§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2908201613362200
DOI 10.6846/TKU.2016.01055
論文名稱(中文) 聚偏二氟乙烯中空纖維膜應用於海水淡化之研究
論文名稱(英文) A study on performance of PVDF hollow fiber in membrane distillation
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 廖一錚
研究生(英文) Yi-Jheng Liao
學號 603400374
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2016-07-05
論文頁數 75頁
口試委員 指導教授 - 鄭東文
委員 - 黃國楨
委員 - 童國倫
委員 - 莊清榮
委員 - 鄭東文
關鍵字(中) 聚偏二氟乙烯
中空纖維膜
直接接觸式蒸餾
真空式蒸餾
關鍵字(英) poly(vinylidene fluoride)
hollow fiber membrane
vacuum membrane distillation
direct contact membrane distillation
第三語言關鍵字
學科別分類
中文摘要
本研究以實驗室合成之聚偏二氟乙烯(poly(vinylidene fluoride), PVDF)中空纖維膜組裝之模組進行直接接觸式薄膜蒸餾(direct contact membrane distillation)及真空式薄膜蒸餾(vacuum membrane distillation)實驗,進料溶液為3.5 wt%之鹽水溶液,操作參數為進料溫度(50~70 oC)及進料速率(0.2~0.5 L/min),真空式薄膜蒸餾其真空度為持在8 kPa,直接接觸式薄膜蒸餾之冷水側溫度為13 oC及進料速率0.4 L/min。
製備中空纖維膜的條件為改變芯液之組成,其中共4種條件分別為20、30、40、60 wt%磷酸三乙酯(TEP)水溶液,藉由硬性換成軟性的方式來改善中空纖維膜內表面結構。從SEM解析得知隨著磷酸三乙酯(TEP)在芯液的比例增加薄膜內表面皮層結構不易形成,且大孔洞數變多。
真空式及直接接觸式薄膜蒸餾操作中,提高進料溫度能明顯增加滲透通量,但極化現象也較嚴重,此外薄膜於真空式薄膜蒸餾會有fouling現象,造成氯化鈉顆粒析出於殼測薄膜表面,此種現象會造成薄膜之有效面積減少,降低純水通量。增加進料流率對於滲透通量之提升較不顯著,但對於高溫進料操作之溫度極化現象具有較明顯改善效果。
其結果顯示隨著芯液中TEP wt%的比例增加,所製成的薄膜在直接接觸式薄膜蒸餾有較高的通量,在真空式薄膜蒸餾中更加明顯。孔洞較大的薄膜對於進料溫度及速率的增加在通量的提升效果高於小孔洞之薄膜。此外短模組在真空及直接接觸式薄膜蒸餾操作中的滲透通量都明顯高於長模組。
英文摘要
In this study, laboratory made poly(vinylidene fluoride), PVDF, hollow fiber membranes were used in vacuum and direct contact membrane distillation of saline solution. The feed solution was 3.5 wt% NaCl solution, the operating parameters included feed temperature (50 ~ 60 oC), feed rate (0.2 ~ 0.5 L / min), the vacuum pressure in the permeate side was controlled at 8 kPa for vacuum membrane distillation, and cooling water controlled at 13 oC with rate 0.4 L / min for direct contact membrane distillation. 
The hollow fiber membranes were prepared by varying the composition of the bore liquid. There were four conditions, which 20、30、40、60 wt% triethylphosphate (TEP) solution. The inner skin of the hollow fiber membrane was improved by changed the bore liquid from hard coagulation (water bath) to soft coagulation. Analysis the structure by SEM morphology, which membrane have large pore size in the inner surface by increasing the weight percent of TEP in bore liquid.
In the vacuum and direct contact membrane distillation experiment, raising the temperature of the feed can significantly increase the flux, but the polarization phenomena become more serious. In addition, the membrane surface will have fouling phenomenon that NaCl was separated out to the shell side membrane surface in vacuum membrane distillation. This situation will cause decrease the effective area of the membrane and reduce the flux. Increasing feed flow rate has a finite effect on increasing the flux, but the temperature polarization phenomenon can be reduced by the feed flow rate as higher feed temperature. 
The experimental results showed the higher flux performance on direct contact membrane distillation which prepared by higher weigh percent of TEP bore liquid solution obviously in the vacuum membrane distillation. The large pore size membrane flux which increased by higher inlet temperature more obvious then the small one. Furthermore, the short module have higher flux then long module in the same inlet condition.
第三語言摘要
論文目次
目錄
第一章	1
1.1前言	1
1.2薄膜的應用	2
1.3薄膜分離	5
1.4薄膜蒸餾	7
1.5研究之目的	9
第二章	13
2.1薄膜蒸餾法	13
2.1.1直接接觸式薄膜蒸餾	13
2.1.2空氣間隙式薄膜蒸餾	14
2.1.3真空式薄膜蒸餾	14
2.2殼管式模組	16
2.3薄膜之孔隙結構及性質	17
2.4影響滲透通量的因素	19
2.5薄膜製備(相轉換法)	21
2.6高分子成膜理論	21
2.6.1成膜理論(熱力學)	22
2.6.2成膜理論(質傳動力學)	24
2.7PVDF中空纖維膜	25
第三章	28
3.1實驗裝置與流程	28
3.1.1PVDF薄膜製備及解析	28
3.1.2中空纖維模組製作及模組編號	30
3.2薄膜性質分析	33
3.2.1薄膜形態和表面孔洞分析	33
3.2.2薄膜膜厚及孔隙度測試	33
3.2.3Bubble point method	34
3.3DCMD 薄膜蒸餾	35
3.4VMD 薄膜蒸餾	38
3.5分析方法	41
3.5.1鹽類含量之分析方法與條件	41
3.5.2鹽類阻隔率之計算	41
3.6流量計校正	41
3.7實驗設備及藥品	43
第四章 結果與討論	45
4.1SEM解析探討	45
4.2DCMD薄膜蒸餾	53
4.2.1薄膜改質後在DCMD之探討	53
4.2.2膜組長度對於DCMD之影響	54
4.2.3鹽水濃度之影響	55
4.3VMD薄膜蒸餾	56
4.3.1薄膜改質後在VMD實驗之探討	56
4.4VMD和DCMD兩系統比較	56
4.5VMD和DCMD兩系統與文獻比較	57
4.6薄膜阻隔率	57
第五章 結論	68
參考文獻	70


 
圖目錄
圖1.1薄膜分離程序之分類[Cheryan, 1998]……………………………………….10
圖1.2 PVDF………………………………………………………………………….10
圖1.3薄膜蒸餾物流流動示意圖…………………………………………………...11
圖2.1蒸餾膜組之型式……………………………………………………………………...15
圖2.2 Schematic representation of mass transfer occurring at the membrane coagulant surface ……………………………………………………………………………….24
圖2.3高分子(非結晶型)-溶劑-非溶劑成膜相圖…………………………………..25
圖3.1噴紡法製備毛細管薄膜之裝置示意圖[陳勝昌, 2013]…………………...29
圖3.2中空壓克力模組……………………………………………………………...32
圖3.3DCMD與VMD模組設計示意圖……………………………………………32
圖3.4Bubble point experiment set up………………………………………………..34
圖3.5DCMD experiment set up……………………………………………………..37
圖3.6VMD experiment set up……………………………………………………….40
圖3.7進料側流量計校正曲線……………………………………………………...42
圖3.8冷卻水側流量計校正曲線…………………………………………………...42
圖4.1添加不同比例的TEP於芯液70倍之薄膜截面……………………………49
圖4.2添加不同比例TEP於芯液400倍之薄膜截面……………………………..50
圖4.3添加不同比例TEP於芯液10000倍之薄膜內表面………………………..51
圖4.4添加不同比例TEP於芯液10000倍之薄膜外表面………………………..52
圖4.5鹽水於70 ℃ & 0.5L/min 進料速率下DCMD之滲透通量……………...58
圖4.6鹽水於50 ℃ 在不同進料速率下DCMD之滲透通量……………………58
圖4.7鹽水於60℃在不同進料速率下DCMD之滲透通量………………………59
圖4.8鹽水於70℃在不同進料速率下DCMD之滲透通量………………………59
圖4.9 DCMD M-14-10-T0-T30、M-7-10-T0-T30膜組長度之影響……………...60
圖4.10 70℃&0.5L/min操作條件下鹽水濃度對DCMD的影響…………………60
圖4.11鹽水於50~70℃%0.5L/min進料速率下VMD之滲透通量……………...61
圖4.12鹽水於50℃在不同流率下VMD之滲透通量……………………………61
圖4.13鹽水於60℃在不同流率下VMD之滲透通量……………………………62
圖4.14鹽水於70℃在不同流率下VMD之滲透通量……………………………62
圖4.15模組於鹽水50℃ & 0.2~0.5 L/min對VMD & DCMD之影響………….63
圖4.16模組於鹽水60℃ & 0.2~0.5 L/min對VMD & DCMD之影響………….63
圖4.17模組於鹽水70℃ & 0.2~0.5 L/min對VMD & DCMD之影響………….64
圖4.18 M-14-10-T0-T30於50℃進行一天DCMD之通量及導電度…………….65
圖4.19 M-14-10-T0-T20於50℃進行一天DCMD之通量及導電度…………….65

表目錄
表1.1不同操作程序之驅動力分類[Cheryan, 1998] …………………12
表3.1 Process parameters/spinning condition………………………….29
表3.2中空纖維管之膜組規格………………………………………...31
表3.3Characteristic of hollow fiber module……………………………31
表4.1	Characteristic of membrane in different bore liquid…………...66
表4.2	DCMD result compare with references………………………..66
表4.3	VMD result compare with references………………………….67
 
參考文獻
Altena, F. W, Smolders, C. A., “Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of solvent and a nonsolvent”, Macromolecules, 15, 1491(1982) 
Boom, R. M. and BoomgaardT.V., Smolders, C. A., “Mass transfer and thermodynamics during immersion precipitation for two-polymer system: Evaluation with the system PES-PVP-NMP-water”, Journal of membrane science, 90, 231 (1994) 
Bonyadi, S., Chung, T. S., “Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membrane”, Journal of Membrane Science, 306, 134-146, (2007) 
Bonyadi, S., Chung, T. S., “ Highly porous and macrovoid-free PVDF hollow fiber membrane for membrane distillation by solvent-dope solution co-extrusion approach”,Journal of Membrane Science, 331, 66-74, (2009) 
Cheng, T.W.,“Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane”, Journal of Membrane Science, 196, 103-110, (2002). 
Chiam, C. K., Sarbatly, R., “Vacuum membrane distillation processes for aquous solution treatment-A review”, Chemical Engineering and Processing, 74, 27-54, (2013) 
Cheryan,M., Ultrafiltration and Microfiltration Handbook, 2nd ed., TechnomicPublishing Inc., Pennsylvania,(1998). 
Drioli, E., Ali, A., Simone, S., Macedonio, F., Al-Jhil, S. A., Al Shabonah, F. S., Al-Romaih, H. S., Al-Harbi, o., Figoli, A. and Criscuoli, A., “Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications”, Separation and Purification Technology, 115, 27-38, (2013) 
Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967). 
Flory, P. J., “Principles of polymer chemistry”, Cornell UniversityPress, New York, (1953) 
Kang IK, Bae JS, Seo EJ, “synthesis and characterization of heparinized polyurethanes using plasma glow discharge’, Biomaterials, 20, 529 (1999) 
Khayet, M., Cojocaru, C., Essalhi, M., García-Payo, M. C., Arribas, P., García-Fernández, L., “Hollow fiber spinning experimental design and analysis of defects for fabrication of optimized membranes for membrane distillation”, Desalination, 287, 146-158, (2012) 
Lawson, K. W. and Lloyd, D. R., “Review Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997) 
Lin, D. J., Chang, C. L., Chen, T. C., Cheng, L. P, “Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system, Desalination, 145, 25-29, (2002) 
Lin, D. J., Chang, H. H., Chen, T. C., Lee, Y. C., Cheng, L. P., “Formation of porous poly(vinylidene fluoride) membrane with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system”,  European Polymer Journal, 42, 1581-1594, (2006)  
Lin, F. C., Wang, D. M., Lai, J. Y., “Asymmetric TPX Membranes with High Gas Flux”, Journal of membrane science, 110, 25, (1996) 
Liu, F., Hashim, N. A., Liu, Y., Abed, M.R.M., Li, K., “Reveiew Progress in the production and modification of PVDF membranes”, Journal of Membrane Science, 375, 1-27, (2011) 
Loh, C. H., Wang, R., “Effects of Additives and Coagulant Temperature on Fabrication of High Performance PVDF/Pluronic F127 Blend Hollow Fiber Membranes via Nonsolvent Induced Phase Separation”, China Journal of Chemical Engineering, 20, 71-79, (2012) 
Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensification, 64, 31-35, (1968) 
Moghareh Abed, M. R., Kumbharkar, S. C., Groth, A. M., Li, K., “Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous sturctures produced via a single-step phase inversion technique”, Journal of Membrane Science, 407-408, 145-154, (2012) 
Mulder, M., Basic Principles of Membrane Technology, 2nd edn, Kluwer Academic Publishers, London, (1996) 
Shi, L., Wang, R., Cao, Y., Feng, C., Liang, D. T., Tay, J. H., Fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes, Journal of membrane science, 305, 215-225, (2007) 
Simone, S., Figoli, A., Criscuoli, A., Carnevale, M. C., Rosselli, A., Drioli, E., “Preparation of hollow fiber membrane from PVDF/PVP blends and their application in VDM”,Journal of Membrane Science, 364, 219-232, (2010) 
Sun, A. C., Kosar, W., Zhang, Y., Feng, X., “Vacuum membrane distillation for desalination of water using hollow fiber membranes”, Journal of Membrane Science, 455, 131-142, (2014) 
Tang, Y., Li, N., Liu, A., Ding, S., Yi, C. and Liu, H., “Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation”, Desalination, 287, 326-339, (2012) 
Teoh, M. M., Bonyadi, S., Chung, T. S., “Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process”, Journal of Membrane Science, 311, 371-379, (2008) 
Teoh, M. M., Chung, T., “Rapid communication Micelle-like macrovoids in mixed matrix PVDF-PTFE hollow fiber membrane”, Journal of MembraneScience, 338, 5-10, (2009) 
Tomaszewska, M., Gryta, M. and Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994). 
Tompa, H., “Polymer solutions”, Butterworths, London, (1956) 
Smolders, K. and Franken, A. C. M., “Terminology of Membrane Distillation”, Desalination, 72, 249-262, (1989) 
Wang, K. Y., Chung, T. S., Gryta, M., “Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation, Chemical Engineer Science, 60, 2587-2594, (2008) 
Wirth, D., Cabassud, C., “Water desalination using membrane distillation comparison between inside/out and outside/in permeation”, Desalination, 147, 139-145, (2002) 
Xu, J., Xu, Z. L., “Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent, Journal of Membrane Science, 208, (2002) 
Yang, X., Wang, R., Shi, L., Fane, A. G., Debowski, M., “Performance improvement of PVDF hollow fiber-based membrane distillation process”, Journal of Membrane Science, 369, 437-447, (2011) 
Zhang, J., Li, J. D., Duke, M., Hoang, M., Xie, Z., Groth, A., Tun, C., Gray, S., “Influence of module design and membrane compressibility on VMD performance”, Journal of Membrane Science, 442, 31-38, (2013) 
Zhu, H., Wang, H., Wang, F., Guo, Y., Zhang, H. and Chen, J., “Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation”, Journal of Membrane Science, 446, 145-153, (2013) 
Zeman, L. and Tkacik, G, “Thermodynamic analysis of a membrane- forming system water/n-methyl-2-pyrrolidone/polysulfone”,Journal of Membrane Science, 36, 119, (1988) 
郭文正,曾添文,薄膜分離,高力圖書公司,台北(1991) 
張旭賢,多孔型聚偏二氟乙烯薄膜固定離安酸與己二胺,淡江大學化學工程與材料工程碩士論文(2005) 
陳勝昌,以非溶劑誘導相轉移法製備多孔型薄膜,淡江大學化學工程與材料工程碩士論文(2013) 
葉國麟,中空式與直接接觸式薄膜蒸餾於海水淡化之性能比較,淡江大學化學工程與材料工程碩士論文(2012) 
林智偉,聚偏二氟乙烯中空纖維膜應用於薄膜蒸餾之研究, 
淡江大學化學工程與材料工程碩士論文(2014)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信