淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-3006201416162900
中文論文名稱 在不連結無線感測網路中具電量平衡之行動感測器巡邏機制
英文論文名稱 Energy-Balanced Patrolling Mechanism for Mobile Sensor in Disconnected Wireless Sensor Networks
校院名稱 淡江大學
系所名稱(中) 資訊工程學系碩士班
系所名稱(英) Department of Computer Science and Information Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 黃繼正
研究生英文姓名 Chi-Cheng Huang
學號 602410010
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2014-06-12
論文頁數 47頁
口試委員 指導教授-郭經華
委員-游國忠
委員-張志勇
委員-郭經華
中文關鍵字 無線感測網路  電量平衡  資料收集  行動式資料收集器  資料轉傳 
英文關鍵字 Wireless Sensor Networks  Energy-Balanced  Data Collection  Data Mule  Data forward 
學科別分類 學科別應用科學資訊工程
中文摘要 在無線感測網路(Wireless Sensor Networks, WSNs)中,資料收集(Data Collection)是一個重要的研究議題。本論文考慮因地形因素限制,監控場景中存在許多不連續監控子區域,而每個區域已佈建數個固定式感測器感測資料。資料傳輸方式若以固定式感測器多步代傳(multi-hop)至收集站,則監控場景內需額外佈建大量的固定式感測器,造成部署硬體成本過高。此外,以多步代傳進行資料收集時,將使感測器耗電量不均,進而縮短網路生命期。有鑒於此,本論文利用移動式資料收集器(Data Mule, DM)進行資料收集任務,以解決部署成本過高及感測器耗電量不均的問題。此外,為了縮短收集器的資料收集路徑,以期降低資料回傳時間,本論文選擇數個感測器做為資料轉傳節點,使收集器僅需與資料轉傳節點通訊,即能有效網路內所有感測資料。不同於以往研究,本論文設計Energy-Balanced Patrolling機制使感測器根據每回合自身及其鄰居的剩餘電量及儲存空間,動態地決定自身是否擔任資料轉傳節點,藉此平衡感測器間的電量,進而延長網路生命週期。此外,本論文亦根據不同區域的資料量,可選擇不同數量的轉傳節點,讓轉傳節點能儲存並轉傳更多感測資料,以避免感測器暫存器溢滿並增加網路資料傳輸量(throughput)。
英文摘要 In wireless sensor networks, data collection is one of the key issues needed to be addressed. This paper takes into consideration the limitation of terrain to develop an efficient data collection mechanism for many disconnected monitoring areas. Traditionally, each monitoring area has been allocated amount of static sensors which are responsible for relaying data to the sink node via multi-hop technique. However, it introduces the high hardware cost and energy-unbalanced problems, reducing the network lifetime. To cope with above-mentioned problems, this paper uses the data mule (DM) to collect sensory. In this paper, some sensors will function as the forwarders which aim to collect the sensory and then relay to DM for conserving the energies of the other sensors. Moreover, to further prolong the network lifetime, this paper allows that the sensor can locally determine be a forwarder in each round according to its remaining energy and remaining buffer capacity. Furthermore, the proposed data collection mechanism allows that each monitoring area has multiple forwarders to relay data to DM, and thus the network throughput can be improved.
論文目次 目錄
圖目錄 VII
表目錄 VIII
第一章、簡介 1
第二章、相關研究 5
第三章、網路環境與問題描述 8
3.1 網路環境 8
3.2 問題描述 9
第四章、演算法 14
4.1 Overview 14
4.2 Select Forwarding Node Phase(SFN-phase) 16
4.3 Adjust DM Velocity Phase (ADV-Phase) 24
A. Arrange Communication Segment Task (ACS-Task) 26
B. Adjust Velocity Task (AV-Task) 30
第五章、模擬實驗 33
5.1 模擬環境 33
5.2 模擬結果 33
第六章、結論 37
參考文獻 38
附錄-英文論文 42

圖目錄
圖 1︰網路環境。 9
圖 2︰SFN執行時間與結果。 15
圖 3:ADV階段說明。 16
圖 4︰SFN-轉傳節點選取過程。 22
圖 5︰SFN-感測器分配資料量至轉傳節點的計算過程。 23
圖 6︰SFN-phase演算法。 24
圖 7:收集器未安排轉傳節點通訊路段產生的問題。 25
圖 8:收集器執行ACS-Task,以確保所有轉傳節點擁有通訊路段。 27
圖 9︰收集器執行ACS-Task實例。 30
圖 10︰ADV-Phase演算法。 32
圖 11:感測器佈建密度對感測器電量平衡之影響。 35
圖 12:感測器佈建密度對網路生命期之影響。 36

表目錄
表(一)實驗參數表 33
參考文獻 [1] Z. Shen, H. Jiang, and Z. Yan, “Fast Data Collection in Linear Duty-Cycled Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 4, May 2014.
[2] S. Ji and Z. Cai, “Distributed Data Collection in Large-Scale Asynchronous Wireless Sensor Networks Under the Generalized Physical Interference Model,” IEEE Transactions on Networking, vol. 21, no. 4, Aug. 2013.
[3] W. Zhao and X. Tang, “Scheduling Sensor Data Collection with Dynamic Traffic Patterns,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 4, Apr. 2013.
[4] J.W. Jung and M.A. Weitnauer, “On Using Cooperative Routing for Lifetime Optimization of Multi-Hop Wireless Sensor Networks: Analysis and Guidelines,” IEEE Transactions on Communications, vol. 61, no. 8, Aug. 2013
[5] D. Gong and Y. Yang, “Low-Latency SINR-Based Data Gathering in Wireless Sensor Networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 6, Jun. 2014.
[6] D. Kim, B.H. Abay, R.N. Uma, W. Wu, W. Wang, and A.O. Tokuta, “Minimizing Data Collection Latency in Wireless Sensor Network with Multiple Mobile Elements,” IEEE INFOCOM, Mar. 2012.
[7] J. Tao, L. He, Y. Zhuang, J. Pan, and M. Ahmadi, “Sweeping and Active Skipping in Wireless Sensor Networks with Mobile Elements,” IEEE GLOBECOM, Dec. 2012.
[8] A.K. Kumar, K.M. Sivalingam, and A. Kumar, “On reducing delay in mobile data collection based wireless sensor networks,” Wireless Networks, vol. 19, no. 3, pp,285-299, Apr. 2013.
[9] M. Zhao, M. Ma, and Y. Yang, “Efficient Data Gathering with Mobile Collectors and Space-Division Multiple Access Technique in Wireless Sensor Networks,” IEEE Transactions on Computers, vol. 60, no. 3, pp. 400-417, Mar. 2011.
[10] M. Ma, Y. Yang, and M. Zhao, “Tour Planning for Mobile Data-Gathering Mechanisms in Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, vol. 62, no. 4, pp. 1472-1483, May 2013.
[11] F. Senel and M. Younis, “Optimized Interconnection of Disjoint Wireless Sensor Network Segments Using K Mobile Data Collectors,” IEEE ICC, Jun. 2012.
[12] C. Wang and H. Ma, “Data Collection with Multiple Controlled Mobile Nodes in Wireless Sensor Networks,” IEEE ICPADS, Dec. 2011.
[13] L. He, J. Pan, and J. Xu, “A Progressive Approach to Reducing Data Collection Latency in Wireless Sensor Networks with Mobile Elements,” IEEE Transactions on Mobile Computing, vol. 12, no. 7, pp. 1308-1320, Jul. 2013.
[14] F.J. Wu and Y.C. Tseng, “Energy-Conserving Data Gathering by Mobile Mules in a Spatially Separated Wireless Sensor Network,” IEEE Wireless Communications and Mobile Computing, vol. 13 no. 15, pp. 1369-1385, Oct. 2013.
[15] M. Zhao and Y. Yang, “Bounded Relay Hop Mobile Data Gathering in Wireless Sensor Networks,” IEEE Transactions on Computers, vol. 61, no. 2, pp. 265-277, Feb. 2012.
[16] J. L.V.M. Stanislaus and M. Younis, “Mobile Relays Based Federation of Multiple Wireless Sensor Network Segments with Reduced-latency,” IEEE ICC, Jun. 2013.
[17] C. Konstantopoulos, G. Pantziou, D. Gavalas, A. Mpitziopoulos, and B. Mamalis, “A Rendezvous-Based Approach Enabling Energy-Efficient Sensory Data Collection with Mobile Sinks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 5, pp. 809-817, May 2012.
[18] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems,” Research Report TR-301, USA, Sep. 1984.
[19] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time synchronization protocol,” SenSys'04 ACM Conference on Embedded Network Sensor Systems, Nov. 2004.
[20] L.A. Villas, A. Boukerche, H.A.B.F. de Oliverira, R.B. de Araujo, and A.A.F. Loureiro, “A spatial correlation aware algorithm to perform efficient data collection in wireless sensor networks,” ACM Ad Hoc Networks, vol. 12, no. 2, pp.69-85, Jan.2014.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-09-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-09-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信