§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3006200909393000
DOI 10.6846/TKU.2009.01117
論文名稱(中文) 在單一收發器之無線隨意網路中,設計一管線化多重頻道媒體存取控制協定以避免資料碰撞
論文名稱(英文) π-Mc: Pipelining Multi-channel MAC Protocols with Single Transceiver for Data Collision Free in Wireless Ad Hoc Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系資訊網路與通訊碩士班
系所名稱(英文) Master's Program in Networking and Communications, Department of Computer Science and Information En
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 劉書聖
研究生(英文) Shu-Sheng Liu
學號 696420586
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2009-06-05
論文頁數 58頁
口試委員 指導教授 - 石貴平(kpshih@mail.tku.edu.tw)
委員 - 趙志民
委員 - 王三元
委員 - 陳彥達
委員 - 石貴平(kpshih@mail.tku.edu.tw)
關鍵字(中) 多重頻道
媒體存取控制協定
管線
單一收發器
無線隨意網路
關鍵字(英) Multi-channel
MAC
pipeline
single transceiver
ad hoc network
第三語言關鍵字
學科別分類
中文摘要
在IEEE 802.11 的規格書當中,雖然在PHY層提供了多個頻道供資料傳輸使用,然而在MAC層卻只針對了單一頻道提出了媒體存取控制協定。由於使用多重頻道進行傳輸,可帶來比單一頻道較好的網路效能是有目共睹的。因此,本論文考量在IEEE 802.11 無線隨意網路中,針對多重頻道提出一簡單並有效率的多重頻道無線隨意網路媒體存取控制協定。此協定的目的在於有效的安排每一筆資料的傳送,使其能夠在適當的時間點與適當的頻道上進行資料傳送,並達到避免資料碰撞的目的進而提升整體的網路效能。基於此目的,本論文將會探討在多重頻道無線隨意網路環境中,將必須克服的種種問題,如隱藏節點問題、接收端節點消失問題與頻道使用率…等等。然而,基於硬體成本上的考量,無線網路通訊設備通常只配備了一個收發器。而若傳輸節點只配備單一收發器時,隱藏節點問題將以另一型態存在於多重頻道的無線隨意網路環境當中。因此本論文將針對在多重頻道無線隨意網路環境中,分析隱藏節點問題的存在型態。並將管線化處理的概念,帶入了多重頻道無線網路的資料傳輸當中,提出一類似管線化處理傳輸機制的多重頻道媒體存取控制協定 (π-Mc),以避免因單一收發器而造成的多重頻道無線隨意網路下之隱藏節點問題。此外,本論文對頻道使用率亦有所琢磨,針對傳輸機制提出改善並有效地提升頻道使用率,進而將無線網路存取媒介資源的使用達到最佳化。由模擬實驗的結果可得知,本論文以管線概念所提出之 π-Mc多重頻道媒體存取控制協定,與IEEE 802.11 DCF機制相較之下,在網路傳輸效能的表現上將會隨著可以用頻道數的增加而有著顯著的改善。
英文摘要
Due to the consideration of hardware cost, the wireless adapter is only with single transceiver. However, if only single transceiver is available in the multichannel network, the hidden terminal problem will happen in the different way, and name as multichannel hidden terminal problem. Therefore, the paper analyzes this problem and proposes a pipeline-like multichannel MAC protocol (π-Mc) to avoid the multichannel hidden terminal problem. In addition, the paper also tries to increase the usage of the channel. Finally, π-Mc also compares with IEEE DCF and DCA. According to the simulation results, π-Mc can perform well in the network throughput and delay.
第三語言摘要
論文目次
1	緒論	1
2	預備知識	18
2.1	多重頻道環境之隱藏節點問題	19
(1)節點與其他傳送對處於相同頻道上交換控制封包	19
(2)節點與傳送對處於不同頻道上交換控制封包	20
2.2	符號定義與假設	22
3	管線化之多重頻道媒體存取控制協定	23
3.1	基礎概念	24
3.2	各頻道停留之時間	29
3.3	避免碰撞與頻寬浪費	31
3.4	π-Mc Extension	35
4	模擬	40
5	結論	45
6	參考文獻	47

圖一.	IEEE 802.11a於北美地區可供使用的12個不重疊頻道之示意圖。	2
圖二.	IEEE 802.11b的頻譜遮罩	3
圖三.	IEEE 802.11b於北美地區可供使用的3個不重疊頻道之示意圖。	3
圖四.	假設網路上有兩個頻道可供使用,其分別為 C0與 C1。假設節點A與其鄰近節點C、F同樣處於C0頻道。若節點C與F同時交換CTS封包,則在節點A上將發生碰撞。因此節點A將無法獲知在接下來時段節點C與F頻道使用的情形為何,並且選擇與節點C、F相同的頻道進行資料的傳輸。	19
圖五.	假設網路上有兩個頻道可供使用,其分別為C0與 C1。假設節點A與其鄰近節點C、F處於不同頻道(節點A處於C1而鄰近節點C與F則座落於 C0),因此節點A並不知曉接下來節點C與F將處於哪一頻道。若之後節點A選擇到與節點C、F相同頻道傳輸資料,則碰撞將會發生。	20
圖六.	管線技術之多重頻道媒體存取控制協定示意圖	25
圖七.	傳送時間排程適當之情況	31
圖八.	傳送時間排程不當產生頻寬浪費之情形	33
圖九.	傳送時間排程不當產生碰撞之情形	34
圖十.	考慮切割最大封包大小示意圖	35
圖十一.	多對傳輸對根據最大封包大小切割傳輸時間	36
圖十二.	單筆資料傳輸模式示意圖	37
圖十三.	π-Mc Extension免碰撞示意圖	38
圖十四.	多筆資料傳輸模式示意圖	39
圖十五.	封包長度為1500 Octets時,封包產生率與網路傳輸效能的關係	42
圖十六.	封包長度為2312 Octets時,封包產生率與網路傳輸效能的關係	43
圖十七.	封包長度為512及1024 Octets時,封包產生率與網路傳輸效能的關係	44


表一.符號介紹	22
表二.實驗的模擬參數	40
參考文獻
[1]	P. Gupta and P. R. Kumar, “The capacity of wireless network,” IEEE Transactions on Information Theory, vol. IT-46, no. 2, pp. 388–404, 2000.
[2]	P. Kyasanur and N. H. Vaidya, “Capacity of multi-channel wireless networks: impact of number of channels and interfaces,” in Proceedings of the ACM International Conference on Mobile Computing and Networking (MOBICOM), 2005, pp. 43–57.
[3]	V. Bhandari and N. H. Vaidya, “Capacity of multi-channel wireless networks with random (c, f) assignment,” in Proceedings of the ACM International Conference on Mobile Computing and Networking (MOBICOM), 2007, pp. 229–238.
[4]	IEEE Std 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, Aug. 1999.
[5]	IEEE Std 802.11a-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5 GHz Band, 1999.
[6]	IEEE Std 802.11b-1999, Part 11: Wireless LANMedium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer Extension in the 2.4 GHz Band, 1999.
[7]	V. Rajendran, K. Obraczka and J.J. Garcia-Luna-Aceves, “DYNAMMA: A DYNAmic Multi-channel Medium Access Framework for Wireless Ad Hoc Networks,” Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference on , vol., no., pp.1-11, 8-11 Oct. 2007.
[8]	P. Kyasanur and N. H. Vaidya, “Routing and interface assignment in multi-channel multi-interface wireless networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), 2005, pp. 2051-2056.
[9]	P. Kyasanur and N. H. Vaidya, “Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks,” in Proceedings of the ACM SIGMOBILE Mobile Computing and Communications Review, vol. 10, 2006, pp. 31–43.
[10]	K. R. Chowdhury, N. Nandiraju, D. Cavalcanti, and D. P. Agrawal, “CMAC-A multi-channel energy efficient MAC for wireless sensor networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), 2006, pp. 1172–1177.
[11]	Y. Kim, H. Shih and H. Cha, “Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks,” in Proceedings of International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN), April, 2008, pp. 53-63.
[12]	P. Bahl, R. Chandra, and J. Dunagan, “SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks,” in Proceedings of the ACM International Conference on Mobile Computing and Networking (MOBICOM), 2004, pp. 216–230.
[13]	H.-S. W. So, J. Walrand, and J. Mo, “McMAC: A parallel rendezvous multi-channel MAC protocol,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), 2007, pp. 334–339.
[14]	A. Nasipuri, J. Zhuang, and S. R. Das, “A multichannel CSMA MAC protocol for multihop wireless networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), vol. 3, Sept. 1999, pp. 1402–1406.
[15]	S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks,” in Proceedings of International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN), Dec. 2000,pp. 232–237.
[16]	S.-L. Wu, Y.-C. Tseng, C.-Y. Lin, and J.-P. Sheu, “A multi-channel MAC protocol with power control for multi-hop mobile ad hoc networks,” Computer Journal, vol. 45, no. 1, pp. 101–110, 2002.
[17]	M. Seo, Y. Kim, and J. Ma, “Multi-channel MAC protocol for multi-hop wireless networks: Handling multi-channel hidden node problem using snooping,” in Proceedings of the IEEE Military Communications Conference (MILCOM), 2008, pp. 1-7.
[18]	J. Shi, T. Salonidis, and E. W. Knightly, “Starvation mitigation through multi-channel coordination in CSMA multi-hop wireless networks,” in Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2006, pp. 31-43.
[19]	K. Liu and X. Xing, “A multichannel reservation multiple access protocol for mobile ad hoc networks,” in Proceedings of the IEEE International Conference on Communications (ICC), 2008, pp. 3176-3180.
[20]	J. So and N. H. Vaidya, “Multi-channel MAC for ad hoc networks: handling multi-channel hidden terminals using a single transceiver,” in Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2004, pp. 222–233.
[21]	S.-C. Lo and C.-W. Tseng, “A novel multi-channel mac protocol for wireless ad hoc networks,” in Proceedings of the IEEE Vehicular Technology Conference (VTC), 2007, pp. 46-50.
[22]	J. Zhang, G. Zhou, C. Huang, S. H. Son, and J. A. Stankovic, “TMMAC: An energy efficient multi-channel MAC protocol for ad hoc networks,” in Proceedings of the IEEE International Conference on Communications (ICC), 2007, pp. 3554–3561.
[23]	Wen-Tsuen Chen and Jen-Chu Liu and Ting-Kai Huang and Yu-Chu Chang, “TAMMAC: An adaptive multi-channel MAC protocol for MANETs,” IEEE Transactions on Wireless Communications, vol. 7, no. 11, pp. 4541-4545, 2008.
[24]	C.-M. Chao and K.-H. Lu, “Load awareness multi-channel MAC protocol design for ad hoc networks,” in Proceedings of International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC), 2008, pp. 36-43.
[25]	C. Son, N.-H. Lee, B. Kim, and S. Bahk, “MAC protocol using asynchronous multi-channels in ad hoc networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), 2007, pp. 401-405.
[26]	T. Luo, M. Motani and V. Srinivasan, “CAM-MAC: A Cooperative Asynchronous Multi-Channel MAC Protocol for Ad Hoc Networks,” in Proceedings of the IEEE International Conference on Broadband Communications, Networks and Systems (BROADNET), Oct. 2006, pp.1-10.
[27]	T. Luo, M. Motani, and V. Srinivasan, “Altruistic cooperation for energy-efficient multi-channel MAC protocols,” in Proceedings of the ACM International Conference on Mobile Computing and Networking (MOBICOM), 2007, pp.322-325.
[28]	T. Luo, M. Motani, and V. Srinivasan, “Analyzing DISH for multi-channel MAC protocols in wireless networks,” in Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2008, pp.43-52.
[29]	T. Luo, M. Motani and V. Srinivasan, “Cooperaive Asynchronous Multichannel MAC: Design, Analysis, and Implementation,” IEEE Transactions on Mobile Computing, Vol.8, No.3, March, 2009, pp. 338-352.
[30]	C.-S. Lin, M.-C. Wueng, T.-H. Chiu, S.-I. Hwang, “Concurrent Multi-Channel Transmission (CMCT) MAC Protocol in Wireless Mobile Ad Hoc Networks,” Advanced Communication Technology, The 9th International Conference on , vol.1, no., pp.445-449, 12-14 Feb. 2007.
[31]	R. Garces and J.J. Garcia-Luna-Aceves, “Collision avoidance and resolution multiple access for multichannel wireless networks,” in Proceedings of the IEEE INFOCOM. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, pp.595-602 vol.2, 2000.
[32]	The Network Simulator – 2, [Online] Available: http://www.isi.edu/nsnam/ns/
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文延後至2019-12-31公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2019-12-31公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信