§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3006201711474700
DOI 10.6846/TKU.2017.01072
論文名稱(中文) 多層與單層複合材料衝擊能量吸收之比較
論文名稱(英文) Comparison of Impact Energy Absorption Capability between Multi-layer and Single-layer Composite Materials
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 陳毅霖
研究生(英文) Yi-Lin Chen
學號 604430289
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-09
論文頁數 123頁
口試委員 指導教授 - 陳步偉
委員 - 陳步偉
委員 - 張永康
委員 - 沈坤耀
關鍵字(中) 輕型運動載具
適墜性
複合材料
有限元素法
關鍵字(英) Light Aircraft
Crashworthiness
composite
Finite Element
第三語言關鍵字
學科別分類
中文摘要
隨著輕型航空器的蓬勃發展,適墜性的設計考量也隨著越來越重要。航空載具的機身結構、地板結構以及座椅的設計為主要的適墜性作用範圍,在發生撞擊時機身結構可以防止撞擊時產生大範圍的變形避免生存空間受到壓迫。近年來複合材料在航空器上的應用比例逐年增加,所以複合材料飛機的結構安全性是重要的研究方向。
本研究應用有限元素法Abaqus分析單一纖維方向碳纖維複合材料和多層碳纖維複合材料之結構進行適墜性模擬並比較單一纖維方向碳纖維複合材料和多層碳纖維複合材料對於吸收能量的差異。本研究以Zenith公司的STOL CH 701輕型運動航空載具(Light Sport Aircraft, LSA)做為研究的標的物,以Pro/Engineer建立機身,機身材料使用單一纖維方向碳纖維複合材料、多層碳纖維複合材料,依據AGATE訂定的30o撞擊角度與ASTM規範的1.3 Vso下降速度作為本研究參數設定的邊界條件,動態模擬以撞擊能量的輸出做為結果合理性判斷的依據,再利用Abaqus軟體分別討論兩者在相同負載條件下的能量吸收能力以及座艙壓縮率。
本研究根據MIL-STD-1290A所規定的座艙壓縮率在各方向的壓縮率不得超過15%的安全標準下,建立速度與角度的關係圖。在不同的撞擊角度與不同的撞擊速度下,0o纖維還是佔有關鍵性的影響力,擁有0o纖維的機身模型,都有較高的內能吸收。不同纖維排列方式的機身在沿著Y方向的壓縮率都相較於X方向與A斜樑方向為小,其最大壓縮率都不超過3%。撞擊速度對於座艙壓縮率的影響比撞擊角度的效應為明顯。不同纖維排列方式的機身座艙之X方向與A斜樑方向,在不同撞擊速度的壓縮率都相對高於在固定速度不同角度撞擊時之變形量。
英文摘要
Because of the development of light sport aircraft, the design of the crashworthiness becomes more and more important. Light sport aircraft’s fuselages structure, floor structure and seats are designated for crashworthiness. It can prevent large deformation to maintain the survival of space during the impact. In the recent years, the proportion of composite materials in the aircraft increased year by year, so the safety of the com-posite aircraft is the important field to research.The purpose of this thesis is using finite element method, Abaqus, to simulate the crashworthiness of Single-layer and Multi-layer composite materials and comparison of impact energy absorption capability be-tween Single-layer and Multi-layer composite materials. In this thesis, we use Zenith’s STOL CH 701, Light Sport Aircraft, as model to simulate. This research used Pro/Engineer to establish CH 701 fuselage model. The material of fuselage are Single-layer and Multi-layer composite materials. According to the AGATE and ASTM, the impact angle and the impact velocity are 30o and 1.3VSO using as boundary condition of dynamic simulation. In the dynamic simulation, we output the data to check if the simulation is follow the conservation of energy and use Abaqus to discuss the impact energy absorption capability and reducing rate of cabin between Single-layer and Mul-ti-layer composite materials.
In this thesis, the relationship between velocity and angle was established according to the safety standard, MIL-STD-1290A, of the cockpit reducing rate cannot more than 15%. In different impact angles and different impact velocities, 0o composite fiber has a critical influence.0o composite fiber fuselage model has a higher energy absorption in all Single-layer and Multi-layer fuselage. In both Single-layer and Multi-layer composite fuselages, the compression of the cabin in the Y direction is smaller than the X direction and the A direction, and the maximum reducing rate does not exceed 3%. The effect of the impact velocity is more obvious than the impact angle on the cabin compression. The compression of fuselage in the X direction and A direction at different impact velocities are relatively higher than the deformation at different angles.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VI
表目錄	X
第一章、  緒論	1 
1.1 前言	1
1.2 飛安事故	3
1.3 複合材料的趨勢	 9
1.4 研究目的與方法	 13
第二章 、 文獻回顧	 15
2.1 各國對於輕型飛型載具的相關定義	15 
2.1.1 美國FAR對於輕型飛型載具的定義	15 
2.1.2 歐洲航空安全局EASA對於超輕型飛型載具的定義	16
2.1.3 加拿大LAMAC對於超輕型飛型載具的定義	 17
2.1.4 我國超輕型飛行載具的定義	 17
2.2 適墜性的發展與相關法規	20 
2.2.1適墜性的概念	 20
2.2.2適墜性的法規	22 
2.3 各種材料能量吸收與分析	24 
2.3.1金屬材料vs 複合材料	24 
2.3.2複合材料結構改善	29 
2.4 Quasi-isotropic laminate vs Balanced laminate 	32
2.4.1 Quasi-isotropic laminate 	33
2.4.2 Balanced laminates 	34
2.5適墜性測試方法的演進	35 
2.6目前研究	 37
第三章、 基礎理論	44 
3.1 Abaqus簡介	44 
3.2 Abaqus/Explicit 	46
3.3 Abaqus 的單位設定	48
3.4 Abaqus Composite 	50
3.5 Abaqus Energy 	51
第四章、 模擬與結果	 53
4.1 本研究的步驟	 53
4.2 模型建立	55
4.3 材料參數設定	 57
4.4 邊界條件設定	 60
4.5 模型網格建立	 61
4.6空心立方體模型之動態模擬	63 
4.7複合材料機身模型之動態模擬	69
第五章 結論與建議	 105
參考文獻	 107
圖目錄
圖 1-1 2017 年到2037 年普通類航空器每年成長比率	 2
圖 1-2 美國普通類航空器在2002年到2011年發生事故的統計	4
圖 1-3 2006-2015 年國籍民用航空運輸業飛航事故發生飛航階段次數	7 
圖 1-4 空中巴士歷年來飛機上使用的複合材料	10 
圖 1-5 波音歷年來飛機上使用的複合材料	10
圖 1-6 複合材料在航空器上所佔的比例	11 
圖 1-7 複合材料應用在輕航機上的比率	 12
圖 1-8 實驗流程圖	14 
圖 2-1 Force-displacement curve for a subject to crushing 	25
圖 2-2 所示出在鋁(左)和複合材料管(右)漸進變形之間的差異	27
圖 2-3 複合材料與其他材料的吸能比較	 29
圖 2-4 三明治結構的構造	30
圖 2-5 Quasi-isotropic laminate 疊層角度	 33
圖 2-6 Quasi-isotropic laminate 	34
圖 2-7 B737機身前後落摔測試	36 
圖2-8 Crash energy absorption design approaches for various types of aircraft 	38
圖 2-9 飛機的防撞設計理念	38 
圖 2-10 機身的落摔試驗	39 
圖 2-11 Testing/simulation pyramid in aircraft development 	41
圖 4-1 分析模擬流程圖	 54
圖 4-2 STOL CH 701三視圖	 55
圖 4-3 CH 701機身模型	56 
圖 4-4 Engineering Constants 所需的參數	 58
圖 4-5 Composite Layup 模組	59 
圖 4-6 元素種類	 61
圖 4-7 CH 701模型網格建立	62 
圖 4-8空心方塊模型示意圖	64 
圖 4-9 0o纖維複材空心方塊垂直撞擊地面	65 
圖 4-10 45o纖維複材空心方塊垂直撞擊地面	65
圖 4-11 90o纖維複材空心方塊垂直撞擊地面	66 
圖 4-12 0o複材方塊垂直撞擊地面之能量變化	66 
圖 4-13 複材方塊垂直撞擊之內能	68 
圖 4-14 CH701機身示意圖	69 
圖 4-15 機身以角度30o撞擊地板示意圖	 70
圖 4-16 0o纖維複材機身以30o撞擊地面	70 
圖 4-17 45o纖維複材機身以30o撞擊地面	71 
圖 4-18 90o纖維複材機身以30o撞擊地面	71 
圖 4-19 0o纖維角度複材機身以30o撞擊地面之能量變化	 72
圖 4-20 30o纖維角度複材機身以30o撞擊地面之能量變化	72 
圖 4-21 45o纖維角度複材機身以30o撞擊地面之能量變化	73
圖 4-22 60o纖維角度複材機身以30o撞擊地面之能量變化	73 
圖 4-23 90o纖維角度複材機身以30o撞擊地面之能量變化	74 
圖 4-24 單一方向纖維複材機身撞擊之內能	76
圖 4-25 單一方向纖維複材機身撞擊之最大應力	77 
圖 4-26 碳纖維機身的主要最大應力發生部位	77 
圖 4-27 單一方向纖維複材機身撞擊各方向之壓縮率	78 
圖 4-28 [0/90]複材機身以30o撞擊地面之能量變化	79 
圖 4-29 [+45/-45]複材機身以30o撞擊地面之能量變化	79 
圖 4-30 [0/+45/-45/90]複材機身以30o撞擊地面之能量變化	80 
圖 4-31 [+60/0/-60]複材機身以 30o 撞擊地面之能量變化	80 
圖 4-32 不同纖維方向複材機身撞擊之內能	82 
圖 4-33 不同纖維方向複材機身撞擊之最大應力	83
圖 4-34 不同纖維方向複材機身撞擊之各方向之壓縮率	84
圖 4-35 以固定角度(30o)下撞擊速度與內能的關係	91 
圖 4-36 以固定角度(30o)下撞擊速度與應力的關係	 92
圖 4-37 以固定角度(30o)下撞擊速度與 X 方向的關係	93 
圖 4-38 以固定角度(30o)下撞擊速度與 A 方向的關係	 94
圖 4-39 以固定角度(30o)下撞擊速度與 Y 方向的關係	 95
圖 4-40 以固定速度(18 m/s)下撞擊角度與內能的關係	100
圖 4-41 以固定速度(18 m/s)下撞擊角度與應力的關係	 101
圖 4-42 以固定速度(18 m/s)下撞擊角度與 X 方向的關係	102
圖 4-43 以固定速度(18 m/s)下撞擊角度與 A 方向的關係	103 
圖 4-44 以固定速度(18 m/s)下撞擊角度與 Y 方向的關係	 104

表目錄
表 1-1 美國民用航空器在2011年發生事故的統計	 4
表 1-2  2006-2015 年我國籍航空器發生在國內外之飛航事故	 5
表 1-3 2006-2015 年國內超輕型載具飛航事故	 8
表 2-1 FAR、EASA、LAMAC與我國對於輕型飛機的法規.	19
表 3-1 Abaqus 常用 SI 制的基礎單位	 48
表 4-1 STOL CH 701的規格	 56
表 4-2 碳纖維複合材料參數	57 
表 4-3 撞擊角度與速度之參數	60 
表 4-4 複合材料空心方塊以垂直方向撞擊	 67
表 4-5 複合材料機身纖維排列方式	69 
表 4-6 單層複合材料機身以 18 m/s 速度 30o 方向撞擊	75
表 4-7 多層複合材料機身以 18 m/s 速度 30o 方向撞擊	81
表 4-8 單層複合材料機身以 27 m/s 速度 30o 方向撞擊	 85
表 4-9 多層複合材料機身以 27 m/s 速度 30o 方向撞擊	 86
表 4-10 單層複合材料機身以 36 m/s 速度 30o 方向撞擊	87
表 4-11 多層複合材料機身以 36 m/s 速度 30o 方向撞擊 	88
表 4-12 單層複合材料機身以 45 m/s 速度 30o 方向撞擊	 89
表 4-13 多層複合材料機身以 45 m/s 速度 30o 方向撞擊	90
表 4-14 單層複合材料機身以 18 m/s 速度 45o 方向撞擊	 96
表 4-15 多層複合材料機身以 18 m/s 速度 45o 方向撞擊	97
表 4-16 單層複合材料機身以 18 m/s 速度 60o 方向撞擊	98 
表 4-17 多層複合材料機身以 18 m/s 速度 60o 方向撞擊	99
參考文獻
參考文獻
[1]	“FAA Aerospace Forecast Fiscal Years 2017-2037”, Federal Aviation Administration, 2017, pp.23.
[2]	“Review of U.S. Civil Aviation Accidents, Review of Aircraft Accident Data 2011”, NTSB/ARA-14/01, PB2014-101453, National Transporta-tion Safety Board, 2014, pp. 22.
[3]	「台灣飛安統計 2006-2015」,行政院飛航安全調查委員會,2016年。
[4]	Faye Smith, “The Use of Composite in Aerospace: Past, Present and Fu-ture Challenges”, 2013.
[5]	“Status of FAA’s Actions to Oversee the Safety of Composite Air-planes”, United States Government Accountability Office, 2011.
[6]	L.Ilcewicz , “Past Experiences and Future Trends for Composite Aircraft Structure.”, Montana State University, 2009.
[7]	Federal Aviation Administration, http://www.faa.gov
[8]	“Ultralight Vehicles”, FAR103.1, Subchapter A-General, Applicability.
[9]	European Aviation Safety Agency, http://www.easa.eu.int。
[10]	Light Aircraft Manufacturers of Canada, http://www.lightaircraft.ca。
[11]	交通部民用航空局,http://www.caa.gov.tw。
[12]	Todd R. Hurley and Jill M. Vandenburg, “Small Airplane Crashworthi-ness Design Guide”, AGATE-WP3.4-034043-036, April 12, 2002.
[13]	Desjardins S.P, Zimmermann R.E, Bolukbasi A.O, Merritt N.A, “ACSDG aircraft crash survival design guide.’’, Vol. I–IV, December 1989.
[14]	“Light Fixed and Rotary-Wing Crash Aircraft Resistance”, MIL-STD-1290A, 1988. 
[15]	FAA 14 CFR airworthiness standards: Part 23 normal, utility, acrobatic and commuter category airplanes, Part 25 transport category airplanes, Part 27 normal category rotorcraft, Part 29 transport category rotorcraft, Federal Aviation Administration, http://www.airweb.faa.gov. 
[16]	EASA certification specifications: CS 23 normal, utility, aerobatic and commuter aeroplanes, CS 25 large aeroplanes, CS 27 small rotorcraft, CS 29 large rotorcraft, European Aviation Safety Agency, http://www.easa.europa.eu. 
[17]	SC 25¬07¬05¬SC, “Special conditions: Boeing model 787¬8 airplane; crash-worthiness” U. S Fed Regist. June 2007;72(111) Docket No. NM368, Federal Aviation Administration.
[18]	Allan Abramowitz , Timothy G Smith , Tong Vu , and John Zvanya , “Vertical drop test of an ATR 42300 airplane’’, FAA document DOT/FAA/AR05/56, March 2006.
[19]	“Composite Aircraft Structure”, AC 20-107B Change 1, Federal Aviation Administration, August 24, 2010. 
[20]	Marcus Andersson , Petter Liedberg , “Crash behavior of composite structures”, Chalmers University of Technology, Gothenburg, 2014. 
[21]	Francesco Deleo , Paolo Feraboli , “Crashworthiness Energy Absorption of Carbon Fiber Composites: Experiment and Simulation”, University of Washington, 2011.
[22]	Dirk Lukaszewicz , “Design Drivers for enhanced crash performance of automotive CFRP Structures’’, BMW Group. 
[23]	D Hull, “A Unified Approach to Progressive Crushing of Fibre-Reinforces Composite Tubes”, 1990.
[24]	Aviva Brecher,  “A Safety Roadmap for Future Plastics and Composites Intensive Vehicles, National Highway Traffic Safety Administration, DOT HS 810 863, November 2007.
[25]	Paolo Feraboli, “Development of a Corrugated Test Specimen for Com-posite Materials Energy Absorption”, Journal of Composite Material, Vol. 42, No. 3, 2008, pp. 229-256, doi: 10.1177/0021998307086202.
[26]	Sebastian Heimbs, “Energy Absorption in Aircraft Structures”, EADS, Innovation, 2012.
[27]	Klaus Friedrich and Abdulhakim A. Almajid, “Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications”, Applied Composite Materials, Vol. 20, 2013, pp 107-128, DOI 10.1007/s10443-012-9258-7.
[28]	Bhagwan D. Agarwalm Lawrence J. Broutman, and K. Chandrashekhara, “Analysis and Performance of Fiber Composites, 3rd Edition”, John Wiley & Sons, Inc, New Jersey, 2006. pp. 221.
[29]	“Advanced Composite Materials”, Aviation Maintenance Technician Handbook - Airframe, Volume 1, FAA-H-8083-31, Federal Aviation Administration, pp. 7-2.
[30]	Quartus, http://www.quartus.com/resources/white-papers/composites-101/.
[31]	G. Mmrritt Preston, Gerard J. Pesman, “Accelerations in transport-airplane crashes”, NACA TN4158, 1958. 
[32]	W. H. Reed, S.H. Robertson, L. W. T. Weinberg, and L. H. Tyndall, “Full-scale dynamic crash test of a Lockheed Constellation model 1649 aircraft”, FAA-ADS-38, 1965. 
[33]	W. H. Reed, S.H. Robertson, L. W. T. Weinberg, and L. H. Tyndall, “Full-scale dynamic crash test of a Douglas DC-7 aircraft”, FAA-ADS-37, 1965. 
[34]	M. S. Williams, R. J. Hayduk, “Vertical drop test of a transport fuselage center section including the wheel wells”, NASA TM85706, 1983. 
[35]	E. L. Fasanella, E. Alfaro-Bou, “Vertical drop test of a transport fuselage section located aft of the wing”, NASA TM89025, 1986. 
[36]	M. S. Williams, R. J. Hayduk, “Vertical drop test of a transport fuselage section located forward of the wing”, NASA TM85679, 1983. 
[37]	S. M. Pugliese, “B-707 fuselage drop test report”, 1984.
[38]	D. Johnson,and A. Wilson, “Vertical drop test of a transport airframe section”, DOT/FAA/CT- TN 86/34, 1986. 
[39]	“DC-10 fuselage drop test report”, Report No. 7251-2, Arvin/Calspan report prepared for FAA technical center Atlantic City , NJ, 1984. 
[40]	R.J. Hayduk, “Full-scale transport controlled impact demonstration”, NASA CP2395, 1985. 
[41]	“Summary report – full-scale transport controlled impact demonstration program”, DOT/FAA/CT-87/10, 1987.
[42]	A. Abramowitz, T. G. Smith, T. Vu, and J. R. Zvanya, “Vertical drop test of a narrow-body transport fuselage section with overhead stowage bins”, DOT/FAA/AR-01/100, 2002. 
[43]	T. V. Logue, R. J. McGuire, J. W. Reinhardt, and T. Vu, “ Vertical drop test of a narrow-body fuselage section with overhead stowage bins and auxiliary fuel tank on board”, DOT/FAA/CT-94/116, 1995. 
[44]	A. Abramowitz, T. G. Smith, and T. Vu, “Vertical drop test of a narrow-body transport fuselage section with conformable auxiliary fuel tank onboard”, DOT/FAA/AR-00/56, 2000. 
[45]	M. M. Sadeghi, S. M. R. Hashemi, “An overview of the aircraft crash-worthiness study project: A European programme”, 1998. 
[46]	R. Hashemi, “Sub-component dynamic tests on an Airbus A320 rear fu-selage”, 1994. 
[47]	R. Hashemi, “Sub-component quasi-static tests on an Airbus A320 rear fuselage”, 1994.
[48]	F. LePage, R. Carciente, “A320 fuselage section vertical drop test – part 2 test results”, 1995. 
[49]	A. Abramowitz, S. Soltis, “Summary of the FAA ́s commuter airplane crashworthiness program”, 2007. 
[50]	A. Abramowitz, T. Vu, “Vertical impact response characteristics of four commuter/regional airplanes”, DOT/FAA/AR-08/20, 2008. 
[51]	R. J. McGuire, W. J. Nissley, and J. E. Newcomb, “Vertical drop test of a Metro III aircraft”, DOT/FAA/CT-93/1, 1993. 
[52]	R. McGuire, T. Vu, “Vertical drop test of a Beechcraft 1900C airliner”, DOT/FAA/AR- 96/119, 1998. 
[53]	Allan Abramowitz, Philip A. Ingraham, Robert McGuire, “Vertical Drop Test of a Shorts 3- 30 Airplane”, DOT/FAA/AR-99/87, November 1999.  
[54]	Allan Abramowitz, Timothy G. Smith, Tong Vu, and John Zvanya, “Ver-tical Drop Test of an ATR 42-300 Airplane”, DOT/FAA/AR-05/56, 2006. 
[55]	S.P. Desjardins , Richard E. Zimmermann, Akif O. Bolukbasi , and Nor-man A. Merritt , “ACSDG aircraft crash survival design guid”  Vol. I–IV, December  1989.
[56]	J. D. Cronkhite, V. L. Berry, “Crashworthy Airframe Design Concepts – Fabrication and Testing’’, NASA CR3603, 1982.
[57]	C.M Kindervater, D Kohlgrüber, A.F Johnson, “Composite vehicle struc-tural crashworthiness - a status of design methodology and numerical simulation techniques”, 1999. 
[58]	Chiara Bisagni, Giuseppe Di Pietro, Lara Fraschini, and Davide Terletti, “Progressive Crushing of Fibre¬-reinforced Composite Structural Compo-nents of a Formula One Racing Car”, Composite Structures, Vol. 68, 2005, pp. 491-503.
[59]	Le Page F., Carciente R., “A320 fuselage section vertical drop test - Part 2: test results”; CEAT Report S95 5776/2, EU Research project ‘Crash-worthiness for Commercial Aircraft’, 1995. 
[60]	Matthias Waimer, Dieter Kohlgrüber , Dieter Hachenberg , and Heinz Voggenreiter , “The kine- matics model – a numerical method for the de-velopment of a crashworthy composite fuselage design of transport air-craft’’, Sixth Triennial International Aircraft Fire and Cabin Safety Re-search Conference, New Jersey October 25-28, 2010. 
[61]	Sebastian Heimbs , Florian Strobl ,and Peter Middendorf “Integration of a composite crash asorber in aircraft fuselage vertical struts”, Interna-tional Journal of Vehicle Structures & Systems Vol 3, No. 2 , 2011. 
[62]	“CRASURV, Commercial aircraft – Design for crash survivability EU FP4 RTD Project IMT AREA 3 (3A5.6)”, 1996–1999.
[63]	J.F.M. Wiggenraad, A.L.P.J Michielsen, D. Santoro, F. Lepage, C. Kindervater, and F. Beltran, “Development of a crashworthy composite fuselage structure for a commuter aircraft”, NLR-TP-99532, 1999.
[64]	Sebastian Heimbs, “Computational Methods for Bird Strike Simulations: A Review”, Computer&Structures, Vol. 89, Issues 23-24, 2011, pp. 2093-2112.
[65]	Vinayak Walvekar, “Birdstrike Analysis on Landing Edge of an Aircraft Wing Using a Smooth Practice Hydrodynamics Bird Model”, 2010.
[66]	Sebastian Heimbs, Tim Bergmann, “Bearing Mode Absorber – On the Energy Absorption Capability of Pulling A Bolt through a Composite or Sandwich Plate’’ , Procedia Engineering, 2014, pp. 149 – 156. 
[67]	MOU Haolei, ZOU Tianchun, FENG Zhenyu, REN Jian, “Crashworthi-ness Simulation Research of Fuselage Section with Composite Skin”, In-ternational Symposium on Aircraft Airworthiness, Vol.80, 2014, pp. 59-65.
[68]	Marc Pein, Dieter Krause, Sebastian Heimbs, Peter Middendorf, “Hybrid Composite Materials for a Highly Integrated Energy-Absorbing Concept for Aircraft Cabin Interior’’, International Aircraft Fire and Safety Re-search Conference, Oct 29, 2007, Atlantic City, United States.
[69]	Ramazan Karakuzu, Emre Erbil, Mehmet Aktas, “Damage Prediction in glass/epoxy Laminates Subjected to Impact Loading”, Indian Journal of Engineering & Materials Sciences, Vol. 17, 2010, pp. 186-198.
[70]	「最新Abaqus實務入門」, Dassault Systèmes. Simulia Corp. 世盟瑞其CAE團隊編著。
[71]	ZENAIR, http://www.zenithair.com.
[72]	Vaibhav A. Phadnis, Farrukh Makhdum, Anish Roy, and Vadim V. Sil-berschmidt,“Drilling in Carbon/Epoxy Composites: Experimental Inves-tigations and Finite Element Implementation”, Composites Part A: Ap-plied Science and Manufacturing, Vol. 47, 2013, pp. 41-51. 
[73]	Steven J. Hooper, Marilyn Henderson, Waruna Seneviratne, “Design and Construction of a Crashworthy Composite Airframe”, AGATE-WP3.4-034026- 089. Rev. A, March  2002.
[74]	 “Standards on Light Sport Aircraft”, ASTM, 2008.
[75]	林亜昀,「複合材料輕型飛機的適墜性分析」,私立淡江大學航空太空工程學系碩士論文,2013年6月。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信