§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2908201613102400
DOI 10.6846/TKU.2016.01053
論文名稱(中文) 微胞加強超過濾結合化學還原法去除水中重金屬
論文名稱(英文) Integration of MEUF and chemical reduction for metal removal
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 劉凡華
研究生(英文) Fan-Hua Liu
學號 603480103
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-06
論文頁數 80頁
口試委員 指導教授 - 李奇旺
委員 - 陳孝行
委員 - 彭晴玉
關鍵字(中) 化學還原

低亞硫酸鈉
SDS
MEUF
關鍵字(英) Chemical reduction
copper
dithionite
SDS
MEUF
第三語言關鍵字
學科別分類
中文摘要
印刷電路板業(PCB)是用水需求極高的產業,製程中會產生大量含有重金屬的廢水,如未妥善處理即排放,對人體及自然環境皆會造成重大影響。本研究利用低亞硫酸鈉當還原劑,還原MEUF濃縮液中的金屬。在實驗中先以固定的SDS/Metal莫耳比(5/1),改變整體濃度(銅及SDS的濃度)探討其對於銅去除率的影響。再分別探討於pH6及pH7的操作條件下,去除率的差異。最後以連續式系統探討薄膜阻塞之影響。此外經由還原所產生的銅顆粒,另以XRD及SEM分析了解其化學組成及外觀結構。
    在實驗結果中發現,以化學還原法去除MEUF濃縮液中的銅,當銅濃度在5.1 mM時,利用0.45μm濾紙過濾,其去除率可達97%。而鎳在8.5 mM時,利用0.45μm濾紙過濾,去除率也有56%。但是當整體濃度下降時(Cu=1.7mM),去除率也跟著大幅降低。因此為了解去除率下降的原因,實驗再利用粒徑分析儀分析,得知尚未添加還原劑時,粒徑分析儀所分析出的微胞大小約20奈米 (SDS濃度8.5、12.75、17mM),當界面活性劑的濃度增加到25.5 mM及42.5 mM時,有5%的微胞增加到600及800奈米。添加還原劑後,銅濃度在1.7 mM時,粒徑大小增加至200奈米,雖然銅離子有被還原劑還原成銅顆粒,但是仍因粒徑低於0.45μm,仍不能被0.45μm的膜阻擋,這也是實驗結果中,銅去除率偏低的原因。另外為了解還原顆粒的組成成份與外觀,另以XRD分析,測得其為氧化亞銅 (Cu2O),再由SEM及TGA瞭解其外觀及不同溫度下其重量損失的變化。於TGA的結果中發現大約有30%的SDS會黏在銅顆粒上。
    最後將此程序應用於連續式的一次添加低亞硫酸鈉 (單向垂直過濾系統)及連續添加低亞硫酸鈉(掃流過濾系統)中,當銅濃度為1.7 mM時 (約為108 mg/L),剛開始兩組系統的去除率皆接近100%,兩小時後,將低亞硫酸鈉一次添加時,銅的去除率為0%;但是在連續添加的系統中,銅之去除率為78%,銅殘留濃度約24 mg/L。顯示連續添加還原劑有較高的使用率及對銅較佳的去除率。
英文摘要
Various industry sectors, such as semiconductor, printed circuit board (PCB), surface finishing, and electroplating, generate heavy metal containing wastewater. Inappropriate handling of the wastewaters will cause severe impact on the environment. In this study, chemical reduction was employed to treat synthetic metal-containing wastewater prepared to simulate the retentate stream of MEUF. 

    Under the fixed SDS:copper:dithionite molar ratio of 5:1:3, increasing copper concentration (from 1.7 mM to 5.1 mM) increases copper removal efficiency (from 28% to 97%). Since residual copper concentration was obtained after samples filtered with 0.45 μm filter, the discrepancy of copper removal efficiency at various copper concentration might be due to the formation of nano-sized particles. Particle size analysis was employed to elucidate the underlying reason. Result shows that micelle particle diameter growth with increasing initial copper concentration from 20 nm to 800 nm. Although, reducing process generated copper particles, the diameter of particles is only 200 nm and is smaller than the pore size of membrane filter for sample filtration. These small particles in the filtrate were dissolved by acids and were detected by AA, causing low copper removal efficiency. Both XRD and TGA were used to analyze the obtaining reduced copper particles, revealing that the obtained particles were copper oxide (Cu2O) and around 30% of SDS attached to the solids.

    Combining MEUF and chemical reduction for copper removal was studied under two reductant dosing schemes, namely (1) one time chemical dosing (Stirred cell Millipore 8200) and (2) continuously chemical dosing (cross flow CF042). Higher copper removal efficiency with 78% was discovered in continuously chemical dosing method.
第三語言摘要
論文目次
目錄
目錄	I
圖目錄	IV
表目錄	VII
第一章	研究緣起	1
1.1	研究緣起	1
1.1.1	研究計畫之目的	3
第二章	文獻回顧	4
2.1	印刷電路板廢水特性	5
2.2	重金屬去除技術	6
2.2.1	化學沉澱法(Chemical precipitation)	7
2.2.2	離子交換法(Ion exchange method)	9
2.2.3	離子浮選法(Ion flotation)	10
2.2.4	電解法(Electrolytic process)	11
2.2.5	薄膜處理法(Membrane process)	12
2.2.6	化學還原法(Chemical reduction)	17
2.3	界面活性劑	20
2.3.1	界面活性劑特性	20
2.3.2	界面活性劑種類	20
2.3.3	微胞的形成	22
第三章	實驗材料與方法	24
3.1	實驗設備	24
3.1.1	定壓超過濾實驗	24
3.1.2	掃流式薄膜模組	25
3.2	薄膜	26
3.3	實驗方法	28
3.3.1	儲備液製備	28
3.3.2	固定莫耳比及改變SDS/Metal濃度下對金屬去除的影響	29
3.3.3	固定銅濃度改變SDS濃度對銅去除效率的影響	30
3.3.4	固定SDS/Cu莫耳比及改變SDS/Cu濃度及pH下對銅還原對薄膜之阻塞	31
3.3.5	固定SDS/Cu莫耳比下連續式MEUF結合化學還原系統之銅還原效率及薄膜阻塞	33
3.4	實驗分析方法	35
3.4.1	火焰式原子吸收光譜儀	35
3.4.2	X光繞射法(X-ray Diffraction, XRD)	37
3.4.3	熱重分析儀(Thermal Gravimeteric Analyzer, TGA)	37
3.4.4	粒徑分析儀	38
3.4.5	掃描式電子顯微鏡附加能量分散光譜儀(Scanning Electron Microscope/ Energy Dispersive Spectrometer, SEM/EDS)	38
第四章	結果與討論	40
4.1	時間對低亞硫酸鈉處理銅廢水之影響	40
4.2	固定莫耳比及改變SDS/Metal濃度下對金屬還原去除的影響	42
4.3	固定銅濃度改變SDS濃度對銅去除效率的影響	47
4.4	固體分析	49
4.4.1	XRD分析	49
4.4.2	SEM-EDS分析	51
4.4.3	TGA分析	55
4.5	銅還原顆粒對薄膜阻塞的影響	58
4.6	連續式MEUF系統下固定SDS/Cu莫耳比對銅還原之薄膜阻塞	69
4.6.1	低亞硫酸鈉對SDS之影響	71
第五章、結論與建議	73
5.1	結論	73
參考文獻	74

 
圖目錄
Figure 1、不同pH下銅(Cu2+)在水中存在形式	8
Figure 2、不同pH下銅與EDTA同時存在水中銅存在的形式	8
Figure 3、各種過濾薄膜孔徑大小及所對應去除汙染物之類型[36]	12
Figure 4、PEUF機制示意圖[58]	14
Figure 5、MEUF截流機制(以掃流過濾為例)之示意圖[63]	15
Figure 6、界面活性劑結構圖(以SDS為例)[75]	21
Figure 7、微胞結構[81]	23
Figure 8、定壓超濾實驗裝置圖	25
Figure 9、模組實體 (資料來源: Sterlitech官網,CF042 Cell 型錄)	26
Figure 10、掃流式過濾裝置圖	26
Figure 11、利用氮氣加壓並將Stirred cell放入恆溫水浴槽(25℃)並且記錄重量	32
Figure 12、銅離子濃度分析之標準曲線	36
Figure 13、鎳離子濃度分析之標準曲線	36
Figure 14、時間對低亞硫酸鈉處理銅廢水之影響	41
Figure 15、固定莫耳比及改變SDS/Metal濃度下對金屬去除的影響(0.45μm過濾)	43
Figure 16、固定莫耳比及改變SDS/Metal濃度下對金屬去除的影響(UF膜過濾)	44
Figure 17、固定莫耳比及改變SDS/Metal濃度下對銅之粒徑特性	45
Figure 18、固定莫耳比及改變SDS/Metal濃度下對銅之粒徑特性	45
Figure 19、固定莫耳比及改變SDS/Metal濃度下對金屬還原之粒徑分析	46
Figure 20、固定莫耳比及改變SDS/Metal濃度下對金屬還原並用0.45μm過濾對金屬還原之粒徑分析	46
Figure 21、固定銅濃度(3.4 mM)時改變SDS濃度之外觀(a)S/M=5 (b)S/M=10 (c)S/M=20	48
Figure 22、固定銅濃度改變SDS濃度對銅去除效率的影響	48
Figure 23、還原銅顆粒的XRD分析。銅濃度=3.4 mM;初始pH=5;實驗時間=30分鐘。Cu:SDS:dithionite莫耳比為1:5:3	49
Figure 24、還原銅、鎳顆粒的SEM分析圖。(a)銅2000倍 (b)銅10000倍 (c)鎳2000倍 (d)鎳100倍。(銅、鎳濃度=3.4 mM;初始pH=5~5.5;實驗時間=30分鐘。Cu:SDS:dithionite莫耳比為1:5:3)	51
Figure 25、還原銅顆粒的EDS分析圖。銅濃度=8.5 mM;初始pH=5;實驗時間=30分鐘;SEM放大倍率=2,000倍。(Cu:SDS:dithionite莫耳比為1:5:3)。	53
Figure 26、還原銅顆粒的EDS分析圖。鎳濃度=8.5 mM; pH=5.5;實驗時間=30分鐘;SEM放大倍率=100倍。(Cu:SDS:dithionite莫耳比為1:5:3)	54
Figure 27、還原銅、鎳顆粒之重量損失(TGA)分析圖(銅濃度=3.4 mM;初始pH=5~5.5;實驗時間=30分鐘。Cu:SDS:dithionite莫耳比為1:5:3)	57
Figure 28、雙層微胞形成顆粒之示意圖[88]	57
Figure 29、不同pH (沒控制、pH6、pH7) 還原出來的銅顆粒外觀照	59
Figure 30、固定莫耳比,改變SDS/Cu濃度並控制pH對銅還原去除的影響(Cu:SDS:dithionite莫耳比為1:5:3,pH=5(不調整)、6、7,實驗時間30分鐘,以0.45μm過濾。)	60
Figure 31、固定莫耳比,改變SDS/Cu濃度並控制pH對銅還原對膜阻塞之情形(Cu:SDS:dithionite莫耳比為1:5:3;初始pH=5)。	60
Figure 32、連續式MEUF對銅去除之影響,(Cu:SDS:dithionite莫耳比為1:10:3,HRT為30分鐘,雷諾數=100)	70
Figure 33、連續式MEUF對薄膜壓力之影響,(Cu:SDS:dithionite莫耳比為1:5:3,HRT為30分鐘,雷諾數100)	71
Figure 34、低亞硫酸鈉對SDS之銅去除之影響(Cu:dithionite莫耳比為1:3,Cu:SDS莫耳比為1:10;pH 5.5)	72
 
表目錄
Table 1、各金屬毒性及排放標準[30]	4
Table 2、典型電路板製造業原廢水的污染濃度表[33]	6
Table 3、SPSS分析膜阻塞之誤差	61
Table 4、SPSS分析膜阻塞之LSD事後分析(以濃度為因子)	62
Table 5、SPSS分析膜阻塞之誤差	64
Table 6、SPSS分析膜阻塞之LSD事後分析(以條件為因子)	65
參考文獻
[1] A.W. Bryson, K.A. Dardis, Treatment of dilute metal effluents in an electrolytic precipitator, Water SA 6(2001) 85-87.
[2] M.A.F. Almeida, R.A.R. Boaventura, Chromium precipitation from tanning spent liquors using industrial alkaline residues: A comparative study, Waste Manage., 17 (1998) 201-209.
[3] Y. Li, X. Zeng, Y. Liu, S. Yan, Z. Hu, Y. Ni, Study on the treatment of copper-electroplating wastewater by chemical trapping and flocculation, Sep. Purif. Technol., 31 (2003) 91-95.
[4] A. Papadopoulos, D. Fatta, K. Parperis, A. Mentzis, K.J. Haralambous, M. Loizidou, Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods, Sep. Purif. Technol., 39 (2004) 181-188.
[5] M.A. Keane, The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers, Colloids Surf. Physicochem. Eng. Aspects, 138 (1998) 11-20.
[6] J. Rubio, F. Tessele, Removal od heavy metal ions by adsorptive particulate flotation, Miner. Eng., 10 (1997) 671-679.
[7] D. Zamboulis, S.I. Pataroudi, A.I. Zouboulis, K.A. Matis, The application of sorptive flotation for the removal of metal ions, Desalination, 162 (2004) 159-168.
[8] A.I. Zouboulis, K.A. Matis, N.K. Lazaridis, P.N. Golyshin, The use of biosurfactants in flotation: application for the removal of metal ions, Miner. Eng., 16 (2003) 1231-1236.
[9] K. Jüttner, U. Galla, H. Schmieder, Electrochemical approaches to environmental problems in the process industry, Electrochim. Acta, 45 (2000) 2575-2594.
[10] R.F.D. Costa, C.W. Klein, A.M. Bernardes, J.Z. Ferreira, Evaluation of the electrodialysis process for the treatment of metal finishing wastewater, J. Braz. Chem. Soc., 13 (2002) 540-547.
[11] C.W. Li, C.H. Cheng, K.H. Choo, W.S. Yen, Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): effects of organic ligands and solution pH, Chemosphere, 72 (2008) 630-635.
[12] C.W. Li, C.K. Liu, W.S. Yen, Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions, Chemosphere, 63 (2006) 353-358.
[13] 林坤明, 羥乙基乙二胺(AEEA)對印刷電路板廢水銅離子處理效果之影響, 碩士論文, 國立中央大學 (2009).
[14] M. Schwarze, M. Groß, M. Moritz, G. Buchner, L. Kapitzki, L. Chiappisi, M. Gradzielski, Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate, J. Membr. Sci., 478 (2015) 140-147.
[15] Y.-Y. Fang, G.-M. Zeng, J.-H. Huang, J.-X. Liu, X.-M. Xu, K. Xu, Y.-H. Qu, Micellar-enhanced ultrafiltration of cadmium ions with anionic–nonionic surfactants, J. Membr. Sci., 320 (2008) 514-519.
[16] E. Samper, M. Rodríguez, M.A. De la Rubia, D. Prats, Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS), Sep. Purif. Technol., 65 (2009) 337-342.
[17] X. Li, G.-M. Zeng, J.-H. Huang, C. Zhang, Y.-Y. Fang, Y.-H. Qu, F. Luo, D. Lin, H.-L. Liu, Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd2+ or Zn2+ by ultrafiltration, J. Membr. Sci., 337 (2009) 92-97.
[18] C.-K. Liu, C.-W. Li, Simultaneous recovery of copper and surfactant by an electrolytic process from synthetic solution prepared to simulate a concentrate waste stream of a micellar-enhanced ultrafiltration process, Desalination, 169 (2004) 185-192.
[19] R.D. Ludwig, C. Su, T.R. Lee, R.T. Wilkin, S.D. Acree, R.R. Ross, A. Keeley, In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite:a field investigation, Environ. Sci. Technol., 41 (2007) 5299-5305.
[20] H.K. Boparai, S.D. Comfort, P.J. Shea, J.E. Szecsody, Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments, Chemosphere, 71 (2008) 933-941.
[21] Y. Xie, D.M. Cwiertny, Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems, Environ. Sci. Technol., 44 (2010) 8649-8655.
[22] J.E. Szecsody, J.S. Fruchter, M.D. Williams, V.R. Vermeul, D. Sklarew, In situ chemical reduction of aquifer sediments:Enhancement of reactive iron phases and TCE dechlorination, Environ. Sci. Technol., 17 (2004) 466-4663.
[23] Y.H. Chou, J.H. Yu, Y.M. Liang, P.J. Wang, C.W. Li, S.S. Chen, Recovery of Cu(II) by chemical reduction using sodium dithionite, Chemosphere, 141 (2015) 183-188.
[24] Y.H. Chou, J.H. Yu, Y.M. Liang, P.J. Wang, C.W. Li, S.S. Chen, Recovery of Cu(II) by chemical reduction using sodium dithionite: Effect of pH andLigands, Water Sci. Technol., 72 (2015) 2089-2094.
[25] J.H. Yu, Y.H. Chou, Y.M. Liang, C.W. Li, Integration of polyelectrolyte enhanced ultrafiltration and chemical reduction for metal-containing wastewater treatment and metal recovery, Water Sci. Technol., 72 (2015) 1096-1101.
[26] X. Ma, D. He, A.M. Jones, R.N. Collins, T.D. Waite, Reductive reactivity of borohydride- and dithionite-synthesized iron-based nanoparticles: A comparative study, J. Hazard. Mater., 303 (2016) 101-110.
[27] T. Liu, Z.-L. Wang, Y. Sun, Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater, Chem. Eng. J., 263 (2015) 55-61.
[28] 葉曉倩, 短指和尚蟹作為重金屬污染監測生物之研究, 博士論文, 國立中山大學 (1999).
[29] F. Ferella, M. Prisciandaro, I. De Michelis, F. Veglio’, Removal of heavy metals by surfactant-enhanced ultrafiltration from wastewaters, Desalination, 207 (2007) 125-133.
[30] T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118 (2006) 83-98.
[31] World PCB Production by Region., Taiwan Customs database, (2011).
[32] 經濟部工業局, 行業製程減廢及污染防治技術-印刷電路板.
[33] 經濟部工業局, 印刷電路板製造業水污染防治技術, (1994).
[34] J. Landaburu-Aguirre, V. García, E. Pongrácz, R.L. Keiski, The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments, Desalination, 240 (2009) 262-269.
[35] H. Zeng, S. Tian, H. Liu, B. Chai, X. Zhao, Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H2O2 and electro-generated active chlorine, Chem. Eng. J., (2016).
[36] S.S. Madaeni, The application of membrane technology for water disinfection, Water Res., 33 (1999) 301-308.
[37] N. Shamsuddin, D.B. Das, V.M. Starov, Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow, Chem. Eng. J., 276 (2015) 331-339.
[38] N.H. Shaidan, U. Eldemerdash, S. Awad, Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique, J Taiwan Inst Chem Eng., 43 (2012) 40-45.
[39] M.F. Chang, J.C. Liu, Precipitation Removal of Fluoride from Semiconductor Wastewater, J. Environ. Eng., 133 (2007) 419-425.
[40] I. Lisiecki, F. Billoudet, M.P. Pileni, Control of the shape and the size of copper metallic particles, J. Phys. Chem., 100 (1996) 4160-4166.
[41] P. Bose, M. Aparna Bose, S. Kumar, Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide, Adv. Environ. Res., 7 (2002) 179-195.
[42] S.H. Hu, M.S. Tsai, F.S. Yen, T. Onlinc, Recovery of copper-contaminated sludge in a two-stage leaching process, Environ. Prog., 25 (2005) 72-78.
[43] L. Alvarado, I.R. Torres, A. Chen, Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater, Sep. Purif. Technol., 105 (2013) 55-62.
[44] A. Da̧browski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56 (2004) 91-106.
[45] E. Pehlivan, T. Altun, Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80, J. Hazard. Mater., 140 (2007) 299-307.
[46] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92 (2011) 407-418.
[47] P.S. Sudilovskiy, G.G. Kagramanov, V.A. Kolesnikov, Use of RO and NF for treatment of copper containing wastewaters in combination with flotation, Desalination, 221 (2008) 192-201.
[48] K. Fuke, K. Kaya, Electronic absorption spectra of phenol (H2O)n and (phenol)n as studied by the MS MPI method, Chem. Phys. Lett., 94 (1983) 97-101.
[49] A. Khelifa, S. Aoudj, S. Moulay, M. De Petris-Wery, A one-step electrochlorination/electroflotation process for the treatment of heavy metals wastewater in presence of EDTA, Chem. Eng. Process., 70 (2013) 110-116.
[50] S. Vigneswaran, H.H. Ngo, D.S. Chaudhary, Y.-T. Hung, Physicochemical treatment processes for water reuse, in: L.K. Wang, Y.-T. Hung, N.K. Shammas (Eds.) Physicochemical treatment processes, Humana Press, Totowa, NJ, 2005, pp. 635-676.
[51] K.-H. Ahn, K.-G. Song, H.-Y. Cha, I.-T. Yeom, Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration, Desalination, 122 (1999) 77-84.
[52] J. Bohdziewicz, M. Bodzek, E. Wsik, The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater, Desalination, 121 (1999) 139-147.
[53] S.T. Mitrouli, M. Kostoglou, A.J. Karabelas, Calcium carbonate scaling of desalination membranes: Assessment of scaling parameters from dead-end filtration experiments, J. Membr. Sci., 510 (2016) 293-305.
[54] K.-J. Hwang, S.-Y. Wang, E. Iritani, N. Katagiri, Fine particle removal from seawater by using cross-flow and rotating-disk dynamic filtration, J Taiwan Inst Chem Eng., 62 (2016) 45-53.
[55] C.-W. Li, Y.-S. Chen, Fouling of UF membrane by humic substance: Effects of molecular weight and powder-activated carbon (PAC) pre-treatment, Desalination, 170 (2004) 59-67.
[56] H. Ouni, M. Dhahbi, Spectrometric study of crystal violet in presence of polyacrylic acid and polyethylenimine and its removal by polyelectrolyte enhanced ultrafiltration, Sep. Sci. Technol., 72 (2010) 340-346.
[57] A.B. Fradj, S.B. Hamouda, H. Ouni, R. Lafi, L. Gzara, A. Hafiane, Removal of methylene blue from aqueous solutions by poly(acrylic acid) and poly(ammonium acrylate) assisted ultrafiltration, Sep. Purif. Technol., 133 (2014) 76-81.
[58] 余瑞軒, 化學還原法回收廢水中的重金屬鎳, 博士論文, 淡江大學 (2016).
[59] R.-S. Juang, R.-C. Shiau, Metal removal from aqueous solutions using chitosan-enhanced membrane filtration, J. Membr. Sci., 165 (2000) 159-167.
[60] A. Witek, A. Kołtuniewicz, B. Kurczewski, M. Radziejowska, M. Hatalski, Simultaneous removal of phenols and Cr3+ using micellar-enhanced ultrafiltration process, Desalination, 191 (2006) 111-116.
[61] A.A. Mungray, S.V. Kulkarni, A.K. Mungray, Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review, Cent. Eur. J. Chem., 10 (2012) 27-46.
[62] K.M. Lipe, D.A. Sabatini, M.A. Hasegawa, J.H. Harwell, Micellar-enhanced ultrafiltration and air stripping for surfactant-contaminant separation and surfactant reuse, Ground Water Monit. Remediat., 16 (1996) 85-92.
[63] J.-H. Huang, S.-H. Guo, G.-M. Zeng, Y.-L. Xiong, D.-M. Zhang, X.-J. Tang, G.-X. Xie, Prediction of fouling resistance and permeate flux in cross-flow micellar-enhanced ultrafiltration (MEUF), Colloids Surf. Physicochem. Eng. Aspects, 401 (2012) 81-89.
[64] Y. Huang, D. Wu, X. Wang, W. Huang, D. Lawless, X. Feng, Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation, Sep. Purif. Technol., 158 (2016) 124-136.
[65] 任鏘諭, 奈米金屬之製備及其性質研究, 碩士論文, 國立清華大學 (1999).
[66] A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles, Int Nano Lett, (2016) 21-26.
[67] T.P. Phetla, F. Ntuli, E. Muzenda, Reduction crystallization of Ni, Cu, Fe and Co from a mixed metal effluent, J. Iid. Eng. Chem., 18 (2012) 1171-1177.
[68] N. Geoffroy, G.P. Demopoulos, Reductive precipitation of elemental selenium from selenious acidic solutions using sodium dithionite, Ind. Eng. Chem. Res., 48 (2009) 10240-10246.
[69] K.C. Song, S.M. Lee, T.S. Park, B.S. Lee, Preparation of colloidal silver nanoparticles by chemical reduction method, Korean J. Chem. Eng., 26 (2009) 153-155.
[70] 吳思翰, 金屬及金屬核殼型複合奈米粒子之製備, 碩士論文, (2004).
[71] R. Chadha, R. Sharma, N. Maiti, A. Ballal, S. Kapoor, Effect of SDS concentration on colloidal suspensions of Ag and Au nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150 (2015) 664-670.
[72] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced inorganic chemistry, 6th edition, Wiley: New York (1999) 1455.
[73] 王稟然, 低亞硫酸鈉化學還原法回收廢水中的銅:不同螯合劑的影響, 碩士論文, 淡江大學 (2014).
[74] C.-K. Liu, C.-W. Li, C.-Y. Lin, Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands, Chemosphere, 57 (2004) 629-634.
[75] V. Bhardwaj, P. Sharma, M.S. Chauhan, S. Chauhan, Thermodynamic, FTIR, 1H-NMR, and acoustic studies of butylated hydroxyanisole and sodium dodecyl sulfate in ethanol, water rich and ethanol rich solutions, J. Mol. Liq., 180 (2013) 192-199.
[76] J.F. Scamehorn, S.D. Christian, D.A. El-Sayed, H. Uchiyama, S.S. Younis, Removal of divalent metal cations and their mixtures from aqueous streams using micellar-enhanced ultrafiltration, Sep. Sci. Technol., 29 (1994) 809-830.
[77] 王美惠, 微胞薄膜超過濾系統中陽離子界面活性劑再生之研究, 碩士論文, 屏東科技大學 (2000).
[78] J. Mata, D. Varade, P. Bahadur, Aggregation behavior of quaternary salt based cationic surfactants, Thermochim. Acta, 428 (2005) 147-155.
[79] B. Vincent, McBain and the centenary of the micelle, Adv. Colloid Interface Sci., 203 (2014) 51-54.
[80] M.L. Corrin, W.D. Harkins, The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes, J. Am. Chem. Soc., 69 (1947) 683-688.
[81] 洪佳惠, 膽固醇與膽鹽對微脂粒穩定度的影響, 碩士論文, 國立中央大學 (2003).
[82] F. Luo, G.-M. Zeng, J.-H. Huang, C. Zhang, Y.-Y. Fang, Y.-H. Qu, X. Li, D. Lin, C.-F. Zhou, Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF, J. Hazard. Mater., 173 (2010) 455-461.
[83] B. Tansel, W.Y. Bao, I.N. Tansel, Characterization of fouling kinetics in ultrafiltration systems by resistances in series model, Desalination, 129 (2000) 7-14.
[84] D.V.G.a.E. Matijevic, Preparation of monodispersed metal particles, New J. Chem., 22 (1998) 1203-1215.
[85] K.S. Tan, K.Y. Cheong, Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route, J. Nanopart. Res., 15 (2013) 1-29.
[86] H.H. Paradies, Shape and size of a nonionic surfactant micelle. Triton X-100 in aqueous solution J. Phys. Chem., 84 (1980) 599-607.
[87] S. Raghavan, S. Fowler, Use of dithionite in the removal of nickel from ammoniacal solutions, Hydrometallurgy, 11 (1983) 125-129.
[88] B. Nikoobakht, M.A. El-Sayed, Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods, Langmuir, 17 (2001) 6368-6374.
[89] Y.U. Jeong, A. Manthiram, Synthesis of nickel sulfides in aqueous solutions using sodium dithionite, Inorg. Chem., 40 (2001) 73-77.
[90] 賴建宏, 天然濁水混凝最適加藥量與顆粒表面界達電位之關係研究, 碩士論文, 國立交通大學 (2010).
[91] L. Paugam, S. Taha, G. Dorange, P. Jaouen, F. Quéméneur, Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition, J. Membr. Sci., 231 (2004) 37-46.
[92] J. Yoon, G. Amy, J. Chung, J. Sohn, Y. Yoon, Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes, Chemosphere, 77 (2009) 228-235.
[93] H. Zhang, L. Deng, P. Sun, F. Que, J. Weiss, Solubilization of octane in cationic surfactant–anionic polymer complexes: Effect of ionic strength, J. Colloid Interface Sci., 461 (2016) 88-95.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信