淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3006200917121600
中文論文名稱 利用粒子群聚演算法串疊牛頓法重建完全 導體
英文論文名稱 Image Reconstruction of Perfectly Conducting Objects by a Cascaded Method
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 李卓儒
研究生英文姓名 Jhuo-Ru Li
學號 696440360
學位類別 碩士
語文別 中文
口試日期 2009-06-18
論文頁數 53頁
口試委員 指導教授-丘建青
委員-李慶烈
委員-林丁丙
委員-林俊華
委員-錢威
中文關鍵字 逆散射  牛頓法  粒子群聚最佳化法 
英文關鍵字 Inverse scattering  Newton-Kantorovitch method  Particle swarm optimization 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文提ㄧ數值方法,主要目的為重建二維完全導體之影像。
於逆散射方面,將逆散射問題轉換為最佳化問題之後,省先利用改
良式粒子群聚法,得ㄧ最佳化解或可接受之解,再串疊
Newton-Kantorovitch 迭代法,以快速收歛至更精確之解。
所採之逆散射法則是基於嚴謹的數學方法,利用接收的散射場
及適當的邊界條件導出非線性積分方程組,接著應用 Newton-Kantorovitch 迭代法及動差法將此非線性方程組化成矩陣形
式,再以虛反運算法克服逆散射過程中所遭遇到的不良情況,最後
得到一組收斂而穩定的解。
不論初始的猜測值如何,改良式粒子群聚法總會收歛到整體的
極值(global extreme),因此,在數值模擬顯示中,即使最初的猜測值與實際值相距甚遠,我們仍可求得準確的數值解,成功的重建出物體形狀函數,而以微分為基礎求取極值的方法(calculus-based
method),卻常常會陷入區域極值(local extreme)的陷阱裡。
本論文以改良式粒子群聚法所得之解,當作牛頓法之初始猜測
值。藉由改良式粒子群聚法之全域搜尋特性,以求得可接受之解,
期望此解對於區域性搜尋之牛頓法而言,可能為適當之初始猜測
值。串疊之方法比較單一改良式粒子群聚法或者單一牛頓迭代法,
其解之精確度勢必較高。在論文中以數值模擬的方法,驗證了此串
疊方法的準確性和可行性。
英文摘要 In this paper, we propose a method, which combines a particle swarm optimization (PSO) algorithm with a Newton-Kantorovitch algorithm for image reconstruction of
perfectly conducting Objects. First, the inverse problem is recast as a global nonlinear optimization problem, which is solved by a PSO. Then, the solution obtained by the PSO is taken as an initial guess for the Newton Kantorovitch algorithm to obtain the more accuracy solution in a few iterations.
The inversion algorithm which is based on the rigorous mathematics makes use of the received scattered field and appropriate boundary condition to derive a set of nonlinear
integral equations. The Newton-Kantorovitch algorithm and the moment method are used to transform the nonlinear integral equations into matrix form. Then the pseudoinverse
transformation is employed to overcome the ill-posedness to obtain a convergent and stable solution.
The particle swarm optimization algorithm is employed to find out the global extreme solution of the object function. Numerical results demonstrated that, even when the initial guess is far away from the exact one, good reconstruction has been obtained. In such a case, the gradient-based methods often get trapped in a local extreme.
Numerical simulations are conducted to demonstrate that our cascaded method is accurate and practical. Numerical results show that the performance of this cascaded
method is better than the individual PSO and the individual Newton-Kantorovitch algorithm. Satisfactory reconstruction has been obtained by using this cascaded method.
論文目次 目錄
中文摘要...............................................II
英文摘要..............................................III
第一章 簡介..........................1
1.1 研究動機與相關文獻.....................................1
1.2 本研究之貢獻.......................7
1.3 各章內容簡述................7
第二章 電磁成像理論................................9
2.1 理論推導.....................................9
2.2 數值方法.........................12
2.2.1 牛頓迭代法......................................12
2.2.2 動差法於積分方程式之應用........................13
2.2.3 粒子群聚最佳化法.............................16
2.2.4 改良式粒子群聚最佳化法.......................22
2.2.5 逆散射問題之不良情況及正則化法..................25
2.2.6 串疊方法於逆散射之應用.....................27
第三章 數值模擬結果.....................................28
第四章 結論...............................41
附錄......................................43
參考文獻.....................44

圖目錄
圖2.1 二維完全導體在(x,y)平面上的示意圖.........11
圖2.2 粒子群聚法流程圖.........................18
圖2.3 粒子群聚法中於二維目標函數等位線圖..........19
圖2.4 三種不同邊界條件示意圖.................21
圖2.5 改良式粒子群聚法流程圖...............24
圖3.1 第一個例子之重建結果 (a)形狀函數的重建情形.......30
(b)改良式粒子群聚法在不同的迭代計算過程中形狀函數偏差DR
的變化情形........................................31
(c)串疊方法在不同的迭代計算過程中形狀函數偏差DR 的變化情
形...................................31
圖3.2 第二個例子之重建結果 (a)形狀函數的重建情形....33
(b)改良式粒子群聚法在不同的迭代計算過程中形狀函數偏差DR
的變化情形................................34
(c)串疊方法在不同的迭代計算過程中形狀函數偏差DR 的變化情
形.....34
圖3.3 第三個例子之重建結果 (a)形狀函數的重建情形....36
(b) 改良式粒子群聚法在不同的迭代計算過程中形狀函數偏差DR
的變化情形.....................................37
(c)串疊方法在不同的迭代計算過程中形狀函數偏差DR 的變化情
形................................37
(d)形狀函數偏差量隨相對雜訊位準的變化情形...............38
圖3.4 第四個例子之重建結果 (a)形狀函數的重建情形........39
(b)改良式粒子群聚法在不同的迭代計算過程中形狀函數偏差DR
的變化情形...........................40
(c)串疊方法在不同的迭代計算過程中形狀函數偏差DR 的變化情
形................................40
參考文獻 [1] F. Cakoni and D. Colton, “Open problems in the qualitative approach to inverse electromagnetic scattering theory,” Euro. Jnl. of Applied Mathematics, pp. 1–15, 2004.
[2] A. E. Hooper and H. N. Hambric, Unexploded ordinance (UXO): “The problem. in detection and identification of visually obscured targets,” C.E. Baum, ed., Taylor and Francis, Philadelphia, pp. 1-8, 1999.
[3] B. Borden, Radar Imaging of Airborne Targets, IOP Publishing, Bristol 1999.
[4] X. Li, S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, pp. 1856–1865, Aug. 2004.
[5] Q. Fang, P. M. Meaney, and K. D. Paulsen, “Microwave imaging reconstruction of tissue property dispersion characteristics utilizing multiple-frequency informatio,” IEEE Transactions on Microwave Theory and Techniques., Vol. 52, No. 8, pp. 1866–1875, Aug. 2004.
[5] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging. Bristol, U.K.: IOP Publishing Ltd., 1998.
[6] S. Caorsi, A. Massa, M. Pastorino, and A. Rosani, “Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, pp. 1908–1916, Aug. 2004.
45
[7] T. J. Cui and W. C. Chew, “Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy earth,”
IEEE Trans. Geosicence and Remote sensing, Vol. 38, pp. 2033 -2041, Jul. 2000.
[8] T. J. Cui and W. C. Chew, “Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half-space,” IEEE Transactions on Antennas and Propagation, Vol. 50, pp. 42 -49, Jan. 2002
[9] P. Meincke, “Linear GPR inversion for lossy soil and a
PlanarAir–soil interface,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, pp.2713-2721, Dec. 2001.
[10] G. Leone and F. Soldovieri, “Analysis of the distorted born approximation for subsurface reconstruction: truncation and uncertainties,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, pp.66-74, Jan. 2003.
[11] I. T. Rekanos and T. D. Tsiboukis, “An inverse scattering techniques for microwave imaging of binary objects,” IEEE Transactions on Microwave Theory and Techuiques, Vo. 50, pp. 1439-1441, May 2002.
[12] D. Franceschini and A. Massa, “On the enhancement of the reconstruction accuracy obtained with a
multisource/multi-illumination inverse scattering technique,” IEEE Antennas and wireless Propagation Letters, Vol. 4, pp. 194-197, 2005.
[13] M. J. Akhtar, and A.S. Omar, “Reconstructing permittivity profiles using integral transforms and improved renormalization techniques”,
46 IEEE Transactions on Microwave Theory and Techniques, Vol. 48, pp.1385 - 1393, Aug. 2000
[14] H. Zhou, M. Sato, T. Takenaka, and G. Li, “Reconstruction from antenna-transformed radar data using a time-domain reconstruction method,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 3, pp. 2527 -2538, Mar 2007.
[15] I. T. Rekanos and A. Raisanen, “Microwave imaging in the time domain of buried multiple scatterers by using an FDTD-Based optimization technique,” IEEE Transactions on Magnetics, Vol. 39, pp. 1381-1384, May 2003.
[16] T. Huang and A. S. Mohan, “A microparticle swarm optimizer for the reconstruction of microwave images,” IEEE Transactions on Antennnas and Propagation, Vol. 55, No. 3, pp. 568-576, Mar 2007
[17] E.L. Miller, M. Kilmer and C. Rappaport, “A new shape-based method for object localization and characterization from scattered field data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, pp. 1682 -1696, Jul. 2000
[18] M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in tow-dimensional structures by means of GA-based strategies,” IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, pp. 205-215, Jan. 2007.
[19] G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-newton method within the second-order born approximation to buried objects,” IEEE. Geoscience and Remote Sensing Letters, Vol. 4, No. 1, pp. 51-55, Jan. 2007.
[20] F. Soldovieri and R. Persico, “Reconstruction of an embedded slab 47 from multifrequency scattered field data under the distorted born approximation,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, pp. 2348-2356, Sept. 2004.
[21] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I, ” Inverse Problems, vol. 6, pp. 635-641, Aug.1990.
[22] R. F. Harrington, “Field computation by moment methods,” New York: Macmillan, 1968.
[23] M. M. Ney, A. M. Smith, and S. S. Stuchly, “A solution of electromagnetic imaging using pseudoinverse transformation,“ IEEE
Trans. Med. Imag., Vol. MI-3, pp. 155-162, Dec. 1984
[24] R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[25] N. N. Bojarski, “A survey of the physical optics inverse scattering identity,” IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
[26] T. H. Chu and N. H. Farhat, “Polarization effects in microwave diversity imaging of perfectly conducting cylinders,” IEEE Trans. Antennas Propagat., vol.37, pp. 235-244, Feb. 1989.
[27] D. B. Ge, “A study of Lewis method for target-shape
reconstruction,” Inverse Problems, vol. 6, pp. 363-370, Jun. 1990.
[28] T. H. Chu and D. B. Lin, “Microwave diversity imaging of perfectly conducting objects in the near-field region,” IEEE Trans. Microwave
Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[29] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Trans. Antennas
Propagate., vol. AP-29,pp.232-238, Mar. 1981. 48
[30] W. Tobocman, “Inverse acoustic wave scattering in two dimensions from impenetrable targets,” Inverse Problems, vol. 5,pp. 1131-1144,Dec. 1989.
[31] C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1631- 1639, Sept. 1991.
[32] G. P. Otto and W. C. Chew, “Microwave inverse scattering-local shape function imaging for improved resolution of strong scatters,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. I, Jan. 1994.
[33] D. Colton and P. Monk, “Anovel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region D,” SIAMJ. Appl. Math., vol. 46, pp. 506-523, Jun. 1986.
[34] A. Kirsch, R. Kress, P. Monk and A. Zinn, “Two methods for solving the inverse acoustic scattering problem,” Inverse Problems, vol. 4, pp.749-770, Aug. 1988.
[35] F. Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inverse Problems, vol. 10, pp. 375-385, 1994.
[36] R. E. Kleinman and P. M. van den Berg, “Two-dimensional locationand shape reconstruction,” Radio Science, vol. 29, pp. 1157-1169, Jul.-Aug. 1994.
[37] S. Caorsi, G. L. Gragnani, and M. Pastorina, “An approach to
microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1062-1067, Jun. 1991.
[38] S. Caorsi, G. L. Gragnani, and M. Pastorino, “Redundant 49 electromagnetic data for microwave imaging of three-dimensional dielectric objects,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 581-589, May 1994.
[39] S. Caorsi, G.L. Gragnani, and M. Pastorino, “Numerical electromagnetic inverse-scattering solution for two-dimensional infinite dielectric cylinders buried in a lossy half-space,” IEEE Trans.
Antennas Propagat., Vol. AP-41, pp. 352-356, Feb. 1993.
[40] Z. Xiong and A. Kirsch, “Three-dimensional earth conductivity inversion,” J. omput. Appl. Math., vol. 42, pp. 109-121, 1992.
[41] T. M. Habashy and M. L. Oristaglio, “Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity,” Radio Science, vol. 29, pp. 1101-1118, Jul.-Aug., 1994.
[42] W. Wang and S. Zhang, “Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies,” IEEE Trans. Antennas Propagat., Vol. AP-40, pp. 1292-1296, Nov. 1992.
[43] Matteo Pastorino, Andrea Massa, and Salvatore Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 3, pp. 573-578, Jun. 2000.
[44] Salvatore Caorsi, Andrea Massa, and Matteo Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, pp. 1697-1708, Jul. 2000. 50
[45] Ali Yapar, Hülya Şahintürk, Ibrahim Akduman, and Rainer Kress, “One-dimensional profile inversion of a cylindrical layer with inhomogeneous impedance boundary: a Newton-type iterative solution,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 10, pp. 2192-2199, Oct. 2005.
[46] Ioannis T. Rekanos, Traianos V. Yioultsis, and Constantinos S. Hilas, “An inverse scattering approach based on the differential E-formulation,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 7, pp. 1456-1461, Jul. 2004.
[47] Cho-Ping Chou and Yean-Woei Kiang, “Inverse scattering of dielectric cylinders by a cascaded TE-TM method,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No.10, pp.1923-1930, Oct. 1999.
[48] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Transactions on Antennas and Propagation, Vol. AP-29, No. 2, pp. 232-238, Mar. 1981.
[49] C. C. Chiu and Y. W. Kiang, “Microwave imaging of multiple conducting cylinders,” IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, pp. 933-941, Aug. 1992.
[50] W. Rieger, A. Buchau, C. Huber, G. Lehner, and W. M. Rucker, “A New Approach to the 2D Inverse Electromagnetic Medium Scattering Problem: Reconstruction of Anisotropic Objects”, IEEE Transactions on Magnetics, Vol. 36, No. 4, Jul. 2000.
[51] C. C. Chiu and P. T. L, “Image reconstruction of a perfectly conducting cylinder by the genetic algorithm,” IEE Proc.-Micro. Antennas Propagat., Vol. 143, pp.249-253, Jun. 1996. 51
[52] M. Benedetti, M. Donelli, and A. Massa, “Multicrack Detection in Two-Dimensional Structures by Means of GA-Based Strategies,” IEEE Transaction on Antennas and Propagation., Vol. 55, No. 1, pp.205 - 215 Jan. 2007
[53] A. Qing, “An experimental study on electromagnetic inverse scattering of a perfectly conducting cylinder by using the real-coded genetic algorithm,” Microwave and Optical Technology Letters, Vol. 30, pp. 315-320, Sept. 2001.
[54] W. Chien, C. H. Huang and C. C Chiu, “Cubic-Spline expansion for a Two-Dimensional Periodic Conductor in Free Space,” International Journal of Applied Electromagnetics and Mechanics.Vol. 24, No. 1-2, Nov. 2006
[55] W. Chien, C. C. Chiu and C. L. Li, “Cubic-Spline Expansion with GA for a Conducting Cylinder Buried in a Slab Medium,” Electromagnetics Vol. 26, No. 5, pp. 329-343, Jul. 2006.
[56] Y. C. Chen, Y. F. Chen, C. C. Chiu and C. Y Chang, “Image Reconstruction of Buried Perfectly Cylinder Illuminated by Transverse Electric Waves,” International Journal of Imaging Systems and Technology Vol. 15 , pp. 261-265, Apr. 2006
[57] E. Bermani, S. Caorsi, and M. Raffetto, “Microwave Detection and Dielectric Characterization of Cylindrical Objects from Amplitude-Only Data by Means of Neural Networks,” IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, Sept. 2002. 52
[58] S. Caorsi and P. Gamba, “Electromagnetic Detection of Dielectric Cylinders by a Neural Network Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, Mar. 1999.
[59] T. S. Low and B. Chao, “The use of finite elements and neural networks for the solution of inverse electromagnetic problems,”
IEEE Transactions on Magnetic, Vol. 28, pp. 3811-3813, May 1992.
[60] A. Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” IEEE Transactions on Antennas and Propagations, Vol. 51, Issue 6, pp. 1251-1262, Jun. 2003.
[61] A. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” IEEE Transactions on. Antennas and Propagations, Vol. 52, Issue 5, pp. 1223-1229, May 2004.
[62] A. Qing , “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006
[63] M. Donelli, A. Massa, “Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers,” IEEE Transactions on Microwave Theory and Techniques Vol. 53, Issue 5, pp. 1761 – 1776, May 2005
[64] T. Huang, Mohan, A. S, “Application of particle swarm optimization for microwave imaging of lossy dielectric objects,” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp. 852 - 855 ,2005 53
[65] M. Donelli, G. Franceschini, A. Martini, A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse
scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp. 298 – 312, Feb. 2006
[66] G. Franceschini, M. Donelli, R. Azaro, A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, Issue 12, pp. 3527 - 3539 ,Dec. 2006
[67] Matteo Pastorino, “Stochastic Optimization Methods Applied to Microwave Imaging: A Review,” IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, March 2007
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-07-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-07-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信