淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2908201810591000
中文論文名稱 具清理功能之雙蜻蜓翼微流道顆粒捕捉器設計
英文論文名稱 Design of a Reusable Particle-Captured Microchannel with Dual Dragonfly Wings
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 106
學期 2
出版年 107
研究生中文姓名 王邦倫
研究生英文姓名 Pang-Lun Wang
學號 605370179
學位類別 碩士
語文別 中文
口試日期 2018-06-29
論文頁數 78頁
口試委員 指導教授-楊龍杰
委員-李其源
委員-鄭元良
中文關鍵字 生物晶片  蜻蜓翼  渦旋  微流道 
英文關鍵字 Biochips  Dragonfly wing  Vortex  Microfluidic 
學科別分類 學科別應用科學機械工程
中文摘要 具蜻蜓翼微結構之微流道,其皺摺凹陷處產生渦旋的特性,已證實可捕捉微顆粒。本研究針對具攻角、雙蜻蜓翼之微流道晶片,先以COMSOL Multiphysics有限元素分析軟體之粒子流模組,預測微顆粒大量貼附位置,並設置第二出口,藉由搭配釋放1 μm、10 μm 以及5 μm、20 μm兩種大小不一的粗細顆粒組合,計量第二出口的粗細粒子分佈百分比,以闡明本研究設計晶片的粗細粒子分離能力。
本文也透過SU-8黃光微影製程,搭配聚二甲基矽氧烷PDMS翻模製程,利用電漿表面處理使PDMS與載玻片做結合,成功製作出具第二出口之雙蜻蜓翼微流道晶片,接著進行微球體灌流實驗,確認在3分鐘後,開始有顆粒吸附;6~9分鐘後,並有顆粒阻塞第二蜻蜓翼微流道支流,可順利開啟第二出口清理阻塞顆粒。本微流道晶片未來將預期可進行不同大小顆粒之收集與分離。
英文摘要 Microfluidic chip with dual dagonfly wing structure microstructures, which have vortex generated at the wrinkle grooves the dragonfly wings, have been shown to capture particles. In this work, for the microfluidic chip with angle of attack and dual dragonfly wing structures, the particle flow module of COMSOL Multiphysics finite element analysis software is used to predict the attachment position of a large number of particles as well as the second outlet. "1 μm+10 μm" and "5 μm+20 μm" combination of coarse and fine particles of different sizes where released to, measure the distribution percentage of the large and fine particles at the second outlet. The result indicates the separation ability of the large and fine particles of the flow chip designed in this study.
The popular polydimethylsiloxane (PDMS) soft lithography was successfully used to fabricate the new particle-captured chip with dual dragonfly wings and the 2nd-exit flow channel. Particle filling experiment showed that after 3min, particles start to attach on the channel wall; particle also block the branch at the 2nd dragonfly wing or the 2nd-exit position after 6-9 min. More experiment about the separation of big and small particles will be implemented in the future promisingly.
論文目次 目錄
中文摘要 III
英文摘要 .IV
目錄 VI
圖目錄…………………………………...………………………..VIII
表目錄 .XIV
第一章 緒論 .1
1-1前言 1
1-2 研究動機 3
1-3 文獻回顧 4
1-4 研究目的 8
第二章 微流道模擬計算 10
2-1計算流體力學COMSOL Multiphysics 10
2-1-1模組功能介紹與建立 11
2-1-2微流道外型、控制方程式與基本理論解 13
2-2 具清理功能之雙蜻蜓翼模擬20
2-2-1 微流道模擬設計與相關流動條件設定 21
2-2-2使用COMSOL-Multipysics求解無粒子流動 27
2-2-3 使用COMSOL-Multiphysics求解粒子流動 28
2-3模擬實驗探討 41
第三章 具清理功能之雙蜻蜓翼微流道實驗 53
3-1 光罩設計 53
3-2基本光罩製造技術……………………………………..…54
3-3 具清理功能之雙蜻蜓翼微流道 55
3-3-1晶片清潔 55
3-3-2 微影製程 56
3-4蜻蜓翼結構之微流道製程 62
3-4-1 矽晶圓微流道製作 62
3-4-2 PDMS翻模 64
3-4-3 PDMS清潔步驟 65
3-4-4 電漿清洗機 65
3-4-5動態實驗設備………………………………………67
第四章 結論 69
4-1總整結果 69
4-2後續工作 70
參考文獻..........................................................................................72


圖目錄
圖1-1細胞抓取裝置.....................................................................................5
圖1-2入流角50°蜻蜓翼微流道抓取情形...................................................7
圖1-3入流角60°蜻蜓翼微流道抓取情形………………………………...7
圖1-4蜻蜓翼階梯式結構(線寬=20μm)之速度流線場…………………...8
圖1-5微球體動態實驗於微流道之「蜻蜓翼階梯型」內灌流情況:(i)3分鐘;(ii)4 分鐘 24 秒;(iii)6 分鐘……………………………………..…...8
圖2- 1計算流體力學COMSOL模組分類………………………..……...12
圖2- 2流體粒子交互作用……………………………………………......13
圖2- 3具蜻蜓翼流速0.52ml/min雷諾數0.54......……..........…………...14
圖2- 4無具蜻蜓翼流速0.52ml/min雷諾數0.54..................................... 14
圖2- 5直流道流速0.52ml/min雷諾數0.54...............................................14
圖2- 6具蜻蜓翼流速0.1ml/min雷諾數1.03 ...........................................15
圖2- 7無具蜻蜓翼流速0.1ml/min雷諾數1.03 ………………………...15
圖2- 8直流道流速0.1ml/min雷諾數1.03.................................................15
圖2- 9具蜻蜓翼流速0.2ml/min雷諾數2.07.............................................15
圖2- 10無具蜻蜓翼流速0.2ml/min雷諾數2.07 ……………………….15
圖2-11直流道流速0.2ml/min雷諾數2.07................................................15
圖2-12具蜻蜓翼流速0.3ml/min雷諾數3.11........………………………15
圖2-13無具蜻蜓翼流速0.3ml/min雷諾數3.11....................................…16
圖2-14直流道流速0.3ml/min雷諾數3.11.............................………...…16
圖2-15具蜻蜓翼流速0.4ml/min雷諾數4.15..……………………..……16
圖2-16無具蜻蜓翼流速0.4ml/min雷諾數4.15.........……………….…..16
圖2-17直流道流速0.4ml/min雷諾數4.15..............…………………..…16
圖2-18具蜻蜓翼流速13.65ml/min雷諾數141.8......……………………17
圖2-19無具蜻蜓翼流速13.65ml/min雷諾數141.8………………..……17
圖2-20直流道流速13.65ml/min雷諾數141.8....………………..………17
圖2-21具蜻蜓翼粒子大小1μm、10μm軌跡.......…………………...……18
圖2-22具蜻蜓翼粒子大小5μm、20μm軌跡..............................................19
圖2-23無具蜻蜓翼粒子大小1μm、10μm軌跡..........................................19
圖2-24無具蜻蜓翼粒子大小5μm、20μm軌跡..........................................19
圖2-25載入2D幾何圖形...........................................................................22
圖2-26 設定角度: (度數)、長度單位: (微米)、拉伸: (80微米).................23
圖2-27 層流設置壁1: 微流道整體結構為壁1........................................23
圖2-28壁1層流設置內部壁: 雙蜻蜓翼結構為內部壁…………….…..24
圖2-29層流設置入口:流速(0.52m/s)……………………………….……24
圖2-30層流設置出口:層流流出…………………………………………25
圖2-31設定粒子入口:釋放數量(100顆) 質量流率[624mg/s]……….…25
圖2-32最大元素尺寸40微米最小元素尺寸5微米……………….……26
圖2-33最大元素尺寸10微米最小元素尺寸1微米……………….……26
圖2-34計算研究步階設定:時間單位:微秒(μs) 時間: range(0,10,200000)…………………………………………………………….......….27
圖2-35階梯式微流道(無清理功能)之速度流線………………....……..28
圖2-36階梯式微流道(無清理功能)壓力圖……………………………..28
圖2-37(a)第二出口(關閉)最易堵塞處流線圖…………………………...29
圖2-38(a)第二出口(關閉)最易堵塞處壓力圖………….………………..30
圖2-39(a)第二出口(開啟)最易堵塞處流線圖…………………….……..30
圖2-40(a)第二出口(開啟)最易堵塞處壓力圖………….…………...…...31
圖2-41(b)第二出口(關閉)最易堵塞處往前移50微米流線圖………….31
圖2-42(b)第二出口(關閉)最易堵塞處往前移50微米壓力圖………….32
圖2-43(b)第二出口(開啟)最易堵塞處往前移50微米流線圖………….32
圖2-44(b)第二出口(開啟)最易堵塞處往前移50微米壓力圖………….33
圖2-45(c)第二出口(關閉)最易堵塞處往後移50微米流線圖…………..33
圖2-46(c)第二出口(關閉)最易堵塞處往後移50微米壓力圖………….34
圖2-47(c)第二出口(開啟)最易堵塞處往後移50微米流線圖………….34
圖2-48(c)第二出口(開啟)最易堵塞處往後移50微米壓力圖………….35
圖2-49(d)第二出口(關閉)倒圓角25度最易堵塞處流線圖……….…....35
圖2-50(d)第二出口(關閉)倒圓角25度最易堵塞處壓力圖…………….36
圖2-51(d)第二出口(開啟)倒圓角25度最易堵塞處流線圖………….....36
圖2-52(d)第二出口(開啟)倒圓角25度最易堵塞處壓力圖………….....37
圖2-53(e)第二出口(關閉)倒圓角25度最易堵塞處往前移50微米流線圖…………………………………………………………………………..37
圖2-54(e)第二出口(關閉)倒圓角25度最易堵塞處往前移50微米壓力圖………………………………………………………………………….38
圖2-55(e)第二出口(開啟)倒圓角25度最易堵塞處往前移50微米流線圖………………………………………………..………………………....38
圖2-56(e)第二出口(開啟)倒圓角25度最易堵塞處往前移50微米壓力圖………………………………………………………………….……....39
圖2-57(f)第二出口倒圓角25度最易堵塞處往後移50微米流線圖……………………………………………………..……………...…….39
圖2-58(f)第二出口倒圓角25度最易堵塞處往後移50微米壓力圖………………………………………………………..……………...….40
圖2-59(f)第二出口倒圓角25度最易堵塞處往後移50微米壓力圖……………………………………………………………………….….40
圖2-60(f) 第二出口倒圓角25度最易堵塞處往後移50微米壓力圖……………………………………………………………..……...…….40
圖2-61(a)具清理功能之階梯式微流道施放1μm與10μm……………...……………………………………………………….42
圖2-62(a)具清理功能之階梯式微流道施放5μm與20μm………………...…………………………………………………….43
圖2-63(b)具清理功能之階梯式微流道施放1μm與10μm…………………................................................................................43
圖2-64(b)具清理功能之階梯式微流道施放5μm與20μm………………...…………………………………………………….44
圖2-65(c)具清理功能之階梯式微流道施放1μm與10μm………………...…………………………………………………….44
圖2-66(c)具清理功能之階梯式微流道施放5μm與20μm………………………………………………………………………45
圖2-67(d)具清理功能之階梯式微流道施放1μm與10μm…………………………………………………………………....…45
圖2-68(d)具清理功能之階梯式微流道施放5μm與20μm………………………………………………………………………46
圖2-69(e)具清理功能之階梯式微流道施放1μm與10μm………………………………………………………………………46
圖2-70(e)具清理功能之階梯式微流道施放5μm與20μm………………...…………………………………………………….47
圖2-71(f)具清理功能之階梯式微流道施放1μm與10μm………………………………………………………………………47
圖2-72(f)具清理功能之階梯式微流道施放5μm與20μm……………....................................................................................…48
圖2-73分佈區塊示意圖…………………………………………………49
圖 2-74中間步階100(μs)………………………………………………..51
圖 2-75中間步階10(μs)…………………………………………………52
圖 2-76中間步階1(μs)………………………………………………......52
圖3- 1 本文微流道晶片之光罩設計圖 ……………................................54
圖3- 2正光阻與負光阻之程序………………………………….…...….57
圖3- 3光阻塗佈機 ………………………………………...………………..….…59
圖3- 4光罩對準曝光機 ………………………………………………….60
圖3- 5蜻蜓翼結構之微流道製作流程 …………………………….……62
圖3- 6聚二甲基矽氧烷之化學結構 …………………………………….64
圖3- 7本實驗室之電漿清理機 …………………………………………..66
圖3-8雷射掃描共軛焦顯微鏡…………………………………….....…..68


表目錄
表2-1有蜻蜓翼之抓取率……………………………………….......19
表2-2無蜻蜓翼之抓取率…………….………………………..........19
表2-3不同之設計粒子分流率………………………………..….…50
表4-1微流道內微矽膠球體貼附變化………………………...……70
參考文獻 參考文獻
[1] 楊龍杰,掌握微機電,滄海書局,2007年。
[2] 吳程遠(譯),“ 別鬧了!費曼先生 ”,台北市天下文化出版。 ( 原著:理察.費曼). 1993。
[3] Y. C. Tai, L. S. Fan, and R. S. Muller, “ IC-process micro-motors: design, technology, and testing, ” Proc. of the 1st IEEE MEMS(or Micro-Tele-Operated Robotics Workshop), 20-22 Feb., Salt Lake City, USA, pp.1-6, 1989.
[4] C. Liu, J. B. Huang, Z. Zhu, F. Jiang, S. Tung, Y. C. Tai, and C. M. Ho, “ A micromachined flow shear-stress sensor based on thermal transfer principles, ” Journal of Microelectromechanical Systems, 8 (1), pp. 90-98, 1999.
[5] C. Liu, T. Tsao, G. B. Lee, J.T.S. Leu, Y.W. Yi, Y. C. Tai, and C. M. Ho, “ Out-of-plane magnetic actuators with electroplated permalloy for fluid dynamics control, ” Sensors and Actuators, A: Physical, 78 (2), pp. 190-197, 1999.
[6] P. Yao, G. J. Schneider, and D. W. Prather, “ Three-dimensional lithographical fabrication of microchannels, ” Journal of Microelectromechanical Systems, 14 (4), pp. 799-805, 2005.
[7] J. M. Wang and L. J. Yang, “ Electro-hydro-dynamic (EHD) micropumps with electrode protection by parylene and gelatin, ” Tamkang Journal of Science and Engineering, 8 (3), pp. 231-236, 2005.
[8] 劉冠君 ,“ 圓管挫曲式微型閥門之研製 ”, 淡江大學機械與機電工程學系碩士論文,2006 年 6 月。
[9] S. Shoji and M. Esashi, “ Microflow devices and systems, ” Journal of Micromech. Microeng., 4, pp. 157-171, 1994.
[10] G. W. Gross, B. K. Rhoades, H. M. E. Azzazy and M. C. Wu, “ The use of neuronal networks on multielectrode arrays as biosensors, ” Biosensors and Bioelectronics, 10, (6-7), pp. 553-567, 1995.
[11] 李國賓,“ 下一波生物晶片-微流體生醫晶片 ”,科學發展 月刊,385期, pp.72-77, 2005.
[12] 張文燦,李金德,“ 肝癌患者接受肝臟移植後復發之可能原因”,高雄醫師會誌 Journal of Kaohsiung Medical Association, 18(2), pp. 142-145, 2010.
[13] Cancer Facts & Figures, Cancer Practice, 8(3), pp. 9-22, 2010.
[14] J. Yang, S. A. Mani, J. L. Donaher, S. Ramaswamy, R. A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson, and R.A.Weinberg, “ Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis, ” Cell, 117 (7), pp. 927-939, 2004.
[15] P.S. Steeg, “ Metastasis suppressors alter the signal transduction of cancer cells, ” Nature Reviews Cancer, 3 (1), pp. 55-63, 2003.
[16] P. Carmeliet and R. K. Jain, “ Angiogenesis in cancer and other diseases, ” Nature, 407, pp. 249-257, 2000.
[17] 愛醫網http://tw.medvov.com/view.aspx?lid=e9e1b5bd-7e1f-486b-9cea-56b4230bce18
[18] 林彥祺, “新型渦流捕捉顆粒晶片之設計” , 淡江大學機械與機電工程學系碩士論文,2015 年 6 月。
[19] 邱志軒,“新型渦流捕捉顆粒晶片之研製”, 淡江大學機械與機電工程學系碩士論文,2016年 6 月。
[20] Nokia Bell Labs Team “COMSOL Multiphysics Simulation 2017,” IEEE Spectrum, Oct., 5, 2017.
[21] P. L. Wang, J. S. Ciou, L. J. Yang, Y. C. Chung, N. Kapri, E. Balasubramanian, “A new vortex-based device using dragonfly wing to reduce the chip size,” Proceedings of The 12th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS 2017), LA, USA, Apr. 9-11.
[22] K. Hoshino, “ Microchip-based immune-magnetic detection of circulating tumor cells, ” Lab on a Chip, 11, pp. 3449¬¬–3457, 2011.
[23] J. H. Kang, “ A combined micro-magnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells, ” Lab on a Chip, 12, pp. 2175–2181, 2012.
[24] E. Sollier, “ Size-selective collection of circulating tumor cells using Vortex technology, ” Lab on a Chip,14, pp. 63-77,2014.
[25] J. Koo and C. Kleinstreuer, “ Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects, ” J. Micromech. Microeng., 13, pp. 568–579, 2003.
[26] S. Gupta, A. C. Baker and W. C. Tang, “Microfluidic platforms for capturing circulating tumor cells, ”Proceedings of the 7th IEEE International Conference on Nano/Molecular Medicine and Engineering, November 10-13, pp. 1-4, 2013.
[27] A. Adams et al., “ Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor, ” Journal of the American Chemical Society., 130, pp. 8633 –8641, 2008.
[28] S. Nagrath et al., “ Isolation of rare circulating tumor cells in cancer patients by microchip technology, ” Nature, 450(20), pp. 1235–1239, 2007.
[29] B. Kesel,“Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils, ” The Journal of Experimental Biology, 203, pp. 3125–3135, 2000.
[30] M. Tamai, Z. Wang, G. Rajagopalan, H. Hu and G. He,“ Aerodynamic performance of a corrugated dragonfly airfoil compared with smooth airfoils at low Reynolds numbers, ” The 45th AIAA Aerospace Sciences Meeting, AIAA-2077-0483, 2007.
[31] 台灣元利儀器股份有限公司 OLS4100 http://www.yuanyu.tw/yuanli/productDetail.php
[32] S. Sunahiro et al., “Pinched flow fractionation devices for size- and density-dependent separation of particles utilizing centrifugal pumping,” The 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, October 12 - 16, 2008, San Diego, California, USA, pp.164-166, 2008.
[33] P.D. Potdar, and N.K. Lotey. “Role of circulating tumor cells in future diagnosis and therapy of cancer,” J. Cancer Metastasis Treat, 1, pp.44-56, 2015.
[34] M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Analytic Chemistry ,76, pp.5465-5471, 2004.
[35] L.J. Yang, and Y.C. Ou, The micro patterning of glutaraldehyde(GA)-crosslinked gelatin and its application to cell-culture. Lab Chip 5(9), pp.979-984, 2005.
[36] L.J. Yang, C.W. Liu, J.C. Liang, and H.C. Han, “Dynamic cell attachment of HepG2 in a microchannel.” The 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS 2013), Suzhou, China, Apr. 7-11, pp.52-55, 2013.
[37] J. Zhou, and I. Papautsky, Fundamentals of inertial focusing in microchannels, Lab Chip, 13(6), pp.1121-1132, 2013.
[38] C.H. Lin, C.Y. Lee, and L.M. Fu, “Continuous particle sorting utilizing cascaded squeeze-jumping effect under microfluidic configuration,” The 19th International Conference on Micro Electro Mechanical Systems (IEEE NEMS 2006), Istanbul, Turkey, 22-26, Jan., pp.206-209, 2006.
[39] C. Koehler, et al., “3D reconfiguration and analysis of wing deformation in free-flying dragonflies,” The Journal of Experimental Biology 215, pp.3018-3027, 2012.
[40] A. Kumar, et al, “Analysis and optimization of dragonfly wing,” Proceedings of the 2016 COMSOL Conference (User Presentations) in Bangalore, India, 2016.
[41] A. Kumar, K. Sinha, R.H. Rivera, and M.D. Graham, “Segregation phenomena in flowing suspension of deformable particles: toward an understanding of cell and particle dynamics in blood flow,” The 23rd International Congress of Theoretical and Applied Mechanics (ICTAM 2012), Beijing, China, Aug. 19-24, paper no. FM01-008, 2012.
[42] J.M. Martel, and M. Toner, “Inertial focusing in microfluidics,” Annu. Rev. Biomed. Eng. 16, 371-396, 2014.
[43] M. N. De Silva, R. Desai and D. J. Odde, “Mirco-patterning of anomal cells on PDMS substractes in the presence of serum without use of adhesion inhibitors, ” Biomedical Microdevices,(6)3, pp. 219-222, 2004.
[44] F.J. Galindo-Rosales, L. Campo-Deaño, P.C. Sousa, V.M. Ribeiro, S.N. Mónica-Oliveira, M.A. Alves, F.T. Pinho, “Viscoelastic instabilities in micro-scale flows,” Experimental Thermal and Fluid Science 59, pp.128-139, (2014).
[45] D.R. Gossett, W.M. Weaver, A.J. Mach, S.C. Hur, H.T. Tse, W. Lee, H. Amini, D. Di-Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397(8), pp.3249-3267, 2010.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-08-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-08-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信