§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3006200718151900
DOI 10.6846/TKU.2007.01003
論文名稱(中文) 白金微電極對順鉑之偵測
論文名稱(英文) Determination of cisplatin with platinum microelectrode
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 陳繼浩
研究生(英文) Chi-Hao Chen
學號 694170431
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-05-05
論文頁數 76頁
口試委員 指導教授 - 林孟山
委員 - 施正雄
委員 - 蔡東湖
委員 - 傅明仁
委員 - 林孟山
關鍵字(中) 順鉑
微電極
關鍵字(英) cisplatin
microelectrode
第三語言關鍵字
學科別分類
中文摘要
本研究的主要目的是利用白金電極對白金二價錯離子的獨特催化性質,藉由微電極微小化具低侵入性的優點發展抗癌藥物-順鉑的電化學偵測平台。 
在過去並未有人探討在人體生理條件下順鉑的電化學行為,實驗第一部分將以一系列循環伏安法探討各種條件下包括酸鹼度、工作電極材質、氯離子濃度、迴轉電壓等,對順鉑的電化學特性的影響,由上述實驗結果推論順鉑在白金電極上的反應途徑為軸向氧化(Axial oxidation pathway),為增進系統重複偵測的再現性,於量測過程需要經過電位處理活化電極表面。故本實驗採用脈衝電壓以活化電極搭配一直流電壓進行電極的前處理程序。在最佳化處理後,連續偵測順鉑八次的再現性由未處理前的44.3%降低為1.2%,顯示電位處理具有高度的穩定性作用。
經電位處理最佳化後,電化學實驗選擇以微差脈衝伏安法 (Differential Pulse Voltammetry)進行抗癌藥物順鉑的偵測,在溶液環境為0.05 M磷酸緩衝溶液,pH7.4內含0.103 M的氯化鈉條件下,脈衝振幅大小50 mV、脈衝時間75 msec、脈衝周期為200 msec、取樣時間為脈衝結束前16.7 msec的操作條件下,其偵測線性範圍從5 μM 至200 μM (R=0.999),靈敏度為3.383×10-6A/M,本系統的偵測極限為460 nM (S/N=3),對於20 μM cisplatin重複操作的相對標準偏差為1.78 % (n=20)。
英文摘要
A novel method for the fast detection of cisplatin by platinum microelectrode has been developed. The typical electrochemical behavior of cisplatin in different parameters including pH, concentration of chloride ion, material of working electrode and its surface condition has been investingated by cyclic voltammetry. Subsequently, cisplatin has measured by differential pulse voltammetry (DPV) using a microelectrode with effective radius of 13.6μm. This method involves a potential pretreated process to renew the activity of electrode surface. In contrast to a series of measurements without the pretreatment process, the relative standard deviation (n = 8) could be reducing from 44.3% to 1.2% compared with original process. After careful optimization, the analytical performance of current microelectrode was evaluation in the buffer solution of 0.05M, phosphate buffer pH7.4 containing 0.103M sodium chloride. The linear range of cisplatin is between 5μM to 200μM (R =0.999) with sensitivity of 3.383×10-6A/M. The estimated detection limit of this scheme is about 460 nM (S/N=3) and the relative standard deviation of twenty respective detection measurement of 20 μM cisplatin is 1.78%.
第三語言摘要
論文目次
目錄(Contents)
第一章 緒論……………………………………………………………1
1-1 微電極…………………..……………………………………1
1-1-1 微電極簡介……………………………………………………1
1-2 微電極特性… … … … … … … … … … … … … … … … …2
1-2-1 電阻電容效應…….……………………………………………2
1-2-2 高質傳效應………….…………………………………………3
1-2-3 歐姆壓降效應(IR Drop effect)……………………………4
1-3 微電極製作方法……………………………………………5
1-3-1 電蝕刻…………………………………………………………5
1-3-2 薄層微電極封裝法…………………………………………9
1-4 微電極的應用……………………………………………12
1-4-1 掃描式電化學顯微鏡…………………………………………12
1-4-2 動力學量測……………………………………………………14
1-5 抗癌藥物………………………………………………………15
1-5-1 癌症簡介………………………………………………………15
1-5-2 抗癌藥物的分類………………………………………………16
1-5-3 抗癌藥物-順鉑簡介……………………………………………18
1-5-4 順鉑的抗癌機制………………………………………………20
1-5-5 順鉑的副作用…………………………………………………22
1-5-6 順鉑的偵測…………………………………………………24
1-6 順鉑的氧化還原機制…………………………………………26
1-6-1 Axial oxidation pathway …………………………………………26
1-6-2 Equatorial oxidation pathway…………………………………27
1-7 研究目的……………………………………………………28

第二章 實驗
2-1 儀器設備…………………………………………………………29
2-2 藥品………………………………………………………………29
2-3 微電極製作………………………………………………………30
2-4 微電極特性探討…………………………………………………31
2-5 電化學偵測順鉑原理探討………………………………………31
2-5-1 不同酸鹼值下順鉑的電化學行為……………………………31
2-5-2 氯離子效應……………………………………………………31
2-5-3 工作電極材質選擇……………………………………………31
2-5-4 不同迴轉電壓探討……………………………………………31
2-6 電位前處理………………………………………………………32
2-6-1 穩定電壓最佳化………………………………………………32
2-6-2 前處理平衡時間最佳化………………………………………32
2-6-3 負向脈衝前處理最佳化 ………………………………………32
2-6-4 正向脈衝前處理最佳化…………………………………………33
2-6-5 脈衝次數最佳化………………………………………………33
2-6-6 電位前處理比較………………………………………………33
2-7 溶液條件最佳化………………………………………………33
2-7-1 氯離子濃度探討………………………………………………33
2-7-2 緩衝溶液種類探討……………………………………………34
2-7-3 緩衝溶液濃度探討……………………………………………34
2-8 微差脈衝伏安法最佳條件探討……………………………………34
2-9 白金微電極對於順鉑的分析特性………………………………34

第三章 結果與討論
3-1 電化學順鉑偵測原理………………………………………35
3-1-1 不同酸鹼值下順鉑的電化學行為……………………………35
3-1-2 氯離子效應……………………………………………………38
3-1-3 工作電極材質選擇……………………………………………40
3-1-4 不同迴轉電壓探討 …………………………………………41
3-2 微電極特性……………………………………………………43
3-3 電位前處理…………………………………………………45
3-3-1 穩定電壓最佳化………………………………………………47
3-3-2 穩定電壓施加時間最佳化………………………………48
3-3-3 前處理平衡時間最佳化…………………………………49
3-3-4 負向脈衝前處理電壓最佳化………………………………50
3-3-5 正向脈衝前處理電壓最佳化………………………………51
3-3-6 正負脈衝前處理電壓施加時間最佳化……………………52
3-3-7 脈衝次數最佳化……………………………………………54
3-3-8 電位前處理比較……………………………………………55
3-4 溶液條件最佳化…………………………………………56
3-4-1 氯離子濃度探討………………………………………………56
3-4-2 緩衝溶液種類探討…………………………………………57
3-4-3 緩衝溶液濃度探討…………………………………………58
3-5 微差脈衝伏安法最佳條件探討………………………………59
3-5-1 脈衝振幅大小的探討…………………………………………60
3-5-2 脈衝時間的探討………………………………………………62
3-5-3 取樣時間的探討………………………………………………63
3-6 白金微電極對於順鉑的分析特性…………………………64

3-7 結論… … … … … … … … … … … … … … … … … … … …66
參考資料………………………………………………………………67
圖表目錄
圖1-1:不同RG 比薄層電極的電流密度曲線…………………………9
圖1-2:光固化劑PFPEs 製作程序……………………………………11
圖1-3:SECM 雙工作電極擴散層重疊示意圖………………………12
圖1-4:SECM 回饋示意圖以及電流變化……………………………13
圖1-5:順鉑進出細胞分子的機制……………………………………20
圖1-6:順鉑引起細胞死亡的機制……………………………………21
圖1-7:順鉑水解流程…………………………………………………25
圖1-8:白金四配位錯合物Axial 氧化機制示意圖…………………27
圖1-9:白金四配位錯合物Equatorial 氧化機制示意圖……………28
圖2-1:微電極製作裝置以及電極示意圖……………………………30
圖3-1:順鉑的循環伏安圖譜 ………………………………………36
圖3-2:順鉑的循環伏安圖譜 ………………………………………37
圖 3-3:酸鹼度對順鉑的影響…………………………………………37
圖3-4: 氯離子濃度效應……………………………………………39
圖3-5: 氧化電位偏移統計圖………………………………………39
圖3-6: ITO 及Glassy carbon 電極對順鉑的循環伏安圖……….41
圖3-7:迴轉電壓對順鉑的影響……………………………………42
圖3-8:白金微電極的伏安圖譜…………………………………44
圖3-9: SEM 下白金微電極表面輪廓圖……………………………44
圖3-10: 順鉑以微電極操作所得的的微差伏安圖…………………45
圖3-11:前處理電壓波形示意圖…………………………………46

圖3-12:不同穩定電位前處理探討…………………………………47
圖3-13:不同穩定電壓前處理條件的背景電流……………………48
圖3-14:穩定電位前處理施加時間的影響…………………………49
圖3-15:電位前處理平衡時間探討…………………………………50
圖3-16:負脈衝電壓前處理電位探討………………………………51
圖3-17:正脈衝電壓前處理電位探討………………………………52
圖3-18:負脈衝電壓前處理施加時間探討…………………………53
圖3-19:正脈衝電壓前處理施加時間探討…………………………53
圖 3-20:脈衝次數探討………………………………………………54
圖3-21:電位前處理最佳化施加方式………………………………55
圖3-22:電位前處理統計數據比較…………………………………56
圖3-23:氯離子濃度影響…………………………………………57
圖 3-24:緩衝溶液種類影響………………………………………58
圖 3-25:緩衝溶液濃度影響………………………………………59
圖3-26:微差脈衝伏安法電位變化圖……………………………60
圖3-27:脈衝振伏大小對系統分析影響…………………………62
圖3-28:脈衝時間的效應…………………………………………63
圖 3-29:取樣時間的效應…………………………………………64
圖 3-30:校正曲線圖………………………………………………65
圖 3-31:系統再現性………………………………………………65
表1-1 :各種不同材料的電化學蝕刻的條件…………………………8
表1-2 :薄層微電極電流公式整理表…………………………………8
表1-3 :順鉑常用混合療程…………………………………………19
參考文獻
R. M. Wightman, M. A. Dayton, J. C. Brown, K. J. Stutts, Faradaic electrochemistry at microvoltammetric electrodes. Anal. Chem. 52 (1980) 946–950.   
  P. T. Kissinger, W. R. Heinman, ‘Laboratory Techniques in Electroanalytical Chemistry’, New York, 1984.
  A. J. Bard, R. F. Faulkner, ‘Electrochemical Methods’, Wiley, New York, 1980. 
  R. J, Forster, S. Alegret, F. Cespedes, S. Ramirez-Garcia, Carbon composite microelectrodes: charge percolation and electroanalytical performance. Anal. Chem. 76 (2004) 503–512.
  R. J. Forster, Microelectrodes: new dimensions in electrochemistry. Chem. Soc. Rev. 23 (1994) 289-297.
 C. P. Andrieux, D. Garreau, P. Hapiot, J. M. Saveant, Ultramicroelectrodes: cyclic voltammetry above one millions. J. Electroanal. Chem. 248 (1988) 447.  
  H. S. White, X. Gao , Rotating microdisk voltammetry. Anal. Chem. 67 (1995) 4057–4064.
  R. M. Wightman, W. L. Caudlll, J. O. Howell, Flow Rate Independent Amperometric Cell. Anal. Chem., 54 (1982) 2532-2535.
  A. S. Baranski, Rapid Anodic Stripping Analysis with Ultramicroelectrodes. Anal. Chem. 59 (1987) 662.
  R. M. Wightman, J. O. Howell, Ultrafast Voltammetry and Voltammetry in Highly ResistiveSolutions with Microvoltammetry Electrodes. Anal. Chem., 56(1984) 524-529.
  H. S. White, H. D. Abruna, B. D. Pendley , J. D. Norton, W.E. Benson, Voltammetric Measurement of Bimolecular Electron-Transfer Rates in Low Ionic Strength Solutions. Anal. Chem., 63 (1991) 1909-1914.

  D. H. Evans, P. S. Singh, Study of the Electrochemical Reduction of Dioxygen in Acetonitrile in the Presence of Weak Acids. J. Phys. Chem. B, 110 (2006) 637-644.
  M. I. Montenegro, D. Pletcher, M. D. Geraldo, L. Slevin, A Microelectrode Study of the Reduction of Phenyl-Substituted Ethenes in Toluene/Dimethylformamide Mixtures. J. Phys. Chem. B, 105 (2001) 3182-3186
  L. Libioulle, Y. Houbion, J.-M. Gilles, Very sharp platinum tips for scaning tunneling microscopy. Rev. Sci. Instrum., 66 (1995) 97-100
  O. L. Guise, J. W. Ahner, M.-C. Jung, P. C. Goughnour, J. T. Yates, Reproducible Electrochemical Etching of Tungsten Probe Tips. Nano Lett. 2 (2002) 191-193.
  R. H. Chow, A. Schulte, A Simple Method for Insulating Carbon-Fiber
Microelectrodes Using Anodic Electrophoretic Deposition of Paint.
  Anal. Chem. 68 (1996) 3054–3058.
  A. J. Bard,  B. Liu, J. P. Rolland, J. M. Desimone, Fabrication of Ultramicroelectrodes Using A “Teflon-like” Coating Material
  Anal. Chem. 77 (2005) 3013–3017. 
  I. Ciani, S. Daniele, Oxidation of hydroxide ions from dilute unbuffered solutions of ammonia at platinum microdiscs surrounded by thick and thin insulating sheaths. J. Electroana.l Chem.564 (2004) 133–140.
  J. J. Watkins, J. Chen, H. S. White, Zeptomole Voltammetric Detection and Electron-Transfer Rate Measurements Using Platinum Electrodes of Nanometer Dimensions. Anal. Chem. 75 (2003) 3962–3971.


  L. A. Negahara, T. Thundat, S. M. Lindsay, Preparation and characterization of STM tips for electrochemical studies. Rev. Sci. Instrum. 60 (1989) 3128–3020
  N. S. Lewis, R. M. Penner, M. J. Heben, Preparation and electrochemical characterization of conical and hemispherical ultramicroelectrodes. Anal. Chem. 61 (1989) 1630–1636
  J. H. Luong, S. Hrapovic, Picoamperometric Detection of Glucose at Ultrasmall Platinum-Based Biosensors: Preparation and Characterization. Anal. Chem. 75 (2003) 3308–3315
  T. Matsue, T. Yasukawa, T. Kaya, Dual Imaging of Topography and Photosynthetic Activity of a Single Protoplast by Scanning Electrochemical Microscopy.Anal. Chem. 71(1999) 4637–4641
  A. G. Ewing, T. G. Strein, Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer .Anal. Chem. 64 (1992) 1368–1373
  I. Ciani , S. Daniele, Voltammetric Determination of the Geometrical
Parameters of Inlaid Microdisks with Shields of Thickness Comparable to the Electrode Radius. Anal. Chem. 2004, 76, 6575-6581
  B. Liu, J. P. Rolland, J. M. DeSimone, A. J. Bard, Fabrication of ultramicroelectrodes using a “teflon-like” coating material. Anal. Chem. 77 (2005) 3013-3017.
  C. J. Slevin, N. J. Gray, J. V. Macpherson, M. A. Webb, P. R. Unwin, Fabrication and characterization of nanometer-sized platinum electrodes for voltammetric analysis and imaging. Electrochem. Commun. 1 (1999) 282-288.
  A. Schulte, R. H. Chow, Cylindrically etched carbon-fiber microelectrodes for low-noise amperometric recording of cellular secretion. Anal. Chem. 70 (1998) 985-990.
  A. A. Gewirth, D. H. Craston, A. J. Bard, Fabrication and characterization of microtips for in situ scanning tunneling microscopy. J. Electroanal. Chem, 261 (1989) 477-482.
  P. Lustenberger, H. Rohrer, Scanning tunneling microscopy at potential controlled electrode surfaces in electrolytic environment. J. Electroanal. Chem. 243 (1988) 225-235.
  Y. Fangt , J. Leddy, Cyclic Voltammetric Responses for Maid Microdisks with Shields of Thickness Comparable to the Electrode   Radius: A Simulation of Reversible Electrode Kinetics. Anal. Chem. 67 (1995) 1259-1270
  G.Zhao, D. M. G., J. R. Kirchhoff, Chemical Vapor Deposition Fabrication and Characterization of Silica-Coated Carbon Fiber Ultramicroelectrodes. Anal. Chem. 67 (1995) 2592-2598.
  C. G. Zoski,  M. V. Mirkin, Steady-State Limiting Currents at Finite Conical Microelectrodes. Anal. Chem.74 (2002) 1986-1992.
  D. A. Walsh, J. L. Ferna´ ndez, J. Mauzeroll, A. J. Bard, Scanning Electrochemical Microscopy. 55.Fabrication and Characterization of Micropipet Probes. Anal. Chem. 77(2005) 5182-5188
  A. G. Ewing,T. G. Strein, Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer. Anal. Chem. 64 (1992) 1368-1373.
  A. Kucernak, S. Chen, Fabrication of carbon microelectrodes with an effective radius of 1 nm. Electrochem. Commun. 4 (2002) 80-85.
 N. S. Lewis, R. M. Penner, M. J. Heben, Preparation and electrochemical characterization of conical and hemispherical ultramicroelectrodes. Anal. Chem. 61 (1989) 1630-1636.
  S. Hrapovic , J. H. T. Luong, Picoamperometric Detection of Glucose at Ultrasmall Platinum-Based Biosensors: Preparation and Characterization. Anal. Chem. 75 (2003) 3308-3315.
  J. P. Rolland, R. Michael Van Dam, D. A. Schorzman, S. R. Quake, J. M. DeSimone, Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126 (2004) 2322-2323.
  A. J. Bard, F.-R. Fan, J. Kwak, O. Lev, Scanning Electrochemical Microscopy. Introduction and principles. Anal. Chem. 61 (1989) 132-138.
  A. J. Bard, W. Zhan, Scanning Electrochemical Microscopy. 56. Probing Outside and Inside Single Giant Liposomes Containing Ru(bpy)3 2+. Anal. Chem. 78 (2006) 726-733.
  A. J. Bard, J. Kwak, Scanning Electrochemical Microscopy. Theory of the Feedback Mode. Anal. Chem. 61 (1989) 1221-1227.
  J. B. Phipps, E. R. Scott, H. S. White, Solid State Ionics 53 (1992), 176
  A. J. Bard,Y. Lee , Fabrication and Characterization of Probes for Combined Scanning Electrochemical/Optical Microscopy Experiments. Anal. Chem. 74 (2002) 3626-3633.
  G. Wittstock, C. Kranz,O. Sklyar, A. Kueng, B. Mizaikoff, A. Lugstein, E. Bertagnolli, Numerical Simulation of Scanning Electrochemical Microscopy Experiments with Frame-Shaped Integrated Atomic Force Microscopy-SECM Probes Using the Boundary Element Method. Anal. Chem. 77 (2005)764-771.
  A. J. Bard,C. G. Zoski, J. C. Aguilar, Scanning Electrochemical Microscopy. 46. Shielding Effects on Reversible and Quasireversible Reactions. Anal. Chem. 75 (2003) 2959-2966.
  J. D. Burgess ,A. Devadoss, M. S. Palencsa´ r, D. Jiang, M. L. Honkonen, Enzyme Modification of Platinum Microelectrodes for Detection of Cholesterol in Vesicle LipidBilayer Membranes. Anal. Chem. 77 (2005) 7393-7398.

  W. Schuhmann, S. Isik, M. Etienne, J. Oni,A. Blo1chl, S. Reiter, Dual Microelectrodes for Distance Control and Detection of Nitric Oxide from Endothelial Cells by Means of Scanning Electrochemical Microscope Anal. Chem. 76 (2004) 6389-6394.
  C. P. Andrieux, P. Hapiot, J.-M. Saveant, Fast Kinetics by Means of Direct and Indirect Electrochemical Techniques. Chem. Rev. 90 (1990) 723-738.
  R. S. Nicholson, Theory and application of cyclic voltammetery for measurement of electrode reaction kinetics. Anal. Chem. 1351-1355.
  D. Britz, IR elimination in electrochemical cells. J. Elechoanal. Chem. 
88 (1978) 309-352.
  A. M. Bond, T. L. E. Henderson, D. R. Mann, T. F. Mann, W. Thormann,’ and C. G. Zoski , Fast Electron Transfer Rate for the Oxidation of Ferrocene in Acetonitrile or Dichloromethane at Platinum Disk Ultramicroelectrodes. Anal. Chem. 60 (1988) 1878-1882.
  A. J. Bard, M. V. Mirkin , Simple Analysis of Quasi-Reversible Steady-State Voltammograms. Anal. Chem. 64 (1992) 2293-2302.
  A. J. Bard,M. V. Mirkin, P. R. Unwin, D.. Wipf, Scanning Electrochemical Microscopy. 12. Theory and Experiment of the Feedback Mode with Finite Heterogeneous Electron-Transfer Kinetics and Arbitrary Substrate Size. J. Phys. Chem. 96 (1992) 1861-1868.
  M. V. Mirkin, P. Sun , , Kinetics of Electron-Transfer Reactions at Nanoelectrodes. Anal. Chem. 78 (2006) 6526-6534.
  賴銘智。”合成新的具有聚醯胺官能基之DNA結合試劑。”博士論文,中山大學,2003。
  Rosenberg, B., Van Camp, L., Krigas, T. Nature 205 (1965) 698-699.
  L.R. Kelland, N. P. Farrell, “Platinum-Based drugs in cancer therapy” Totowa; New Jersey. 

  R. A. Hromas, J. A. North, C. P. Burns, Decreased cisplatin uptake by resistant L1210 leukemia cells. Cancer Lett. 36 (1987) 197–201.
  S. P. Binks, M. Dobrota, Kinetics and mechanism of uptake of platinum-based pharmaceuticals by the rat small intestine. Biochem. Pharmacol. 40 (1990) 1329–1336.
  S. Ishida, J. Lee, D. J. Thiele, I. Herskowitz, Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl Acad. Sci. USA  99 (2002), 14298–14302.
  M. Komatsu, T. Sumizawa, M. Mutoh, Z.-S. Chen, K. Terada, T. Furukawa, X.-L. Yang, , N. Miura, H. Gao, S T., ugiyama  S.-I. Akiyama, Copper-transporting P-Type Adenosine Triphosphatase (ATP7B) Is Associated with Cisplatin Resistance. CAN. RES. 60 (2000), 1312–1316.
  D. Wang, S. J. Lippard, Cellular Processing of Platinum Anticancer Drugs, Nat. Rev. Drug Discovery, 4 (2005), 307-320.
  S. F. Bellon, J. H. Coleman, S.J. Lippard, DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug
cis-diamminedichloroplatinum(II). Biochemistry 30 (1991) 8026-8035.
  R.S. Sloviter,Apoptosis: a guide for the perplexed. Trends Pharmacol. Sci. 23 (2002) 19-24.
  Z. Herceg, Z. Q. Wang, Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477 (2001), 97–110. 
  V. M. Gonzalez, M. A. Fuertes, C. Alonso, J. M. Perez, Is cisplatin-induced cell death always produced by apoptosis? Mol. Pharmacol. 59 (2001) 657–663.
  L. Pszonicki, J. Chwastowska, W. Skwara, E. Sterli´nska, Determination of platinum and palladium in environmental samples
by graphite furnace atomic absorption spectrometry after separation on dithizone sorbent. Talanta 64 (2004) 224–229.
  S. Zimmermanna, J. Messerschmidt , A. Bohlen , B. Sures , Determination of Pt, Pd and Rh in biological samples by electrothermal atomic absorption spectrometry as compared with adsorptive cathodic stripping voltammetry and total-reflection X-ray fluorescence analysis. Analytica Chimica Acta 498 (2003) 93–104.
  P. Garcia-Lopez, A. Lopez-Flores, R. Jurado, A high-performance liquid chromatographic assay for determination of cisplatin in plasma, cancer cell, and tumor samples. J. Pharmacological & Toxicological    Methods 52 (2005) 366 – 372.
  J. M. McKeage, N. B. Deanna, J. L. Johnson, D. T. Malcolm, 
Specific determination of intact cisplatin and monohydrated cisplatin in human plasma and culture medium ultrafiltrates using HPLC on-line with inductively coupled plasma mass spectrometry. Journal of Chromatography B, 837 (2006) 29–34.
  T. Hirokawa, H. Zhuo, R. T. Andrei, K. K. Bernhard , ,Determination of cisplatin and its hydrolytic metabolite in human serum by capillary electrophoresis techniques. Journal of Chromatography A, 1106 (2006) 75–79.
  K.v. d. Born, T.H. U. Zwiers, W. J.F. van der Vijgh , M.Verschraagen, Simultaneous determination of intact cisplatin and its metabolite monohydrated cisplatin in human plasma.  J. Chromatogr. B, 772 (2002) 273–281.
  J. Wang,T. Peng, M. S. Lin, Voltammetric Measurement of cis-Dichlorodiammineplatinum (II) Following Interfacial Accumulation at Mercury Electrodes. Bioelectrochem. Bioener. 16 (1986) 395-406.
  J. Wang, M.-z. Czae, J. Lu, M. Vuki, Catalytic-Adsorptive Stripping Voltammetric Measurements of Picomolar Levels of Platinum in the Presence of Hydroxylamine: How Low Can We Go? Microchem. J. 62 (1999) 121–127. 
  S. Huszal, J. Kowalska, M. Krzeminska, J. Golimowski,Determination of Platinum with Thiosemicarbazide by Catalytic Adsorptive Stripping Voltammetry (AdSV). Electroanalysis 17 (2005)299-304.
  V. Brabec, DNA sensor for the determination of antitumor
platinum compounds. Electrochimica Acta 45 (2000) 2929–2932
  A. T. Hubbard, C.-N. Lai, Halide-Bridged Electrode Reactions of Platinum Complexes Containing Unsaturated Ligands. Inorg.Chem.. 11(1972) 2081-2901
  A.T. Hubbard,R. F. Lane , Electrochemistry of Chemisorbed Molecules. 111. Determination of the Oxidation State of Halides Chemisorbed on Platinum. Reactivity and Catalytic Properties of Adsorbed Species. The Journai of Physical Chemistry. 79 (1975), 808-815.
  S. Dong, L.Xu, F. Li, Electro-oxidation of a chloride complex of Platinum(II) at a glassy carbon electrode. Journal of Electroanalytical Chemistry 383 (1995) 133-137
  A. T. Hubbard, R. F. Lane , Electrochemistry of Chemisorbed Molecules. I I. The Influence of Charged Chemisorbed Molecules on the Electrode Reactions of Platinum Complexes. The Journal of Physical Chemistry, 77(1973), 1411-1421
  R. N. Adams, “Electrochemistry at solid electrode.” Marcel Dekker, New York, 1969, 187-204)
  R.G. Compton, X. Dai , Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper. Analyst, , 131(2006), 516–521

  D. C. Johnson, D. G. Williams, Pulse Voltammetric Detection of Arsenic (III) at Platinum Electrodes in Acidic Media. Anal. Chem. 64 (1992), 1785-1789.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信