淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2912201114572800
中文論文名稱 結合約略集理論與關聯法則於順序資料分析之研究
英文論文名稱 The Study of Integration of Rough Set Theory and Association Rules for Ordinal Data Analysis
校院名稱 淡江大學
系所名稱(中) 管理科學學系博士班
系所名稱(英) Doctoral Program, Department of Management Sciences
學年度 100
學期 1
出版年 101
研究生中文姓名 陳盈如
研究生英文姓名 Yin-Ju Chen
學號 895620028
學位類別 博士
語文別 中文
口試日期 2011-12-17
論文頁數 88頁
口試委員 指導教授-廖述賢
委員-謝邦昌
委員-李御璽
委員-鄭景俗
委員-徐煥智
委員-周清江
委員-何旭輝
中文關鍵字 約略集理論  資料採礦  關聯法則 
英文關鍵字 Rough set theory  Data mining  Association rule 
學科別分類
中文摘要 首先,傳統的關聯法則,使用者必須不斷的試誤(包含:屬性的挑選、門檻值的設定等…法則產生前的相關程序與步驟),俾便找出具解釋能力的關聯法則。再者,與近期相關研究相比,資料採礦資料都是以資料是精確且乾淨為前提的,在這樣的條件下所產生的關聯法則,可能會發生在某些特定情況下(例如:有人為輸入的錯誤、記錄錯誤等…不完整資料),符合條件的規則被淘汰亦或產生過多的規則。最後,透過相關研究的文獻探討,發現約略集理論已成功的被運用在選擇屬性及改變效率之決策問題上。因此,本研究選擇以約略集理論為研究的理論基礎,從縮短決策者探勘關聯法則的試誤時間為解決問題的方向,在規則產生前,利用集合的產生,針對資料型態涉及順序尺度或含區間資料的順序尺度,提供新的演算概念。希冀,在不失去原本的排序關係的前提下,提供更多的排序資訊予決策者使用。
研究中,針對順序尺度與含區間資料的順序尺度,分別提出約略關聯法則的探勘步驟、演算流程說明、應用於酒精飲料產品與非酒精飲料的案例,以及提供相關個案的管理意涵。最後,將本研究所未考量到的部分以及可以持續研究的方向分段論述,讓後續的相關研究學者可以參考。
英文摘要 First, as per the traditional association rules, in order to identify meaningful association rules, the user must use trial and error method (including attribute choice, threshold value hypothesis, etc., considering the procedure and step taken before the association rules were formulated). Furthermore, unlike algorithm-related research, data mining algorithms assumed that input data were accurate; however, the assumption would not be made in case one best rule exists for each particular situation such as input mistake or record mistake and similar incomplete data. Finally, through literature review, rough set theory has been successfully applied in deriving decision trees/rules and specifying problems, with proven effectiveness in selecting attributes. Therefore, we select rough set theory on the basis of our research, and this reduces the time that policymakers take to determine meaningful association rules. Before the rule is formulated, through the set process, we provide a new algorithm for the data type that involves ordinal data and ordinal data with internal data. Under a condition that does not affect the sorting relations between the values of the ordinal data, we provide more sorting information that the policymakers can use.
In the research, we provide two new algorithms that are suitable for ordinal data and ordinal data with internal data. Further, we provide illustrative examples using alcoholic and non-alcoholic beverage products individually. Finally, we give some suggestions for future research.
論文目次 目次
謝辭 I
中文摘要 II
英文摘要 III
目次 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1研究背景與動機 1
1.2研究問題與目的 2
1.3研究方法與流程 3
第二章 文獻探討 4
2.1約略集理論 4
2.1.1 一般的約略集(A general view of rough sets) 5
2.1.2 變精度約略集(variable precision rough set/VPRS) 6
2.1.3 約略集理論的好處及應用的領域 7
2.1.4 約略集與各領域的結合 10
2.1.5 約略集理論與本研究的關係 11
2.2關聯法則 12
2.2.1 關聯法則的定義 12
2.2.2 從分群或分類討論關聯法則 13
2.2.3 從產生規則集討論關聯法則 16
2.2.4 從資料維度討論關聯法則 17
2.2.5 關聯法則的改良 18
2.2.6 關聯法則與本研究的關係 19
2.3相關研究綜合討論 20
2.3.1 資料採礦與約略集理論 20
2.3.2 相關研究使用的資料型態與衡量尺度 21
2.3.3 以約略集理論為基礎的相關研究 23
2.3.4 約略集理論與模糊理論及之比較 23
第三章 探勘順序尺度約略關聯法則 25
3.1研究問題 25
3.2順序尺度的約略關聯法則探勘步驟 26
3.3順序尺度的約略關聯法則演算流程 33
3.4順序尺度的約略關聯法則應用在非酒精飲料 36
3.5順序尺度的約略關聯法則應用在非酒精飲料管理意涵 42
3.5.1 從法則產生效率與效能的角度與傳統關聯法則比較 42
3.5.2 從法則資訊提供的角度與過去的研究比較 44
3.5.3 順序尺度的約略關聯法則在行銷策略上的運用 46
第四章 探勘含區間資料的順序尺度約略關聯法則 48
4.1研究問題 48
4.2含區間資料的順序尺度約略關聯法則探勘步驟 49
4.3含區間資料的順序尺度約略關聯法則演算流程 57
4.4含區間資料的順序尺度約略關聯法則應用在酒精飲料 61
4.5含區間資料的順序尺度約略關聯法則應用在酒精飲料管理意涵 69
4.5.1 與傳統關聯法則比較 69
4.5.2 含區間資料的順序尺度約略關聯法則建立產業的競爭力 70
4.5.3 含區間資料的順序尺度約略關聯法則在行銷策略上的應用 70
第五章 結論與後續研究 72
5.1研究結論 73
5.2後續研究 74
5.2.1 從相對的概念討論順序尺度 74
5.2.2 發展階層概念的順序尺度約略關聯規則 75
5.2.3 發展決策支援系統 76
5.2.4 從關聯規則門檻值設定改善 77
5.2.5 發展推薦機制探勘改變行為 77
參考文獻 78
附錄-問卷 87

表目錄
表2-1約略集理論的好處 7
表2-2約略集理論運用的領域 9
表2-3約略集理論與各理論結合之應用 10
表2-4從分類觀點討論或改良關聯法則 13
表2-5從分群觀點討論或改良關聯法則 14
表2-6從產生規則集討論關聯法則 16
表2-7從資料維度討論關聯法則 18
表2-8關聯法則的改良 18
表2-9相關研究使用的資料型態與衡量尺度 22
表3-1習慣飲用「非酒精類飲料」的排序資料表 25
表3-2資訊系統表 27
表3-3順序性資料的核心屬性值 28
表3-4決策資料表 29
表3-5不可辨識關係下的屬性值 31
表3-6非酒精飲料資訊表 36
表3-7基本統計表 38
表3-8非酒精飲料偏好排序核心屬性集合 39
表3-9非酒精飲料偏好的約略關聯法則集合 40
表3-10非酒精飲料偏好的傳統關聯法則集合 41
表3-11APRIORI產生的關聯法則 43
表3-12非酒精飲料偏好的消費者行為規則集合 47
表4-1資訊系統表 50
表4-2啤酒「品牌回想」的排序資料表 50
表4-3「年齡及收入」與品牌回想間的關係 53
表4-4以台灣啤酒為主的決策資料表 54
表4-5不可辨識關係下的資料集合 56
表4-6酒精飲料資訊表 61
表4-7基本統計表 63
表4-8屬值屬性與決策屬性間的潛在關係 64
表4-9酒精飲料的品牌回想排序總值 65
表4-10酒精飲料偏好的約略關聯法則集合 66
表4-11酒精飲料偏好的傳統關聯法則集合 68
表4-12傳統關聯法則產生的酒精飲料偏好的規則集合 69
表4-13酒精飲料偏好的消費者行為規則集合 70

圖目錄
圖1-1 研究流程圖 3
圖2-1 文獻探討架構圖 4
圖3-1約略集理論的上界與下界概念 32
圖3-2 資料節點串流圖 44
圖3-3分群後的非酒精飲料產品光譜圖 44
圖3-4探勘核心屬性後的非酒精飲料產品光譜圖 45
圖4-1品牌權益的概念模式 48
圖4-2考量品牌回想排序總值的酒精飲料品牌光譜圖 65
圖5-1順序尺度資料的階層約略關聯展開樹 75
參考文獻 1. Adhikari, A., & Rao, P.R. (2007). Enhancing quality of knowledge synthesized from multi-database mining. Pattern Recognition Letters, 298, 2312-2324.
2. Adhikari, A., & Rao, P.R. (2008). Synthesizing heavy association rules from different real data sources. Pattern Recognition Letters, 29, 59-71.
3. Aflori, C., & Craus, M. (2007). Grid implementation of the Apriori algorithm. Advances in Engineering Software, 38, 95-300.
4. Alisantoso, D., Khoo, L. P., Lee, I. B. H., & Fok, S. C. (2005). A rough set approach to design concept analysis in a design chain. The International Journal of Advanced Manufacturing Technology, 26, .427-435.
5. Arnott, D., & Pervan, G. (2008). Eight key issues for the decision support systems discipline. Decision Support Systems, 44(3), 657-672.
6. Au, W. H., & Chan, K. C. C. (1998). An Effective Algorithm for Discovering Fuzzy Rules in Relational Databases. Proc. of the 7th IEEE International Conf. on Fuzzy Systems, 2, 1314-1319.
7. Aydogan, E. K., & Gencer, C. (2008). Mining classification rules with Reduced MEPAR-miner Algorithm. Applied Mathematics and Computation, 195(2), 786-798
8. Ayouni, S., Ben Yahia, S., & Laurent, A. (2011). Extracting compact and information lossless sets of fuzzy association rules. Fuzzy Sets and Systems, 183, 1-25.
9. Barbagallo, S., Consoli, S., Pappalardo, N., Greco, S., & Zimbone, S. M. (2006). Discovering reservoir operating rules by a Rough Set approach. Water Resources Management, 20(1), 19-36.
10. Berzal, F., Cubero, J. C., Marín, N., & Serrano, J. (2001). TBAR: An efficient method for association rule mining in relational databases. Data and Knowledge Engineering, 37, 47-64.
11. Beynon, M. J. (2004). Stability of continuous value discretisation: an application within rough set theory. International Journal of Approximate Reasoning, 35, 29–53.
12. Bi, Y., Anderson, T., & McClean, S. (2003). A rough set model with ontologies for discovering maximal association rules in document collections. Knowledge-Based Systems, 16(5-6), 243-251
13. Bose, I. (2006). Deciding the financial health of dot-coms using rough sets. Information & Management, 43, 835-846.
14. Cabena, P., Hadjinaian, P. O., Stadler, R., Verhees, J., & Zanasi, A. (1997) Discovering Data Mining from Concept to Implementation, Prentice-Hall, Upper Saddle River, NJ.
15. Chan, C. C. (1998). A rough set approach to attribute generalization in data mining”, Information Sciences, 107, 169-176.
16. Chan, K. C. C., & Au, W. H. (1997). Mining Fuzzy Association Rules. Proc. of the 6th International Conf. on Information and Knowledge Management, 209-215. Doi:10.1145/266714.266898
17. Chang, H. J., Hung, L. P., & Ho, C. L. (2007). An anticipation model of potential customers’ purchasing behavior based on clustering analysis and association rules analysis. Expert Systems With Applications, 32 (3), 753-764.
18. Chang-chien, S. W., & Lu, T. C. (2001). Mining association rules procedure to support on-line recommendation by customers and products fragmentation. Expert Systems with Applications, 20, 325-335.
19. Chen, G., Wei, Q., Liu, D., & Wets, G. (2002), Simple association rules (SAR) and the SAR-based rule discovery. Computers and Industrial Engineering, 43, 721-733.
20. Chen, Y. L., & Weng, C. H. (2008). Mining association rules from imprecise ordinal data. Fuzzy Sets and Systems, 159, 460-474.
21. Chou, H.L., Wang, S.H., & Cheng, C.H. (2012). Discovering knowledge of hemodialysis (HD) quality using granularity-based rough set theory. Archives of Gerontology and Geriatrics, 54(1), 232-237.
22. Coenen, F., & Leng, P. (2007). The effect of threshold values on association rule based classification accuracy. Data & Knowledge Engineering, 60, 345-360.
23. Coenen, F., Goulbourne, G., & Leng, P. (2004). Tree Structures for Mining Association Rules. Data Mining and Knowledge Discovery, 8(1), 25¬-51.
24. Curry, B. (2004). Sampling aspects of rough set theory. Computational Management Science, 11, 151-178.
25. Desai, K. K., & Hoyer, W. D. (2000). Descriptive characteristics of memory based consideration sets: influence of usage occasion frequency and usage location familiarity. Journal of Consumer Research, 27, 309–323.
26. Dimitras, A. I., Slowinski, R., Susmaga, R., & Zopounidis, C. (1999). Business failure prediction using rough sets. European Journal of Operational Research, 114, 263-280.
27. Du, Y., Hu, Q., Zhu, P., & Ma, P. (2011). Rule learning for classification based on neighborhood covering reduction. Information Sciences, 181, 5457-5467.
28. Düntsch, I., & Gediga, G. (1998). Uncertainty measures of rough set prediction. Artificial Intelligence, 106, 109 -137.
29. Fan, B., & Zhang, P. (2009). Spatially enabled customer segmentation using a data classification method with uncertain predicates. Decision Support Systems, 47(4), 343-353.
30. Felix, R., & Ushio, T. (1999). Rules induction from inconsistent and incomplete data using rough sets. In: Proceedings of IEEE international Conference on Systems, Man, and Cybernetics, 5, 154–158.
31. Geng, L., & Chan, C. W. (2004). An algorithm for case generation from a database”, Applied Mathematics Letters, 17, 269-274.
32. Greco, S., Inuiguchi, M., & Slowinski, R. (2006). Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning, 41, 179-211.
33. Greco, S., Matarazzo, B., & Slowinski, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129, 1-47.
34. Griffin, G., & Chen, Z. (1998). Rough set extension of Tcl for data mining. Knowledge-Based Systems, 11, 249-253.
35. Grzymala-Busse, J. W., (2003). A Comparison of Three Strategies to Rule Induction from Data with Numerical Attributes. Electronic Notes in Theoretical Computer Science, 82, 1-9.
36. Hirota, K., & Pedrycz, W. (1996). Linguistic Data Mining and Fuzzy Modeling. Proc. of the 5th IEEE International Conf. on Fuzzy Systems, 3, 1488 - 1492.
37. Hit, M. A., Middlemist, R. D., & Mathis, R. L. (1986). Management: Concepts and effective practice. Saint Paul: West Publishing Company
38. Hong, T. P., Kuo, C. S., & Chi, S. C. (1999). A Data Mining Algorithm for Transaction Data with Quantitative Values, Seventh National Conf. on Fuzzy Theory and Its Applications, 874-878.
39. Hong, T. P., Kuo, C. S., & Wang, S. L (2004). A fuzzy AprioriTid mining algorithm with reduced computational time. Applied Soft Computing Journal, 5, 1-10.
40. Hong, T. P., Wang, T. T., Wang, S. L., & Chien, B. C. (2000). Learning a coverage set of maximally general fuzzy rules by rough sets. Expert Systems with Applications, 19, 97-103.
41. Hou, T. T. H., & Huang, C. C. (2004). Application of fuzzy logic and variable precision rough set approach in a remote monitoring manufacturing process for diagnosis rule induction. Journal of Intelligent Manufacturing, 15, 395-408.
42. Hsieh, N. C. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications, 27, 623-633.
43. Hsieh, N. C., & Hung, L. P. (2010). A data driven ensemble classifier for credit scoring analysis. Expert Systems with Applications, 37, 534-545.
44. Hu, Y. C. (2006). Determining membership functions and minimum fuzzy support in finding fuzzy association rules for classification problems. Knowledge-Based Systems, 19, 57-66.
45. Hu, Y. C., Chen, R. S., & Tzeng, G. H. (2002). Mining fuzzy association rules for classification problems, Computers and Industrial Engineering, 43, 735-750.
46. Hu, Y. C., Chen, R. S., & Tzeng, G. H. (2003). Discovering fuzzy association rules using fuzzy partition methods. Knowledge-Based Systems, 16, 137-147.
47. Huang, C. L., Li, T. S., & Peng, T. K. (2005). A hybrid approach of rough set theory and genetic algorithm for fault diagnosis. The International Journal of Advanced Manufacturing Technology, 27, 119-127.
48. Huang, K. Y., Chang, T. H., & Chang, T. C. (2011). Determination of the threshold value β of variable precision rough set by fuzzy algorithms. International Journal of Approximate Reasoning, 52, 1056-1072.
49. Islam, M. Z., & Brankovic, L. (2011). Privacy preserving data mining: A noise addition framework using a novel clustering technique. Knowledge-Based Systems, 24, 1214-1223.
50. Janssens, D., Wets, G., Brijs, T., & Vanhoof, K. (2005). Adapting the CBA algorithm by means of intensity of implication. Information Sciences, 173, 05-318.
51. Juhl, H. J., Esbjerg, L., Grunert, K. G., Bech-Larsen, T., & Brunsø, K. (2006). The fight between store brands and national brands—What's the score. Journal of Retailing and Consumer Services, 13(5), 331-338.
52. Kamakura, W. A., Wedel, M., De Rosa, F., & Mazzon, J. A. (2003). Cross-selling through database marketing: a mixed data factor analyzer for data augmentation and prediction. International Journal of Research in Marketing, 20(1), 45-65.
53. Kent, R. J., & Kellaris, J. J. (2001). Competitive interference effects in memory for advertising: are familiar brands exempt. Journal of Marketing Communications, 7(3), 159-169.
54. Khoo, L. P., & Zhai, L.Y. (2001). Multiconcept classification of diagnostic knowledge to manufacturing systems: analysis of incomplete data with continuous-valued attributes. International Journal of Production Research, 39, 3941–3957.
55. Khoo, L. P., Tor, S. B., & Zhai, L. Y. (1999). A Rough-Set-Based Approach for Classification and Rule Induction. The International Journal of Advanced Manufacturing Technology, 15(6), 438-444.
56. Kim, Y. S., & Yum, B. J. (2011). Recommender system based on click stream data using association rule mining. Expert Systems with Applications, 38, 13320-13327.
57. Kouris, I. N., Makris, C. H., & Tsakalidis, A. K. (2005). Using Information Retrieval techniques for supporting data mining. Data and Knowledge Engineering, 52(3), 353-383.
58. Kraft, D. H., Martín-Bautista, M. J., Chen, J., & Sánchez, D. (2003). Rules and fuzzy rules in text: concept, extraction and usage. International Journal of Approximate Reasoning, 34, 145-161.
59. Kryszkiewicz, M. (1998). Rough set approach to incomplete information systems. International Journal of Information Sciences, 112, 39-49.
60. Kryszkiewicz, M. (1999). Rules in incomplete information systems. International Journal of Information Sciences, 113, 271-292.
61. Laplante, P. A., & Neil, C. J.(2005). Modeling uncertainty in software engineering using rough sets. Innovations in Systems and Software Engineering, 1, 71-78.
62. Lee , J. W. T., Yeung, D. S., & Tsang, E. C. C. (2006). Rough sets and ordinal reducts Soft Computing, 10, 27-33.
63. Lee, A. J. T., Lin, W. C., & Wang, C. S. (2006). Mining association rules with multi-dimensional constraints. The Journal of Systems & Software, 79, 79-92.
64. Lee, J. S., & Back, K. J. (2008). Attendee-based brand equity. Tourism Management, 29, 331–344.
65. Li, J. (2007). Generalized topologies generated by subbases. Acta Mathematica Hungarica, 114, pp.1-12.
66. Li, J. Y., Shen, H., & Topor, R. (2002). Mining the optimal class association rule set. Knowledge-Based Systems, 15, 399-405.
67. Li, R., & Wang, Z. O. (2004). Mining classification rules using rough sets and neural networks. European Journal of Operational Research, 157, 439-448.
68. Li, T., Ruan, D., Geert, W., Song, J., & Xu, Y. (2007). A rough sets based characteristic relation approach for dynamic attribute generalization in data mining. Knowledge-Based Systems, 20, 485-494.
69. Li, W. H., Chen, S. B., & Wang, B. (2008). A variable precision rough set based modeling method for pulsed GTAW. The International Journal of Advanced Manufacturing Technology, 36, 1072-1079.
70. Li, Y. C., Yeh, J. S., & Chang, C. C. (2007). MICF: An effective sanitization algorithm for hiding sensitive patterns on data mining. Advanced Engineering Informatics, 21, 269-280.
71. Lian, W., Cheung, D. W., & Yiu, S.M., (2005). An efficient algorithm for finding dense regions for mining quantitative association rules. Computers and Mathematics with Applications, 50, 471-490.
72. Liang, J., & Xu, C. (2000). Uncertainty measures of roughness of knowledge and rough sets in incomplete information systems. Intelligent Control and Automation Proceedings of the World Congress, 4, 2526-2529.
73. Liao, S. H., Ho, H. H., & Yang, F. C. (2010). Ontology-based data mining approach implemented on exploring product and brand spectrum. Expert Systems with Applications, 36 (9), 11730-11744.
74. Lingras, P., & West, C. (2004). Interval set clustering of web users with rough K-means. Journal of Intelligent Information Systems, 23, 5–16.
75. Lingras, P., Hogo, M., Snorek, M., & West, C. (2005). Temporal analysis of clusters of supermarket customers: conventional versus interval set approach. Information Sciences, 172, 215-240.
76. Liou, James J. H., Tang, C. H. Yeh, W. C., & Tsai, C. Y. (2011). A decision rules approach for improvement of airport service quality. Expert Systems with Applications, 38, 13723-13730.
77. Liou, James J.H., Yen, L., & Tzeng, G. H. (2010). Using decision rules to achieve mass customization of airline services. European Journal of Operational Research, 205(3), 680-686.
78. Liu, G., & Zhu, Y. (2006). Credit Assessment of Contractors: A Rough Set Method. Tsinghua Science & Technology, 11, 357-362.
79. Liu, M., Chen, D., Wu, C., & Li, H. (2006). Fuzzy reasoning based on a new fuzzy rough set and its application to scheduling problems. Computers and Mathematics with Applications, 51, 1507–1518.
80. Liu, Y. Z., Jiang, Y. C., Liu, X., & Yang, S. L. (2008). CSMC: A combination strategy for multi-class classification based on multiple association rules. Knowledge-Based Systems, 21, 786-793.
81. Luo, J. X., & Shao, H. H. (2006). Developing soft sensors using hybrid soft computing methodology: a neurofuzzy system based on rough set theory and genetic algorithms. Soft Computing, 10(1), 54-60.
82. Mikhailitchenko, A., Javalgi, R. G., Mikhailitchenko, G., & Laroche, M. (2009). Cross-cultural advertising communication: Visual imagery, brand familiarity, and brand recall. Journal of Business Research, 62, 931–938.
83. Mitra, P., Mitra, S., & Pal, S. K. (2001). Evolutionary Modular MLP with Rough Sets and ID3 Algorithm for Staging of Cervical Cancer. Neural Computing & Applications, 10, 67-76.
84. Mollestad, T., & Komorowski, J. (1999). A rough set framework for mining propositional default rules. In: Skowron A (ed) Rough fuzzy hybridization Springer, Berlin Heidelberg New York, 233–262.
85. Moustakides, G. V., & Verykios, V. S., (2008). A MaxMin approach for hiding frequent itemsets. Data & Knowledge Engineering, 65, 75-89.
86. Nanopoulos, A., Papadopoulos, A. N., & Manolopoulos, Y. (2007). Mining association rules in very large clustered domains. Information Systems, 32, 649-669.
87. Palshikar, G. K., Kale, M. S., & Apte, M. M. (2007). Association rules mining using heavy itemsets. Data & Knowledge Engineering, 61, 93-113.
88. Parmar, D., Wu, T., & Blackhurst, J. (2007). MMR: An algorithm for clustering categorical data using Rough Set Theory. Data & Knowledge Engineering, 63, 879-893.
89. Pawlak, Z. (1982). Rough Sets. International Journal of Information and Computer Science, 11, 341-356.
90. Pawlak, Z. (2002). Rough sets and intelligent data analysis. Information Sciences, 147, 1-12.
91. Pawlak, Z. (2002). Rough sets, decision algorithms and Bayes' theorem. European Journal of Operational Research, 136, 181-189.
92. Pedrycz, W., (1998). Fuzzy Set Technology in Knowledge Discovery. Fuzzy Sets and Systems, 98 (3), 279-290.
93. Peng, Y., Zhang, Y., Tang, Y., & Li, S. (2011). An incident information management framework based on data integration, data mining, and multi-criteria decision making. Decision Support Systems, 51(2), 316-327.
94. Plasse, M., Niang, N., Saporta, G., Villeminot, A., & Leblond, L. (2007). Combined use of association rules mining and clustering methods to find relevant links between binary rare attributes in a large data set. Computational Statistics and Data Analysis, 52, 596-613.
95. Robbins, S. P., & Decenzo, David. A. (2008). Fundamentals of Management: Essential Concepts and Applications, Prentice Hall.
96. Rozenberg, B., & Gudes, E. (2006). Association rules mining in vertically partitioned databases. Data & Knowledge Engineering, 59(2), 378-396.
97. Sadoyan, H., Zakarian, A., & Mohanty, P. (2006). Data mining algorithm for manufacturing process control. The International Journal of Advanced Manufacturing Technology, 28, 342-350.
98. Seilhimer, S. D. (1988). Current state of decision support system and expert system technology. Journal of Systems Management, 39(8), 14-19.
99. Shen, L., & Loh, H.T. (2004). Applying rough sets to market timing decisions. Decision Support Systems, 37(4), 583-597.
100. Shi, F., Lou, Z.L., Zhang, Y.Q., & Lu, J.G. (2003). An Improved Rough Set Approach to Design of Gating Scheme for Injection Moulding. The International Journal of Advanced Manufacturing Technology, 21, 662-668.
101. Sohn, S.Y., & Kim, Y.S. (2008). Searching customer patterns of mobile service using clustering and quantitative association rule. Expert Systems with Applications, 34, 1070-1077.
102. Thabtah, F., Cowling, P., & Hammoud, S. (2006). Improving rule sorting, predictive accuracy and training time in associative classification. Expert Systems with Applications, 31, 414-426.
103. Tsay, Y. J., & Chang-Chien, Y. W. (2004). An efficient cluster and decomposition algorithm for mining association rules. Information Sciences, 160, 161-171.
104. Tsay, Y. J., & Chiang, J. Y. (2005). CBAR: an efficient method for mining association rules. Knowledge-Based Systems, 18, 99-105.
105. Tseng, M. C., & Lin, W. Y. (2007). Efficient mining of generalized association rules with non-uniform minimum support. Data & Knowledge Engineering, 62, 41-64.
106. Tsumoto, S. (1998). Extraction of Experts Decision Rules from Clinical Databases Using Rough Set Model. Intelligent Data Analysis, 2, 215-227.
107. Turban, E., Aronson, J. E., Liang, T. P., & Sharda, R. (2007). Decision Support and Business Intelligence Systems, USA: Pearson Prentice Hall, Eighth Edition.
108. Vahidov, R., & Ji, F. (2005). A diversity-based method for infrequent purchase decision support in e-commerce. Electronic Commerce Research and Applications, 4(2), 143-158.
109. Walczak, B., & Massart, D. L. (1999). Rough sets theory. Chemometrics &Intelligent Laboratory Systems, 47(1), 1-16.
110. Wang, Y. F. (2003). Mining stock price using fuzzy rough set system. Expert Systems with Applications, 24, 13-23.
111. Wei, J.M., Yi, W. G., & Wang, M. Y. (2006). Novel measurement for mining effective association rules. Knowledge-Based Systems, 19 (8), 739-743.
112. Wierenga, B., & Oude Ophuis, P.A.M. (1997). Marketing decision support systems: Adoption, use, and satisfaction. International Journal of Research in Marketing, 14, 275-290.
113. Wu, C. D., Zhang, Y., Li, M. Xin., & Yue, Y. (2006). A rough set GA-based hybrid method for robot path planning. International Journal of Automation and Computing, 3, 29-34.
114. Wu, W. Z., & Leung, Y. (2011). Theory and applications of granular labelled partitions in multi-scale decision tables. Information Sciences, 181, 3878-3897.
115. Yan, P., & Chen, G. (2005). Discovering a cover set of ARsi with hierarchy from quantitative databases. Information Sciences, 173, 319-336.
116. Yang, G., Mabu, S., Shimada, K., & Hirasawa, K. (2011). A novel evolutionary method to search interesting association rules by keywords. Expert Systems with Applications, 38, 13378-13385.
117. Yin, J. L., Li, D. Y., & Peng, Y. H. (2006). Knowledge acquisition from metal forming simulation. The International Journal of Advanced Manufacturing Technology, 29, 279-286.
118. Yun, H., D. Ha, B. Hwang, & Ryu, K. (2003). Mining association rules on significant rare data using relative support. Journal of Systems and Software, 67, 181-191.
119. Zhong, N., Dong, J. Z., & Ohsuga, S. (2003). Meningitis data mining by cooperatively using GDT-RS and RSBR. Pattern Recognition Letters, 24, 887-894.
120. Ziarko, W. (1993). Variable precision rough set model. Journal of computer and system Science, 46, 39-59.
121. Zwass, V. (1999). Structure and macro-level impacts of electronic commerce, in: K. Kendall (Ed.), Emerging Information Technologies: Improving Decisions, Cooperation, and Infrastructure, Sage, Beverly Hills, CA, 289-315.
122. IT IS智網:http://www.itis.org.tw/index.jsp
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-01-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-01-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信