淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3006201011193600
中文論文名稱 以顧客價值為基礎之電子化顧客關係管理服務架構
英文論文名稱 A Value-Based Framework for Internet-Enabled CRM Services
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士班
系所名稱(英) Department of Business Administration
學年度 98
學期 2
出版年 99
研究生中文姓名 吳昱鑫
研究生英文姓名 Yu-Hsin Wu
電子信箱 nick2581@yahoo.com.tw
學號 697610177
學位類別 碩士
語文別 中文
口試日期 2010-05-24
論文頁數 80頁
口試委員 指導教授-張瑋倫
委員-李月華
委員-董惟鳳
中文關鍵字 顧客價值  顧客關係管理  馬可夫鏈  貝氏定理 
英文關鍵字 Customer Value  Customer Relationship Management  Markov Chain  Bayesian theorem 
學科別分類 學科別社會科學管理學
中文摘要 網路的出現與普及造就龐大商機與另類服務提供方式,但資訊透明化與低轉換成本使消費者對於企業之忠誠度大幅下降,過去企業聚焦在刺激消費的行銷導向,不斷拓展客源卻忽視留住舊客戶的重要性,高顧客流失率為網路特性所衍生出的顧客現象,亦是企業必須解決與重視之問題。企業應有效率的準確掌握顧客需求,並將資源轉化成最適的服務提供給顧客以滿足之,方能留住顧客,因此本研究目的為(1)將顧客使用網路服務所欲獲得的價值重新分層,以利於未來提供客製化之顧客關係管理服務(2)建立以顧客價值為基礎之架構,並連結顧客需求和其相對應的顧客關係管理服務(3)預測顧客未來顧客價值的需求層級,並推薦最適顧客關係管理E化服務組合來滿足顧客的需求。
本研究依文獻顧客價值分層概念、融入CRM管理思維演進建構出顧客價值模型,並運用馬可夫鏈來預測顧客價值和貝式定理來推薦最適服務組合,並選定Apple-iTunes來進行個案模擬與驗證。研究結果顯示,當紀錄顧客兩個月(52筆)使用資料來預測顧客價值會有最高峰之準確度,一般學生和沉迷上班族達70.6%,沉迷型學生60.4%、一般上班族50%,因此資料筆數與顧客類型的差異會影響到方法的準確度。此外,貝氏定理預測最適服務組合之能力並不受顧客類型影響,且無論樣本數多寡,適切度都高達80%至90%,代表依據顧客過去的消費習慣和紀錄來推薦適切服務給顧客是很穩定且精確的。本研究提出之模型降低推薦錯誤及不適服務之風險,並提供企業在實務上預測和掌握顧客需求上參考依據。
英文摘要 Due to the emergence and popularity of the internet, many business opportunities and special services are created. However, the information transparency and the low transformation cost result in the decrement of customer loyalty. In the past, firms focus on stimulating consumption and acquiring customers; nevertheless, neglecting the significance of customer retention. Furthermore, Internet is also the major problem for e-CRM which may result in high customer defecting rate. Hence, it is important to obtain customer needs accurately and efficiently and deliver appropriate CRM e-service combination to customers.Consequently, the purposes of this research are (1) separating customer perceived value into different levels based on the customer needs effectively, (2) providing a value-based model which can relate the customer perceived value and the corresponding CRM services and utilizes the least resources, and (3) forecasting customer need and recommending appropriate and correlated combination of CRM e-services.
This study delaminates customer value based on literature and blends in the evolution of CRM concept to build the customer value model. Meanwhile, this work applies Markov Chain and Bayesian theorem to forecast and recommend appropriate CRM e-services to customers. This study uses Apple iTunes as the case to verify the performance from simulation. The findings reveal that the precision is highest for 52 samples of customer behavior. The precision of typical student and addicted worker can reach 70.6%, 60.4% for addicted student, 50% for typical worker. The results also show that the number of samples and customer type are critical factors to affect the validity of Markov Chain. Additionally, the performance of Bayesian theorem to forecast and recommend appropriate CRM e-services is insignificantly influenced by the customer type and sample. The adequacy is as high as 80% to 90%. The findings reveal Bayesian approach provides stable and precise prediction. The proposed model not only diminishes the risk for recommending inappropriate CRM e-services but also avoids to waste resources based on customer needs.
論文目次 目錄
目錄 I
圖目錄 II
表目錄 III
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究問題與目標 3
第四節 研究流程 5
第二章 文獻探討 6
第一節 電子化服務(E-Service) 6
第二節 顧客價值(Customer Value) 11
第三節 E化顧客關係管理(eCRM) 17
第三章 研究架構 24
第一節 顧客價值模型 24
第二節 顧客價值預測與服務推薦 32
第四章 個案驗證 - Apple iTunes 41
第一節 個案描述與績效衡量指標 41
第二節 顧客分群與假設 46
第三節 馬可夫鏈資料分析 48
第四節 貝氏定理資料分析 55
第五章 綜合分析 64
第一節 顧客類型與馬可夫鏈之分析 64
第二節 管理與實務意涵 67
第六章 結論與建議 72
第一節 研究結論與貢獻 72
第二節 研究限制與未來建議 74
參考文獻 77

圖目錄
圖1-1 台灣網路使用者連網的應用行為 ................................................................ 1
圖1-2 研究流程圖 ................................................................................................... 5
圖2-1 電子化服務的分類 ....................................................................................... 9
圖2-2 需求與顧客價值的關係圖.......................................................................... 14
圖2-3 顧客價值層級 ............................................................................................. 15
圖3-1 顧客價值層級 ............................................................................................. 24
圖3-2 顧客價值模型 ............................................................................................. 28
圖3-3 矩陣轉移機率 ............................................................................................. 34
圖3-4 顧客價值轉移矩陣 ..................................................................................... 36
圖3-5 同一顧客價值層企業對X、Y、Z顧客提供的服務組合 ......................... 39
圖4-1 精確度與回收率之示意圖.......................................................................... 45
圖4-2 預測與驗證顧客價值狀態示意圖 .............................................................. 49
圖4-3 二十六筆資料下各衡量指標之數據 .......................................................... 49
圖4-4 三十九筆資料下各衡量指標之數據 .......................................................... 51
圖4-5 五十二筆資料下各衡量指標之數據 .......................................................... 52
圖4-6 六十五筆資料下各衡量指標之數據 .......................................................... 53
圖4-7 驗證最適服務組合示意圖.......................................................................... 56
圖4-8 運用貝氏定理支援一般迷學生服務提供之決策過程 ............................... 57
圖4-9 運用貝氏定理支援沉迷學生服務提供之決策過程 ................................... 58
圖4-10 運用貝氏定理支援一般上班族服務提供之決策過程 ............................. 59
圖4-11 運用貝氏定理支援沉迷上班族服務提供之決策過程 ............................. 60
圖5-1 各顧客類型之準確度表現.......................................................................... 65
圖6-1 顧客關係管理之核心架構示意圖 .............................................................. 76

表目錄
表2-1 不同角度電子商務的定義 ....................................... 7
表2-2 學者對電子化服務定義涵蓋構面 ................................ 10
表2-3 學者對顧客價值的定義比較 .................................... 13
表2-4 顧客價值分層定義與內涵 ...................................... 16
表2-5 各學者分層之概念 ............................................ 16
表2-6 顧客關係管理的演進歷程與各階段特點 .......................... 18
表2-7 顧客服務技術演進 ............................................ 19
表2-8 CRM與eCRM學者定義整理...................................... 21
表2-9 學者對CRM流程的分段 ........................................ 23
表3-1 顧客價值和顧客關係管理流程對應圖 ............................ 26
表3-2 馬可夫鏈之型態之分類 ........................................ 34
表3-3學者對馬可夫概念的運用....................................... 35
表3-4 G公司提供的CRM服務......................................... 39
表4-1 iTunes各顧客價值層級之相關服務.............................. 43
表4-2 iTunes使用者類型............................................ 46
表4-3 顧客類型特性與情境假設 ...................................... 47
表4-4 各顧客類型之顧客價值狀態鏈 .................................. 48
表4-5 各樣本數下馬可夫鏈之效度表現 ................................ 55
表4-6 四類型顧客之顧客顧客關係管理服務組合連續使用串 .............. 56
表4-7 一般學生型服務組合使用串之前三分之二樣本資料 ................ 57
表4-8 一般學生型適切度驗證過程 .................................... 57
表4-9 沉迷學生型服務組合使用串之前三分之二樣本資料 ................ 58
表4-10 沉迷學生型適切度驗證過程 ................................... 58
表4-11 一般上班族服務組合使用串之前三分之二樣本資料 ............... 59
表4-12 一般上班族適切度驗證過程 ................................... 59
表4-13 沉迷上班族服務組合使用串之前三分之二樣本資料 ............... 60
表4-14 沉迷上班族適切度驗證過程 ................................... 61
表4-15 不同樣本數下不同顧客類型各層級之適切度(Adequacy) ........... 62
表5-1 各樣本數下各類型準確度之表現 ................................ 65
表5-2 各顧客類型之顧客價值狀態鏈和狀態轉換狀況 .................... 66
表5-3 兩階段指標之驗證結果與結論 .................................. 69
1
參考文獻 參考文獻
Aase, K. K. (2001), “A Markov model for the pricing of catastrophe insurance futures and spreads,” Journal of Risk and Insurance, Vol. 68, pp. 25-49.
Albrecht, K. (1992), “The Only thing that Matters: Bringing the Customer to the Center of Your Business,” New York: Harper Business.
Armstrong, G., Kotler, P. (2000), “Marketing: An Introduction 5th edition, New Jersey: Prentice Hall.
Bhatia, A. (1999), “Customer Relationship Management 1th edition, toolbox Portal for CRM.
Bhatt, G. D. (2001), “Building a customer-focused Internet site,”Proceedings of the Seventh Americas Conference on Information Systems, Boston: Omnipress, pp. 908-912.
Boerner, R. E. J. (1996), “Markov Models of inertia and Dynamism on Two Contiguous Ohio Landscapes, Geographical, Analysisp ,” Vol. 28(1) , pp. 56-66.
Brown, S. A. ( 2000), “Customer Relationship Management: A Strategic Imperativein the World of e-Business, ” John Wiley & Sons.
Bukiet, B., Rusty, E., Palacios, J. L. (1997), “A Markov chain approach to baseball,” Operations Research. Linthicum, Vol. 45 , pp. 14.
Dabholkar, P. A. (1996), “Consumer Evaluations of New Technology -BasedSelf- Service Options: An Investigation of Alternative Models of Service Quality,
” International Journal of Research in Marketing, Vol. 13, pp. 29-51.
Featherman, M., Pavlou, P. A. (2002), “Predicting e-services adoption: A perceived risk perspective,” Proceedings of the 2002 Americas Conference in Information Systems, Dallas, TX.
George, D. S. (2000) “Managing Market Relationships.” Journal of the Academy of Marketing Science , pp. 24-30.
Gale, B. T. (1994), “Manage Customer Value,” New York: Free Press.
Grandon, E. E., Ranganathan, C. (2001), “The impact of content and design of web sites on online sales,” Proceedings of the 7th Americas Conference on Information Systems, pp. 920-926.
Globerson, S., Michael J. M. (1991) “A Conceptual Model of Self-Service,” International Journal of Operations and Production Management, Vol. 11(4), pp. 33-43.
Greenstein, M., Feinman, T. M. (2000), “Electronic Commerce: Security, Risk Management, and Control, ” NY: McGraw-Hill.
Haynes, T. (1995), “The Electronic Commerce Dictionary,” The Robleda Company.
Heinonen, K. (2004), “Reconceptualizing customer perceived value: the value of time and place. Managing Service Quality”, pp. 205-215
Hishamudi, I., Khatibi, A. (2004), “Study of theRelationship between Perception of Value and Price and Customer Satisfaction: The Case of Malaysian Telecommunications Industry,” Journal of American Academy of Business, Cambridge, Vol. 4, pp. 309-313.
Holbrook, M. B. (1999), “Consumer Value: a framework for analysis and research,London,” New York: Routledge.
Jarvinen, R., Lehtinen, U. (2007), “Innovative Consumer e-Services in the Financial Sector,” Proceedings of the Nordic Consumer Policy Research Conference, pp. 1-5.
Kahle, L. R., Kennedy, P. (1989), “Using the List of Values(LOV)to Understand Consumers,” The Journal of Consumer Marketing, Vol. 2(4), pp. 49-56.
Kalakota, R., Whinston, A. B. (1996), Frontiers of Electronic Commerce, Addison-Wesley Publishing, MA.
Kellen, V. (2002), “CRM Measurement Frameworks”,Blue Wolf White Paper, pp. 4.
Kim, H., Lee, Y., Chae, M., Choi, Y. (2002), “An Empirical Study of the Use Contexts and Usability Problems in Mobile Internet,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, Big Island, Hawaii,.IEEE Computer Society Press, Los Alamitos.
Kotorov, R. P. (2002), “Ubiquitous organization: organizational design for e-CRM,”Business Process Management Journal , Vol. 8(3), pp. 218-32.
Kotler, P. (1997), “Marketing Management-Analysis, Planning,Implementation and Control 9th edition,” Prentice-Hall Inc., New Jersey.
Kumar, V., Reinartz, W. J. (2006), “Customer Relationship Management: A Databased Approach,”New Jersey : John Wiley & Sons.
Maslow, A. H. (1954), “Motivation and Personality,”New York : Harper.
Meuter, M. L., Amy L., Ostrom, R. I., Bitner, M. J. (2000), “Self-Service Technologies:Understanding Customer Satisfaction with Technology-Based Service Encounters,” Journal of Marketing, Vol. 64, pp. 50-64.
Neal, W. D. (1999), “Satisfactions Nice, but Value Drives Loyalty, Marketing Reasearch,” Vol.11, pp. 20-23.
Pan, S. L., Lee, J. (2003), “Using e-CRM for a Unified View of the Customer”. Communications of the ACM, Vol. 46(4), pp. 95-99.
Payne, A., Frow, P. (2005), “A Strategic Framework for Customer Relationship” Management Journal of Marketing, Vol. 69, pp. 167-176.
Parasuraman, A. (1997), “Reflections on Gaining Competitive Advantage through Customer Value,” Journal of the Academy of Marketing Science, Vol.25(2), pp.154-61.
Parasuraman, A., Grewal, D. (2000), “The Impact of Technology on the Quality- Value-Loyalty Chain: A Research Agenda,” Journal of the Academy of Marketing Science, Vol. 28(4), pp. 168-174.
Peppers, D., Rogers, M. (1999), “The One to One Manager, 1sted.,New York : Random House,Inc.
Pfeifer, P. E ., Robert L. C. (2000), “Modeling customer relationships as Markov chains,” Journal of Interactive Marketing, Vol. 14(2) , pp. 43.
Pine, B. J., Gilmore, J. H. (1999), “The Experience Economy,”Boston: Harvard Business School Press.
Pinkston, J. (2001), “The Ins and Outs of Integration:How EAI Differs from B2B Integration,” EAI Journal.
Porter, M. E. (1985), “ Competitive Advantage: Creating and Sustaining Superior Performance,” Free Press.
Pritchard, A., Cantor, P. (2000), “e-Channel management: Electronic-customer relationship management,” John Wiley & Sons.
Reichheld, F. F., Sasser, W. E. J. (1990), “Zero Defections: Quality Comes to Services,”Harvard Business Review, Vol. 68(5), pp. 2-9.
Rigby, D. K., Reichheld, F. F., Schefter, P. (2002), “Avoid The Four Perils of CRM,” Harvard Business Review, pp. 101-109.
Rust, R. T., Lemon, K. N. (2001), “E-Service and the Consumer, ” International Journal of Electronic Commerce, Vol. 5(3) , pp. 85-101.
Sivakumar, S. C. (2002), “Acritical survey of protocols by the IETF as enablers for customer interaction in an electronic customer relationship management system, ” IEEE Canadian Review, pp. 5-9.
Sokol, J. S. (2003), “A robust heuristic for batting order optimization underuncertainty,”Journal of Heuristics, Vol. 9(4), pp. 353-370.
Sonnenberg, F. A., Beck, J. R. (1993), “Markov models in medical decision making: A practical guide,” Medical Decision Making, Vol. 13, pp. 322-338.
Srinivasan, S. S., Rolph A., Kishore P. (2002), “ Customer Loyalty in e-Commerce: An Exploration of Its Antecedents and Consequences,”Journal of Retailing, Vol. 78(1) , pp. 41-50.
Stevenson, G. (2000), “Customer economy customer interaction,” Information Week , pp.78-84.
Swami, S., Martin, L. P., Charles B. W. (2001), “Play It Again: Optimal Replacement Policies for a Motion Picture Exhibitor,” Manufacturing &Service Operations Management, Vol. 3, pp. 369.
Swift, R. (2001), “Accelerating Customer Relationships,” Prentice Hall.
Tapscott, D., Ticoll, D., Lowy, A. (2000), “Digital Capital: Harnessing the Power of Business Webs,” Boston: Harvard Business School Press.
Tiwana, A., Balasubramaniam R. (2001), “E-services: problems, opportunities, and digital platforms” Proc. 34th HawaiiInternational Conference on System Sciences, Hawaii.
Turel, O., Serenko A. (2006), “Satisfaction with Mobile Services in Canada: An Empirical Investigation,” Telecommunications Policy, Vol. 30(5), pp. 314-331.
Vriens, M., Hofstede, F. T. (2000), “Linking Attributes, Benefits, and Consumer Values, “Marketing Research, pp. 5-10.
Woodruff, R. B. (1983), “Modeling consumer satisfaction processes using experience-based norms”,Journal of Marketing Research, Vol.20 , pp. 296-304.
Woodruff, R. B., Gardial, S. (1996), “Know Your Customer: New Approaches to Understanding Customer Value and Satisfaction” Cambridge, MA:Blackwell.
Woodruff, R. B. (1997), “Customer Value: The Next Source for Competitive Advantage,”Journal of the Academy of Marketing Science , Vol. 25(2), pp.139-153.
Weingand, D. E. (1997), “Customer Service Excellence: A Concise Guide for Librarians,” Chicago: ALA.
Yan, O. H. M. (1994), “Consumer Behavior in China: Customer Satisfaction and Cultural Value,” Routledge, New York, NY.
Zeithaml, V. A. (1988), “Consumer Perceptions of Price, Quality, and Value: A Means-EndModel and Synthesis of Evidence.” Journal of Marketing, Vol. 52, pp. 2-22.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信