淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3006200811573600
中文論文名稱 無線通訊系統之分析與研究
英文論文名稱 Analysis and Study in Wireless Communication System
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 曾喜群
研究生英文姓名 Hsi-Chun Tseng
學號 695440049
學位類別 碩士
語文別 中文
口試日期 2008-06-20
論文頁數 60頁
口試委員 指導教授-李揚漢
委員-鄭博允
委員-詹益光
委員-許獻聰
委員-李永定
中文關鍵字 導引訊號  通道估測  最小平方法  最小均方差法  IEEE 802.16m 
英文關鍵字 Pilot  Channel Estimation  LS  MMSE  IEEE 802.16m 
學科別分類 學科別應用科學電機及電子
中文摘要 IEEE 802.16m擁有高傳輸速度與高頻寬的優點,因此在未來它將在無線通訊系統中扮演著重要的角色,在IEEE 802.16m裡我們時常在二維Resource Block中的某些位置上插入pilot,並且去估測出這些pilot的通道頻率響應,使用這些估測出的通道頻率響應來估測出Resource Block中的其他位置的通道頻率響應,本論文在插入這些pilot時考慮了三個議題,在Resource Block中使用最小的pilot數量以便於放置最多的傳輸資料,但它仍需要有足夠的pilot數量來準確地估測出通道的頻率響應,同時,這些pilot必須能夠在適當的場所減少行動台的使用者與基地台間之干擾,本論文中提出設計的程序在於如何去估計pilot與pilot之間的干擾,如何計算pilot在Resource Block中的佔有率,如何放置pilot的位置可以產生最低的干擾;在通道頻率響應的估測中我們使用了最小平方差以及最小均方差兩種方法,基於我們所提出的pilot設計方式,我們提出了一幾個2x2 MIMO系統中pilot放置的例子,並且對模擬這些例子對於系統的干擾程度並且使用MMSE估測出通道頻率響應,使用這些模擬的結果來證實我們的設計理念與模擬的演算法是否正確。
英文摘要 For IEEE 802.16m system it possesses the advantages of high transmission speed and broad bandwidth it will play an important role in the future wireless communication services. In IEEE 802.16m system it usually inserts pilot tones in certain locations of the two dimensional Resource Block to estimate the channel impulse responses at those locations and then uses certain interpolation techniques to find the channel responses at other locations. Three issues need be considered in the insertion of these pilots. It needs to use a minimum number of pilot tones so as to reserve maximum number of resources for data transmission, but it needs to have enough pilot numbers so as to generate accurate estimate of the channel impulse responses and meanwhile it needs to insert these pilots at proper locations to minimize the possible interferences from outer base stations and mobile users. In this thesis we propose the design procedures of how to measure the interference between pilots, how to calculate the pilot occupancy percentage, and how to insert pilot locations to generate possible minimum interferences. In the channel impulse response estimation both the least square (LS) and the Minimum Mean Square Error (MMSE) are considered. Based on our pilot design principle we propose the number and locations of pilots in 2 x 2 systems, and to simulate the resulting system interference levels and to find the resulting MMSE in the channel impulse response estimation. It will use the simulation results to validate our design principle and simulation algorithm.
論文目次 目錄
第一章 緒論 ...…………………….….………..1
1.1研究動機與目的 …….…………………….……...1
1.2章節介紹 ……...………..………..………………..2
第二章 無線通訊系統之通道估測 ..................3
2.1系統流程架構 ………………………….……........3
2.2通道模型 …………………………………………..4
2.2.1多路徑通道 ……………………………………………....4
2.2.2都卜勒位移 ………………………………………………5
2.3 通道估測 …...…………………………………….6
2.3.1二維通道估計法 …………………………………………6
2.3.2最小平方法 ………………………………………………7
2.3.3最小均方差法 ……………………………………………8
第三章 IEEE 802.16m無線通訊系統Pilot之設計理念……………………………………….11
3.1 Frame structure for IEEE 802.16m ....…………11
3.2 STBC 應用於2x2 MIMO Pilot structure ……..12
3.3高速度移動之pilot設計 ………………………...15
第四章 Pilot設計之模擬研究…..………........17
4.1模擬環境..……….………………………………...17
4.2各種不同型態RB架構的模擬…………………..19
4.2.1 Type A之RB架構 ……………………………………..19
4.2.2 Type B之RB架構 ……………………………………..25
4.2.3 Type C之RB架構 ……………………………….........31
4.2.4 Type D之RB架構 ………………………………….....36
4.2.5 Type E之RB架構 …………………………………….41
4.2.6 Type F之RB架構 ……………………………………...47
4.2.7 Pilot設計彙整…………………………………………...51
4.2.8 Pilot Coefficient ………………………………………...52
第五章 結論與未來展望 ……………………55

參考文獻 ………………...………………57
圖目錄
圖2.1 系統傳輸流程架構 ……….………………………………………...4
圖2.2 Pilot位置圖 ………………………………………………………...7
圖3.1 IEEE 802.16m的Frame Structure ………………………..………12
圖3.2 STBC傳送與接收訊號示意圖 …………………………………...13
圖3.3 STBC編碼示意圖 ………………………………………………...14
圖3.4 STBC編碼後之Resource block …………………………………...15
圖3.5 高移動速度之Resource Block示意圖 …………………………...16
圖4.1 Type A-Type F之原始RB ……........................................................19
圖4.2 Type A的各種型態分類示意圖 ………………………………...20
圖4.3 Type A時速(a)3 km/hr、(b)60 km/hr、(c)120 km/hr下之模擬結果示意圖 ……………………………………………………………………...23
圖4.4 Type B的各種型態分類示意圖 ………………………………….26
圖4.5 Type B時速(a)3 km/hr、(b)60 km/hr、(c)120 km/hr下之模擬結果示意圖 ……………………………………………………………………...29
圖4.6 Type C的各種型態分類示意圖…………………………………...32
圖4.7 Type C時速(a)3 km/hr、(b)60 km/hr、(c)120 km/hr下之模擬結果示意圖 ……………………………………………………………………...35
圖4.8 Type D的各種型態分類示意圖…………………………...………37
圖4.9 Type D時速(a)3 km/hr、(b)60 km/hr、(c)120 km/hr下之模擬結果示意圖 …………………………………………………………………...…40
圖4.10 Type E的各種型態分類示意圖 …………………………………42
圖4.11 Type E時速(a)3 km/hr、(b)60 km/hr、(c)120 km/hr下之模擬結果示意圖 ……………………………………………………………………...45
圖4.12 Type F的各種型態分類示意圖 …………………………………47
圖4.13 Type F時速(a)3 km/hr、(b)60 km/hr、(c)120 km/hr下之模擬結果示意圖 ……………………………………………………………………...50
圖4.14 Pilot簡易設計概念 …………………………..………………….52
圖4.15 Pilot Coefficient示意圖…………………………………………...54
圖4.16 矩形型態Pilot Coefficient組合示意圖……………………………54
圖5.1 Type F在350 km/hr的MMSE模擬示意圖………………………….56
圖5.2 Type F在500 km/hr的MMSE模擬示意圖……………………..…56

表目錄
表3.1 傳送端的編碼方式 …………………………………………...12
表4.1 模擬參數 …………………………………………………….. 18
表4.2 1024 FFT OFMDA UL Subcarrier Allocation ...........................18
表4.3 Type A在BER為 時的SNR值 …………………………24
表4.4 Type B在BER為 時的SNR值 …………………………30
表4.5 Type C在BER為 時的SNR值 …………………………35
表4.6 Type D在BER為 時的SNR值 …………………………40
表4.7 Type E在BER為 時的SNR值 …………………………...46
表4.8 Type F在BER為 時的SNR值 …………………………...50
參考文獻 參考文獻
[1] IEEE Std 802.11-1997 Information Technology – Telecommunications And Information Exchange Between Systems-Local And Metropolitan Area Networks-Specific Requirements - part 11: Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications.
[2] M. Saad Akram, ” Pilot-based Channel Estimation in OFDM Systems,” Nokia, June 2007
[3] J. G. Proaksis, “Digital Communications,” 4th Edition, McGraw-Hill, 2001
[4] S. Mathur, “Small Scale Fading in Radio Propagation,” Department of Electrical Engineering, Rugters University, Lecture Notes for Wireless Communication Technologies, Spring 2005
[5] R. Van Nee and R. Prasad, “OFDM wireless multimedia communications,” Artech House Publishers, 2000.
[6] M. Sandell, and O. Edfors, “A Comparative Study of Pilot-Based Channel Estimators for Wireless OFDM,” Research Report TULEA 1996:19, Division of Signal Processing, Luleå University of Technology, Sep.1996.
[7] O. Edfors, M. Sandell, V. d. Beek, J.-J., and S. K. Wilson, “OFDM Channel Estimation by Singular Value Decomposition,” IEEE Transactions on Communications, vol. 46, pp. 931–939, July 1998
[8] V. d. Beek, J.-J., O. S. Edfors, M. Sandell, S. K. Wilson, and O. P. Börjesson, “On channel estimation in OFDM systems,” 45th IEEE Vehicular Technology Conference, Chicago, Il., vol. 2, pp. 815-819, July 1995
[9] Y. Li, “Pilot-symbol-aided channel estimation for OFDM in wireless systems,” lEEE Trans. Vehicular Tech., vol. 49, no. 4, pp. 1207-1215, July 2000.
[10] V. d. Beek, J.-J., Edfors, O. S.,M. Sandell, S. K. Wilson, and O. P. Börjesson, “On channel estimation in OFDM systems,” 45th IEEE Vehicular Technology Conference, Chicago, Il., vol. 2, pp. 715-719, July 1995
[11] L. L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis, Addison-Wesley,1991
[12] M.H. Hsieh and C.H. Wei, ”Channel Estimation for OFDM Systems Based On Comb-Type Pilot Arrangement in Frequency Selective Fading Channels,” Department of Electronics Engineering National Chiao Tung University, Hsinchu, Taiwan 30050, R.O.C.
[13] M. Cudak, F. Vook, K. Baum, T. Thomas, A. Talukdar, M. D. Courville, A. Ghosh, F. Wang, B. Mondal, C. Sankaran, J. Zhuang, J. Bonta, S. Emeott, “Proposed Frame Structure for IEEE 802.16m”, Motorola, IEEE 802.16m-08/008
[14] S.M Alamouti, “A simple transmit diversity technique for wireless communications,”IEEE Journal on , Volume: 16, Issue: 8, Oct. 1998
[15] V. Tarokh, H. Jafarkhani, R.A. Calderbank, ”Space-time block codes from orthogonal designs,” IEEE Trans.Inform.Theory 1999
[16] S. Parker, Y. Sun., ”Space-time codes for future WLANS:Principles,Practice,and Performance,” IEEE communication Magazine 2004
[17] C.Y. Lin, P.K. Liao, C.P. Wu, P. Cheng, “Design Considerations of Pilot Structures for Downlink MIMO Transmission “, IEEE 802.16m-08/139r2, 2008
[18] D. E. Dudgeon and R. M. Mersereau,”Multidimensional digital signal processing, “ Prentice Hall, 1984.
[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C: the art of scientific computing, Second Edition, Cambridge University Press, 1995
[20] E. Colban, L. Wang “Draft IEEE 802.16m evaluation methodology,” IEEE 802.16m-07/037r2, 2008
[21] I. Cosovic, G. Auer, “Capacity Achieving Pilot Design for MIMO-OFDM over Time-Varying Frequency-Selective Channels,” Communications, 2007. ICC '07. IEEE International Conference on , vol., no., pp.779-784, 24-28 June 2007
[22] B. Hassibi; B.M. Hochwald, “How much training is needed in multiple-antenna wireless links,” Information Theory, IEEE Transactions on , vol.49, no.4, pp. 951-963, April 2003
[23] L. Tong, B.M. Sadler, M. Dong, “Pilot-assisted wireless transmissions: general model, design criteria, and signal processing,” Signal Processing Magazine, IEEE , vol.21, no.6, pp. 12-25, Nov. 2004
[24] S. Lee, J. Lee, Y. Lee, S. Hwang, “Group-based Pilot Design Method in Mobile OFDMA Systems,” Volume 1, 17-20 Feb. 2008
[25] R.J. Baxley; J.E. Kleider, G.T. Zhou, “Pilot Design for IEEE 802.16 OFDM and OFDMA,” Volume 2, 15-20 April 2007
[26] P. Fertl, G. Matz, “Multi-User Channel Estimation in OFDMA Uplink Systems Based on Irregular Sampling and Reduced Pilot Overhead,” Volume 3, 15-20 April 2007
[27] F. Vook, T. Thomas, M. Cudak, “Simulation Results for Several of the Proposed Pilot Format Designs in IEEE 802.16m” IEEE 802.16m-08/253r1, 2008
[28] Y. Lomnitz, H. Niu, J.k. Fwu, S. Ahmadi, H. Yin, ”Symbol structure design for 802.16m – resource block and Pilots,“ IEEE 802.16m-08/121r1,2008
[29] F. Vook, T. Thomas, M. Cudak, B. Mondal, F. Wang, K. Baum, J.Zhuang, A. Ghosh, “Recommendations for Downlink Data Subchannel and Pilot Format Design in IEEE 802.16m,” IEEE 802.16m-08/123, 2008
[30] B.C. Ihm, J. Choi, W. Lee, “Pilot related to DL MIMO,” IEEE 802.16m-08/153,2008
[31] D. Yu, M.H. Fong, J. Ma, H. Zhang, S. Vrzic, R. Novak, J. Yuan, A. Tee, S.Y. Kim, K. Sivanesan, ”Proposal for IEEE 802.16m Downlink Pilot Structure for MIMO,” IEEE 802.16m-08/172r1, 2008
[32] T. Kim, J. Park, J. Lim, J. Cho, D. Mazzarese, H. Choi, J. Cho, H. Kang, Y. Kim, D.S. Park, “Design of Resource Allocation Unit Structure for IEEE 802.16m,“ IEEE 802.16m-08/188r3, 2008
[33] J. Kim, S. J. Lee, Young S. Song, B.J. Kwak, C. Il Yeh, W. Shin, D.S. Kwon, “Resource block with Pilot structure,” IEEE 802.16m-08/194, 2008
[34] J. Zhuang, L. Jalloul, R. Novk, J. Park “Project 802.16m Evaluation Methodology Document (EMD)” IEEE 802.16m-08/004, 2008
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-06-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-06-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信