淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3006200510373000
中文論文名稱 使用中空纖維模組去除二氧化碳氣體研究
英文論文名稱 Study on the Use of Hollow Fiber Membrane Module for CO2 Removal
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 吳慶鴻
研究生英文姓名 Ching-Hung Wu
學號 692361248
學位類別 碩士
語文別 中文
口試日期 2005-06-24
論文頁數 89頁
口試委員 指導教授-張煖
委員-陳錫仁
委員-程學恆
中文關鍵字 二氧化碳回收  單乙醇胺  滲透吸收  中空纖維薄膜模組 
英文關鍵字 carbon dioxide recovery  monoethanolamine  permeation absorption  modeling  hollow fiber membrane module 
學科別分類
中文摘要 本研究使用多孔性聚乙烯疏水材質之中空纖維模組探討利用單乙醇胺水溶液吸收二氧化碳氣體之性能。本研究建立了一個考慮非平衡與平衡反應及熱質傳,並使用electrolyte-NRTL熱力模式之嚴謹模式用以決定化學吸收之加強因子,並透過最小化實驗與模式預測結果差異之方法,回歸出適用於本實驗模組之殼側質傳係數關聯式與兩實驗模組之有效界面面積。薄膜內部份濕潤之概念無法解釋本實驗模組之吸收性能,有效界面面積則可有效回歸模式與實驗結果。吸收效率主要受進氣流量及吸收液溫度之影響。質傳阻力主要在氣相。針對燃煤與燃天然氣煙道氣之處理,進氣流量之提高主要須透過模組長度之調整使達要求之去除效率。
英文摘要 The performance of carbon dioxide absorption by aqueous monoethanolamine solution is investigated via both experiments and a rigorous mathematical model. Two different size microporous polyproplyene hollow fiber membrane modules are used for experiments. The rigorous mathematical model considers the complex chemical absorption mechanism, including kinetic and equilibrium reactions, and heat and mass transports. Incorporating the experimental results with the mathematical model allows the determination of the correlation for shell side mass transfer coefficient as well as the effective interfacial areas of two modules. The concept of partial wetting inside membrane cannot explain the performance of the experimental modules. The most significant operating conditions affecting the absorption efficiency are the inlet gas flow rate and absorbent temperature. The major mass transfer resistance occurs in the gas side. For the coal-fired and natural gas-fired flue gas treatment, the required module length for different inlet gas flow rate is analyzed.
論文目次 目錄

中文摘要 ……………………………………………………………..…i
英文摘要 …………………………………………………………….…ii
目錄 ………………………………………………………………iii
圖目錄 ………………………………………………………………vi
表目錄 .………………………………………………………...…...xii
第一章 前言……………………………………………………….…1
第二章 文獻回顧………………………………………………….…5
2.1 薄膜吸收二氧化碳……………………………………...….5
2.2 醇胺吸收二氧化碳速率模式………………………………7
第三章 實驗系統…………………………………………………...10
3.1 實驗藥品與裝置圖………………………………………...10
3.1.1 實驗藥品…………………………………………………...10
3.1.2 實驗設備…………………………………………………...10
3.1.3 實驗裝置圖………………………………………………...15
3.2 實驗方法…………………………………………………...17
3.3 實驗步驟…………………………………………………...18
3.4 實驗結果……………………………………………...……20
第四章 模式建立………………………………………………...…23
4.1 化學反應…………………………………………………...23
4.1.1 非平衡反應………………………………………………...23
4.1.2 平衡反應…………………………………………….......…24
4.2 薄膜模組氣體吸收模式………………………………...…25
4.2.1 點模式……………………………………………………...25
4.2.2 熱傳通量…………………………...………………………30
4.2.3 質量與能量平衡……………………...……………………30
4.3 輸送與熱力性質………………………...…………………31
4.3.1 熱力學模式……………………………...…………………31
4.3.2 亨利常數…………………………………...………………31
4.3.3 氣、液相及薄膜內擴散係數………………………………32
4.3.4 氣、液相及膜內質傳係數…………………………………34
4.3.5 氣、液相及膜內熱傳係數…………………………………35
4.3.6 氣、液相及膜內熱傳導係數………………………………36
4.3.7 其他物理性質……………………………………………...36
4.4 程式架構與數值解析方法………………………………...37
第五章 模式參數決定……………………………………………...39
5.1 前言………………………………………………………...39
5.2 回歸方法…………………………………………………...41
5.3 回歸結果…………………………………………………...41
第六章 系統性能與特性分析……………………………………...45
6.1 操作條件之影響………………………………………...…46
6.2 模組內部質傳特性………………………………………...51
6.2.1 質傳係數之影響……………………………………...……51
6.2.2 質傳阻力分佈……………………………………………...54
6.3 薄膜濕潤比率之影響……………………………………...55
第七章 系統設計…………………………………………………...59
第八章 結論………………………………………………………...62
參考文獻 ……………………………………………………………...64
符號說明 …………………………………………………………...…68
附錄A 熱力模式參數……………………………………………...71
附錄B 基本個案模組內特性分析………………………………...76





圖目錄

圖3-1 中空纖維模組,模組1………………………….………11
圖3-2 中空纖維模組,模組2…………………………….……12
圖3-3 氣體混合器……………………………………………...13
圖3-4 氣體過濾器……………………………………………...13
圖3-5 CO2氣體濃度分析儀……………………………………14
圖3-6 液體幫浦………………………………………………...14
圖3-7 氣體流量計………………………………………...……15
圖3-8 中空纖維模組去除二氧化碳氣體實驗設備圖……...…15
圖3-9 中空纖維模組去除二氧化碳氣體實驗裝置圖……...…16
圖4-1 薄膜吸收器中第n段之物流進出示意圖………………28
圖4-2 程式架構圖……………………………………………...38
圖5-1 實驗與模擬之吸收效率(模組1)………………………42
圖5-2 實驗與模擬之出口濃度(模組1)………………………43
圖5-3 實驗與模擬之吸收效率(模組2)………………………43
圖5-4 實驗與模擬之出口濃度(模組2)………………………44
圖6-1 各變數對吸收效率之影響(模組1)……..……………47
圖6-2 各變數對吸收效率之影響(模組2)…………….……47
圖6-3 各變數對出口濃度之影響(模組1)……………….…48
圖6-4 各變數對出口濃度之影響(模組2)………….………48
圖6-5 各變數對加強因子之影響(模組1)…………….……49
圖6-6 各變數對加強因子之影響(模組2)………………….49
圖6-7 各變數對總液相質傳係數之影響(模組1)……………50
圖6-8 各變數對總液相質傳係數之影響(模組2)……………50
圖6-9 氣相質傳係數kG對吸收效率之影響(模組1)…………51
圖6-10 氣相質傳係數kG對吸收效率之影響(模組2)…………52
圖6-11 液相質傳係數kL對吸收效率的影響(模組1)…………52
圖6-12 液相質傳係數kL對吸收效率的影響(模組2)…………53
圖6-13 薄膜質傳係數kM對吸收效率的影響(模組1)…………53
圖6-14 薄膜質傳係數kM對吸收效率的影響(模組2)…………54
圖6-15 XL對吸收效率之影響(模組1)………………………55
圖6-16 XL對吸收效率之影響(模組2)………………………56
圖6-17 XL對總液相質傳係數之影響(模組1)………………56
圖6-18 XL對總液相質傳係數之影響(模組2)………………57
圖6-19 XL對加強因子之影響(模組1)………………………57
圖6-20 XL對加強因子之影響(模組2)………………………58
圖7-1 氣體流量對模組長度之影響(燃煤煙道氣)………....61
圖7-2 氣體流量對模組長度之影響(燃天然氣煙道氣)……...61
圖B-1 模組中溫度分佈圖……………………………………...76
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-2 模組中氣體流量分佈圖………………………………...76
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-3 模組中氣體濃度分佈圖………………………………...77
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-4 液相中CO2總濃度分佈圖………………………………77
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-5 模組中加強因子分佈圖……………………………..…78
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-6 模組中質傳通量分佈圖………………………...………78
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-7 模組中熱傳通量分佈圖………………………...………79
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-8 模組中溫度分佈圖……………………………………...79
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-9 模組中氣體流量分佈圖………………………………...80
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-10 模組中氣體濃度分佈圖……………………………..…80
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-11 液相中CO2總濃度分佈圖………………………………81
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-12 模組中加強因子分佈圖………………………………...81
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-13 模組中質傳通量分佈圖……………………………...…82
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-14 模組中熱傳通量分佈圖………………………………..82
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-15 模組中溫度分佈圖……………………………………...83
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-16 模組中氣體流量分佈圖………………………………...83
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-17 模組中氣體濃度分佈圖………………………………..84
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-18 液相中CO2總濃度分佈圖………………………………84
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)

圖B-19 模組中加強因子分佈圖………………………………...85
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-20 模組中質傳通量分佈圖………………………………...85
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-21 模組中熱傳通量分佈圖………………………………..86
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-22 模組中溫度分佈圖……………………………………..86
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-23 模組中氣體流量分佈圖………………………………..87
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-24 模組中氣體濃度分佈圖………………………………..87
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-25 液相中CO2總濃度分佈圖………………………………88
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-26 模組中加強因子分佈圖………………………………...88
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)
圖B-27 模組中質傳通量分佈圖………………………………..89
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)

圖B-28 模組中熱傳通量分佈圖………………………………..89
(base case:Module1,T_in=1atm,GF_in=25㏄/s,LF_in=5㏄/s,YbCO2_in=0.0426,WF_MEA=20wt%,α=0.2)


















表目錄

表3-1 實驗操作條件之範圍…………………………………...17
表4-1 速率常數………………………………………………...24
表4-2 平衡常數………………………………………………...25
表4-3 水溶液系統密度之參數………………………………...37
表5.1 殼側之個別質傳係數預測關聯式……………………...40
表5.2 回歸結果………………………………….......................42
表6-1 基本個案之操作條件設定……………………………...45
表7-1 燃燒煤炭與天然氣所生成廢氣之條件………………...59
表7-2 中空纖維模組設定條件………………………………...60
表7-3 基本個案之操作條件設定……………………………...60
表A-1 Dielectric constant……………………………………….74
表A-2 Energy parameter………………………………………...75
表A-3 Nonrandomness factor…………………………………...75





參考文獻 參考文獻

Astarita, G. (1967), Mass Transfer with Chemical Reaction, Amsterdam, Elsevier.
Astarita, G., D.W. Savage and A. Bisio (1983), Gas Treating with Chemical Solvents, John Wiley & Sons, Inc., New York.
Austgen, D. M. (1989), A Model of Vapor–Liquid Equilibria for acid Gas–Alkanolamine–water System, Ph. D. Dissertation, The University of Texas at Austin.
Bates, R. G. and G. D. Pinching, (1951), “Acidic Dissociation Constant and Related Thermodynamic Quantities for Monoethanolammonium Ion in Water from 0 to 50℃,” J. Res. Nat. Bur. Stand., 46 (5), 349.
Bhaumik S., S. Majumdar, K.K. Sirkar (1996), “Hollow-Fiber Membrane-Based Rapid Pressure Swing Absorption,” AIChE J., 42, (2), 409.
Bird, R.B., W.E. Stewart and E.N. Lightfoot (1960), Transport Phenomena, John Wiley & Sons, Inc., New York.
CHEMCADTM, V.5 (2000), Chemstations Inc.
Chen, C.C. and L.B. Evans, (1986a), “A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems,” AIChE J., 32 (3), 444.
Clarke, J. K. A.(1964), “Kinetics of Absorption of Carbon Dioxide in Monoethanolamine Solutions at Short Contact Times,” Ind. Eng. Chem. Fundam. , 3, 239-245.
Danckwerts, P.V. (1970), Gas-Liquid Reactions, McGraw Hill, New York.
Danckwerts, P.V. (1979), “The Reaction of CO2 with Ethanolamines,” Chem. Eng. Sci., 34, 443.
DeCoursey, W.J. ( 1992 ), “A Simpler Approximate for Enhancement of Mass Transfer by Second-Order Reversible Reaction,” IChemE. Symp. Ser. 128, B269.
Desideri, U. and A. Paolucci (1999), “Performance Modeling of a Carbon Dioxide Removal System for Power Plants,” Energy Conversion & Management, 40, 1899.
Dindore, V.Y., D.W.F. Brilman, P.H.M. Feron, G.F. Versteeg (2004), “CO2 absorption at elevated pressures using a hollow fiber membrane contactor,” J. of Mem. Sci.,235,99.
Dingman, J.C., J.L. Jackson, T.F. Moore and J.A. Branson (1983), “Equilibrium Data for the H2S-CO2-Diglycolamine Agent-Water System,” Presented at the 62nd Annual Gas Processors Association Convention.
Edwards, T.J., G. Maurer, J. Newman and J.M. Prausnitz (1978),” Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes,” AIChE J., 24 (6), 966.
Gabelman, A. and S.T. Hwang (1999), ”Hollow Fiber Membrane Contactors,” J. Mem. Sci., 159. 61.
Glasscock, D.A. (1990), “Modelling and Experimental Study of Carbon Dioxide Absorption into Aqueous Alkanolamines.” Ph. D. Dissertation, The University of Texas at Austin.
Haimour, N.; O.C. Sandall (1984), “Absorption of Carbon Dioxide into Aqueous Methyldiethanolamine,” Chem. Eng. Sci., 12, 1791-1796.
Hanna, O. and O. Sandall (1995), Computational Methods in Chemical Engineering. Englewood Cliffs: Prentice Hall.
Hikita, H., S. Asai, H. Ishikawa and M. Honda (1977) , “The Kinetics of Reactions of Carbon Dioxide with Monoethanolamine, Diethanolamine and Triethanolamine by a Rapid Mixing Method,“ Chem. Eng. J., 13, 7.
IEA/OECD(2000), Carbon Dioxide Capture and Storage.
Karoor, S. and K.K. Sirkar (1993), “Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules,” Ind. Eng. Chem. Res., 32, 674.
Kim, Y.S., S.M. Yang (2000), “Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents,” Sep. and Purifi. Tech.,21,100.
Kreulen, H., C.A. Smolders, G.F. Versteeg and W.P.M. Van Swaaij (1993), “Microporous Hollow Fiber Membrane Module as Gas-Liquid Contactors. Part I. Physical Mass Transfer Processes. A Specific Application: Mass Transfer in Highly Viscous Liquids,” J. Mem. Sci., 78, 197.
Kumar P.S., J.A. Hougendoorn, P.H.M. Feron, G.F. Verteeg (2003), “Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber,” J. of Mem. Sci.,213,231.
Laddha, S.S.; P.V. Danckwerts (1981), “Reaction of CO2 with Ethanolamines : Kinetics from Gas-Absorption,” Chem. Eng. Sci. , 36, 479-482.
Litcht, S. E. and R.H. Weiland (1989), “Density and Physical Solubility of CO2 in Partially loaded Solutions of MEA, DEA and MDEA,”AIChE National Meeting.
Littel, R.J., B. Filmer, G. F. Versteeg and W.P.M. Van Swaaij (1991), “Modelling of Simultaneous Absorption of H2S and CO2 in Alkanolamine Solutions: The Influence of Parallel and Consecutive Reversible Reactions and The Coupled Diffusion of Ionic Species,” Chem. Eng. Sci., 46 (9), 2303.
Liu, Y., L. Zhang, and S. Watanasiri (1999), “Representing Vapor-Liquid Equilibrium for an Aqueous MEA-CO2 System Using the Electrolyte Nonrandom-Two-Liquid Model,” Ind. Eng. Chem. Res.,38,2080.
Mahmud, H., A. Kumar,, R.M. Narbaitz and T. Matsuura (2000), “A Study of Mass Transfer in the Membrane Air-Stripping Process using Microporous Polypropylene Hollow Fibers,” J. Mem. Sci., 179, 29.
Malek, A., K. Li and W.K. Teo (1997), “Modeling of Microporous Hollow Fiber Membrane Modules Operated Under Partially Wetted Conditions,” Ind. Eng. Chem. Res., 36, 784.
Pacheco, M.A. and G.T. Rochelle (1998), “Rate-Based Modeling of Reactive Absorption of CO2 and H2S into Aqueous Methyldiethanolamine,” Ind. Eng. Chem. Res., 37, 4107.
Pinsent, B.R.W., L. Pearson and F.J.W. Roughton (1956), “The Kinetics of Combination of Carbon Dioxide with Hydroxide Ions,” Trans. Faraday Soc., 52, 1512.
Posey, M.L. (1996), Thermodynamic Model for Acid Gas Loaded Aqueous Alkanolamine Solutions, Ph. D. Dissertation, The University of Texas at Austin.
Prasad, R. and K.K. Sirkar (1988), “Dispersion-Free Solvent Extraction with Microporous Hollow-Fiber Modules,” AIChE J., 34. (2). 177.
Rangwala, H.A. (1996), “Absorption of Carbon Dioxide into Aqueous Solutions using Hollow Fiber Membrane Contactors,” J. Mem. Sci., 112, 229.
Reid, R.C., J.M. Prausnitz and B.E. Poling (1988), “The Properties of Gases & Liquids,” 4th Ed., McGraw-Hill., Singapore.
Schwabe, K.W., W. Graichen and D. Spiethoff (1959), “Physidalisch-Chemische Untersuchungen an Alkanolaminen,” J. Phys. Chem., 20, 68.
Stefano, F., G.T. Rochelle (2003), “Modeling of CO2 Capture by Aqueous Monothanolamine,” AIChE J.,49(7).1676.
Swaaij, W.P.M.V. and G. F. Versteeg (1992), “Mass Transfer Accompanied with Complex Reversible Chemical Reaction in Gas-Liquid Systems: An Overview,” Chem. Eng. Sci., 47 (13/14), 3181.
Versteeg, G. F. and W.P.M. Van Swaaij (1988a), “On the Kinetics Between CO2 and Alkanolamines Both in Aqueous and Non-Aqueous Solutions – I. Primary and Secondary Amines,” Chem. Eng. Sci., 43 (3), 573.
Versteeg, G. F. and W.P.M. Van Swaaij (1988b), “On the Kinetics Between CO2 and Alkanolamines Both in Aqueous and Non-Aqueous Solutions – II. Tertiary Amines,” Chem. Eng. Sci., 43 (3), 587.
Versteeg, G. F., J.A.M. Kuipers, F.P.H. Van Beckum and W.P.M. Van Swaaij (1989), Mass Transfer with Complex Reversible Chemical Reactions – I. Single Reversible Chemical Reaction, Chem. Eng. Sci., 44 (10), 2295.
Versteeg, G. F., J.A.M. Kuipers, F.P.H. Van Beckum and W.P.M. Van Swaaij (1990), “Mass Transfer with Complex Reversible Chemical Reactions – II. Parallel Reversible Chemical Reaction,” Chem. Eng. Sci., 45 (1), 183.
Zhang, G. and E.L. Cussler (2003), “Distillation in Hollow Fibers,” AIChE J., 49. (9). 2344.
Zhang, Q. and E.L. Cussler (1985a), “Microporous Hollow Fibers for Gas Absorption. I. Mass Transfer in the Liquid,” J. Mem. Sci., 23, 321.
Zhang, Q. and E.L. Cussler (1985b), “Microporous Hollow Fibers for Gas Absorption. II. Mass Transfer across the Membrane,” J. Mem. Sci., 23, 333.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信