§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2908201612434300
DOI 10.6846/TKU.2016.01052
論文名稱(中文) 聚偏二氟乙烯複合薄膜應用於直接接觸式薄膜蒸餾之研究
論文名稱(英文) A study on performance of PVDF composite membrane in direct contact membrane distillation
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 陶靖雯
研究生(英文) Ching-Wen Tao
學號 603400341
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-05
論文頁數 89頁
口試委員 指導教授 - 鄭東文
委員 - 黃國楨
委員 - 童國倫
委員 - 莊清榮
關鍵字(中) 直接接觸式薄膜蒸餾
聚偏二氟乙烯
平板薄膜
複合薄膜
吐溫20
吐溫80
關鍵字(英) Direct Contact Membrane Distillation
Poly(vinylidene fluoride) (PVDF)
Flat-sheet membrane
Composite membrane
Tween20
Tween80
第三語言關鍵字
學科別分類
中文摘要
本研究以聚偏二氟乙烯(poly(vinylidene fluoride), PVDF)膜材,並使用親水支撐層合成一平板親-疏水複合薄膜,來組裝模組進行直接接觸式薄膜蒸餾(Direct Contact Membrane Distillation, DCMD)用於海水淡化之效能探討,進料之模擬海水為3.5 wt%的NaCl水溶液。合成薄膜的組成為PVDF、磷酸三乙酯(Triethyl phosphate, TEP)及Tween-20或 Tween-80的混合溶液,其中共三種條件分別為20、40、60 wt%磷酸三乙酯(TEP)水溶液,藉由硬性沉澱槽換成軟性沉澱槽的方式來改善平板薄膜表面結構。從SEM解析得知隨著磷酸三乙酯(TEP)在沉澱槽的比例增加薄膜表面大孔洞數量,探討其薄膜結構對蒸餾操作之影響。

在實驗操作部分主要是探討不同的參數對薄膜蒸餾之滲透通量及鹽阻隔率之影響,DCMD中兩側流體流動是逆流方式,其它參數包括在進料溫度(50~70 oC)、進料速度(0.4~0.7 L/min)與不同進料濃度(純水~15wt%NaCl溶液)。

在DCMD中其結果顯示吐溫20為最合適的成孔劑隨著沉澱槽TEP wt%的比例增加,所製成的薄膜之通量皆會高於沒改質的薄膜,是由於隨著TEP在沉澱槽的比例增加薄膜表面皮層結構不易形成,且大孔洞數變多。且提高進料溫度能明顯增加滲透通量,但極化現象也較嚴重,而增加進料流率則對於滲透通量之提升較不顯著,但對於高溫進料操作之溫度極化現象具有較明顯改善效果。
英文摘要
In this study, the flat-sheet composite membranes of polyvinylidene fluoride (PVDF) supported on hydrophilic polyester were prepared, and their performances in direct contact membrane distillation (DCMD) for seawater desalination were also investigated.  
The simulated seawater of 3.5 wt% NaCl solution was adapted as the feed. The dope solution consisted of PVDF, Triethyl phosphate(TEP) and Tween20 or Tween80, and four conditions, 20、40 and 60 wt% TEP solution were applied in the coagulation bath. From the observation by SEM, the surface pore size of membrane increased with the increasing of TEP concentration in the coagulation bath.  
The experimental results of DCMD showed that tween20 is more appropriate to  prepared this membrane. And the membrane prepared from higher TEP concentration had a larger permeate flux because of its larger pore size on the surface. And increasing the feed temperature of the feed can significantly increase the flux, but the polarization phenomena become more serious, but the effect of increasing feed flow rate the effect is not obvious on the flux.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VII
表目錄	X
第一章	緒論	1
1.1 前言	1
1.2薄膜分離程序	3
1.3 薄膜的應用	4
1.4 薄膜蒸餾	7
1.5 研究目標	10
2.1 薄膜蒸餾相關研究	13
2.2 薄膜蒸餾法之種類	17
2.2.1 直接接觸式薄膜蒸餾	17
2.2.2 空氣間隙式薄膜蒸餾	17
2.2.3 空氣掃掠式薄膜蒸餾	18
2.2.4 真空式薄膜蒸餾	18
2.3 薄膜製備	19
2.4 高分子成膜理論	20
2.4.1	成膜理論:熱力學	20
2.4.2	成膜理論:質傳動力學	22
2.5 薄膜之孔隙結構及性質	22
2.6 支撐層影響薄膜支撐性	25
2.7 影響滲透通量的因素	25
3.1 薄膜製備及解析	30
3.1.1	薄膜製備	30
3.1.2	薄膜膜組編號	30
3.2 薄膜膜組性質分析	31
3.2.1	薄膜的形態和表面孔洞分析	31
3.2.2	薄膜膜厚及孔隙度測試	31
3.2.3	接觸角量測	31
3.2.4	薄膜收縮量側	32
3.2.5	機械強度測試	32
3.3 實驗裝置	33
3.4 DCMD實驗步驟	34
3.5 DCMD操作條件	36
3.6 實驗設備及藥品	37
3.7 分析方法	39
3.7.1 鹽類含量之分析方法與條件	39
3.7.2 鹽類阻隔率之計算	39
3.8 流量計校正	39
4.1 薄膜特性與結構分析	48
4.1.1 薄膜改質(鑄於支撐層)結構	48
4.1.2 薄膜有無支撐層結構	53
4.1.3 薄膜之孔洞與孔隙度	56
4.1.4 薄膜之接觸角	57
4.1.5 機械強度測試	57
4.1.6 薄膜收縮測量	58
4.2 DCMD薄膜蒸餾	61
4.2.1 製膜液改質後在DCMD實驗之檢討	61
4.2.2 沉澱槽改變後在DCMD實驗之檢討	64
4.2.3 有無親水層之比較	69
4.2.4 鹽水濃度之影響	71
4.2.5 回復性之探討	73
4.3 薄膜阻隔率	76
第五章	結論	79
參考文獻	81
圖目錄
圖1.1  PVDF化學結構示意圖	11
圖1.2  薄膜分離程序之分類	12
圖1.3  薄膜蒸餾物流流動示意圖	12
圖2.1  薄膜蒸餾膜組之型式	27
圖2.2  高分子(非結晶型)-溶劑-非溶劑成膜相圖	28
圖2.3  Schematic representation of mass transfer occurring at the membrane/coagulant surface	28
圖2.4  未添加和添加界面活性劑的PVDF薄膜分別在製膜液、相轉移過程和初生薄膜的示意圖  29
圖3.1  親水支撐層之SEM結構圖	40
圖3.2  親水支撐層示意圖	40
圖3.3  DCMD 模組示意圖	41
圖3.4  DCMD 模組設計示意圖(冷熱水側)	42
圖3.5  DCMD experiment set up	43
圖3.6  NaCl檢量線	44
圖3.7  進料流體流量計校正曲線	45
圖3.8  冷卻水流體流量計校正曲線	45
圖4.1  3000倍SEM圖之薄膜上表面	51
圖4.2  10000倍SEM圖之薄膜上表面	52
圖4.3  3000倍SEM圖之薄膜上表面	54
圖4.4  10000倍SEM圖之薄膜上表面	55
圖4.5  鹽水於吐溫80在50~70℃&0.7 L/min進料速度下DCMD之滲透通量  63
圖4.6  鹽水於吐溫20在50~70℃&0.7 L/min進料速度下DCMD之滲透通量  63
圖4.7  T60於DCMD之滲透通量  66
圖4.8  鹽水於50~70℃&0.7 L/min進料速度下DCMD之滲透通量  66
圖4.9  鹽水於50 ℃在不同進料速率下DCMD之滲透通量	67
圖4.10  鹽水於60 ℃在不同進料速率下DCMD之滲透通量	67
圖4.11  鹽水於70 ℃在不同進料速率下DCMD之滲透通量	68
圖4.12  支撐層與玻璃板DCMD之滲透通量比較	70
圖4.13 鹽水濃度對DCMD滲透通量的影響	72
圖4.14  T20於70 ℃在不同進料速率下不同鹽水濃度純水DCMD之滲透通量  74
圖4.15  T40於70 ℃在不同進料速率下不同鹽水濃度純水DCMD之滲透通量  74
圖4.16  T60於70 ℃在不同進料速率下不同鹽水濃度純水DCMD之滲透通量  75
圖4.17  T20薄膜於50 ℃進行一天DCMD之通量及導電度  77
圖4.18  T20薄膜於50 ℃進行一天DCMD之通量及導電度  77
圖4.19  T20薄膜於70 ℃進行兩天DCMD之通量及導電度  78
表目錄
表1.1  不同操作程序之驅動力分類  11
表3.1  製膜液組成與製備條件	46
表3.2  親水支撐層性質說明	46
表3.3  Characteristics of membrane module  47
表4.1	PVDF薄膜物性分析	59
表4.2	膜收縮係數	60
參考文獻
Altena, F. W, Smolders, C. A., “Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of solvent  and a nonsolvent”, Macromolecules, 15, 1491(1982)
Bonyadi, S.,Chung, T., “Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach”, Journal of Membrane Science, 331, 66-74, (2009).
Boom, R. M. and BoomgaardT.V., Smolders, C. A., “Mass transfer and thermodynamics during immersion precipitation for two-polymer system: Evaluation with the system PES-PVP-NMP-water”, Journal of Membrane Science, 90, 231 (1994)
Bonyadi, S., Chung, T. S., “Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membrane”, Journal of Membrane Science, 306, 134-146, (2007)
	Bonyadi, S., Chung, T. S., “ Highly porous and macrovoid-free PVDF hollow fiber membrane for membrane distillation by solvent-dope solution co-extrusion approach”, Journal of Membrane Science, 331, 66-74, (2009)
Cath, T. Y., Adams, V. D.,Childress, A. E., “Experimental study of desalination using direct contact membrane distillation: A new approach to flux enhancement”, Journal of Membrane Science, 228, 5-16, (2004).
Cerneaux, S., Strużyńska, I., Kujawski, W. M., Persin, M., Larbot, A., “Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes”, Journal of Membrane Science, 337, 55-60, (2009).
Cheng, T., Yeh, H., Wu, J., “Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module”, Journal of Membrane Science, 158, 223-234, (1999). 
Cheryan, M., Ultrafiltration and Microfiltration Handbook, 2nd ed., Technomic Publishing Inc., Pennsylvania, (1998).
Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Separation Science and Technology, 20, 393-402, (1985).
Criscuoli, A., Carnevale, M. C., Drioli, E., “Evaluation of energy requirements in membrane distillation”, Chemical Engineering and Processing: Process Intensification, 47, 1098-1105, (2008). 
De Souza, N. P., Basu, O. D., “Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment”, Journal of Membrane Science, 436, 28-35, (2013).
Devi, S., Ray, P., Singh, K., Singh, P. S., “Preparation and characterization of highly micro-porous PVDF membranes for desalination of saline water through vacuum membrane distillation”, Desalination, 346, 9-18, (2014).
	Deyin, C., Guohua, D., Jun, W., Hua, F., Lin, Z., Zhaokun, L., “Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation”, Separation Purification and Technology, 101, 1-10, (2012).
Di Profio, G., Ji, X., Curcio, E., Drioli, E., “Submerged hollow fiber ultrafiltration as seawater pretreatment in the logic of integrated membrane desalination systems”, Desalination, 269, 128-135, (2011). 
E.K. Summers, H.A. Arafat, J.H. Lienhard V, Energy efficiency comparison of singlestage membrane distillation (MD) desalination cycles in different configurations, Desalination 290 (2012) 54–66
El-Abbassi, A., Hafidi, A., Khayet, M., García-Payo, M. C., “Integrated direct contact membrane distillation for olive mill wastewater treatment”, Desalination, 323, 31-38, (2013). 
Feng, C., Shi, B., Li, G., Wu, Y., “Preliminary research on microporous membrane from F2.4 for membrane distillation”, Separation and Purification Technology, 39, 221-228, (2004). 
Findley, M. E., Tanna, V. V., Rao, Y. B. and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes”, AIChE Journal, 15, 483-489, (1969).
Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967).
Gryta, M., Tomaszewska, M., Grzechulska, J., Morawski, A. W., “Membrane distillation of NaCl solution containing natural organic matter”, Journal of Membrane Science, 181, 279-287, (2001). 
Hausmann, A., Sanciolo, P., Vasiljevic, T., Weeks, M., Duke, M., “Integration of membrane distillation into heat paths of industrial processes”, Chemical Engineering Journal, 211–212, 378-387, (2012). 
He, F., Sirkar, K. K., Gilron, J., “Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation”, Journal of Membrane Science, 345, 53-58, (2009). 
	He, K., Hwang, H. J., Woo, M. W., Moon, I. S., “Production of drinking water from saline water by direct contact membrane distillation (DCMD)”, Journal of Industrial and Engineering Chemistry, 17, 41-48, (2011). 
Hou, D., Dai, G., Wang, J., Fan, H., Zhang, L., Luan, Z, “Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation”, Separation and Purification Technology, 101, 1-10, (2012). 
Hsu, S. T., Cheng, K. T., Chiou, J. S., “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279-287, (2002). 
	Ji, Z., Wang, J., Hou, D., Yin, Z., Luan, Z., “Effect of microwave irradiation on vacuum membrane distillation”, Journal of Membrane Science, 429, 473-479, (2013). 
Kamide, K., “ Thermodynamics of polymer solutions phase equilibria and critical phenomena”, Elsevier, (1990).
Krivorot, M., Kushmaro, A., Oren, Y., Gilron, J., “Factors affecting biofilm formation and biofouling in membrane distillation of seawater”, Journal of Membrane Science, 376, 15-24, (2011). 
Lawson, K. W., Lloyd, D. R., “Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997). 
Lin, F. C., Wang, D. M., Lai, J. Y., “Asymmetric TPX Membranes with High Gas Flux”, Journal of Membrane Science, 110, 25, (1996)
Mercier-Bonin, M., Lagane, C., Fonade, C., “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: Case of a ceramic flat sheet membrane”, Journal of Membrane Science, 180, 93-102, (2000). 
Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensiication, 64, 31-35, (1968).
Mulder, M., Basic Principles of Membrane Technology, 2nd edn, Kluwer Academic Publishers, London, (1991)
Peng, W., May May, T., Tai-Shung, C., “Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance”, Water Research, 45, 5489-5500, (2011)
Phattaranawik, J., Jiraratananon, R., Fane, A. G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, Journal of Membrane Science, 215, 75-85, (2003).
Phattaranawik, J., Jiraratananon, R., Fane, A. G., “Heat transport and membrane distillation coefficients in direct contact membrane distillation”, Journal of Membrane Science, 212, 177-193, (2003). 
Prince, J. A., Anbharasi, V., Shanmugasundaram, T. S., Singh, G., “Preparation and characterization of novel triple layer hydrophilic–hydrophobic composite membrane for desalination using air gap membrane distillation”, Separation and Purification Technology, 118, 598-603, (2013). 
Prince, J. A., Singh, G., Rana, D., Matsuura, T., Anbharasi, V., Shanmugasundaram, T. S., “Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation”, Journal of Membrane Science, 397–398, 80-86, (2012). 
Safavi, M., Mohammadi, T., “High-salinity water desalination using VMD”, Chemical Engineering Journal, 149, 191-195, (2009). 
Schofield, R. W., Fane, A. G., Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, 33, 299-313, (1987). 
	Simone, S., Figoli, A., Criscuoli, A., Carnevale, M. C., Rosselli, A., Drioli, E., “Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD” Journal of Membrane Science, 364, 219-232, (2010). 
Smolders, K., Franken, A. C. M., “Terminology for membrane distillation”, Desalination, 72, 249-262, (1989). 
Tao, Z,. Yongyi, Y., Ruili, X., Yurong, W., “Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation”, Journal of Membrane Science, 453, 402-408, (2014)
Tomaszewska, M., “Preparation and properties of flat-sheet membranes from poly(vinylidene fluoride) for membrane distillation”, Desalination, 104, 1-11, (1996). 
Tomaszewska, M., Gryta, M., Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994). 
Tompa, H., “Polymer solutions”, Butterworths, (1956).
Van der Waal, M. J., Racz, I. G., “Mass transfer in corrugated-plate membrane modules. I. hyperfiltration experiments”, Journal of Membrane Science, 40, 243-260, (1989). 
Yang, X., Wang, R., Fane, A. G., “Novel designs for improving the performance of hollow fiber membrane distillation modules”, Journal of Membrane Science, 384, 52-62, (2011). 
Zeman, L., Tkacik, G., “Thermodynamic analysis of a membrane-forming system water/n-methyl-2-pyrrolidone/polysulfone”, Journal of Membrane Science, 36, 119-140, (1988).
Zsirai, T., Aerts, P., Judd, S., “Reproducibility and applicability of the flux step test for a hollow fibre membrane bioreactor”, Separation and Purification Technology, 107, 144-149, (2013).
D.J. Lin, C.L. Chang,T.C. Chen,L.P. Cheng, Microporous  PVDF membrane formation by immersion precipitation from water/TEP/PVDF system,Desalination145(2002)25-29 
D.J. Lin, H.H. Chang, T.C. Chen, Y.C. Lee, L.P. Cheng, Formation of porous poly(vinylidene fluoride) membrane with symmertic or asymetric morphology by immersion precipitation in the water/TEP/PVDF system,Eur.Polym.J.42(2006)1581-1594
L.P. Cheng, Effect of Temperature on the Formation of Microporous PVDF Membranes by	Precipitation	from 1-Octanol/DMF/PVDF andWater/DMF/PVDFsystem,Macromolecules32(1999)6668-6674  
F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Review-Progress in the production and modification of  PVDF membrane, J Member. Sci. 375(2011)1-27
Muhammad R. Bilad, Elena Guillen-Burrieza, Musthafa O. Mavukkandy, Faisal A. AlMarzooqi, Hassan A. Arafat, Shrinkage, defect and membrane distillation performance of composite PVDF membranes376(2015)62-72
M. Amirilargani, E. Saljoughi, T. Mohammadi, Effects of Tween 80 concentration as a surfactant additive on morphology and permeabilitof flatsheet polyethersulfone (PES) membranes,  Desalination 249 (2009) 837–842.
張旭賢, “多孔型聚偏二氟乙烯薄膜固定離胺酸與己二胺”, 淡江大學化學工程與材料工程研究所碩士論文, (2005).
陳勝昌, “以非溶劑誘導相轉移法製備多孔型薄膜”, 淡江大學化學工程與材料工程研究所碩士論文, (2013).
葉國麟, “真空式與直接接觸式薄膜蒸餾於海水淡化之比較”, 淡江大學化學工程與材料工程研究所碩士論文, (2012).
歐陽興, “薄膜蒸餾用平板型聚偏二氟乙烯薄膜之製備”, 淡江大學化學工程與材料工程研究所碩士論文, (2014).
林智偉, “聚偏二氟乙烯中空纖維膜應用於海水淡化之研究”, 淡江大學化學工程與材料工程研究所碩士論文, (2014)
邱士恩, “聚偏二氟乙烯複合薄膜應用於海水淡化之研究”, 淡江大學化學工程與材料工程研究所碩士論文, (2015)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信