectin lyase produced by Aspergillus terricola and its application in retting of natural fibers. Applied Biochemistry and Biotechnology, 159, 270-283.
論文全文使用權限
校內
校內紙本論文延後至2022-07-01公開
同意電子論文全文授權校園內公開
校內電子論文延後至2022-07-01公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2022-07-01公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信