§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2908200716084700
DOI 10.6846/TKU.2007.00985
論文名稱(中文) 高層建物受風影響之動力行為研究-實場監測與風洞試驗驗證
論文名稱(英文) Field measurement and the validation of wind tunnel test of the tall building
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 池雅寗
研究生(英文) Ya-Ning Chih
學號 694310060
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-07-17
論文頁數 107頁
口試委員 指導教授 - 鄭啟明(CMCheng@mail.tku.edu.tw)
委員 - 蕭葆羲
委員 - 陳振華
委員 - 吳重成(jcwu@bridge.ce.tku.edu.tw)
委員 - 張正興(cc527330@mail.tku.edu.tw)
關鍵字(中) 實場監測
風洞試驗
阻尼識別
颱風
阻尼
關鍵字(英) Field measurement
Wind tunnel test
damping ratio identification
typhoon
damping
第三語言關鍵字
學科別分類
中文摘要
本文主要的重點為風工程實場量測相關技術之發展,主要目的在於建立起包含台灣氣候特徵(颱風)之結構受風反應與風場特性資料庫,做為風洞物理模擬、計算流體力學數值模擬以及理論分析結果之最終驗證。並且做有關風洞實驗與實場量測間之比對與探討
於該大樓裝設速度計、加速度計與風速計,量測大樓在不同風速下之受風反應。因此風洞實驗將透過風力量測以及結構動力之計算,求得特定風速下中央百世大樓之振動情形,並與實場監測結果做一比較。 實場風速計之裝設位置受限於大樓景觀之考量,於頂樓架設之高度無法有效脫離該大樓造成之氣流尾跡區域,因此實場量得之風速資料與逼近流實際之風速將有所差別。故於風洞實驗中亦將針對風速之量測進行修正,使實場風速資料能正確反應逼近流場之風速特性。
本研究由實場監測所得到數據可知道,超音波風速計所擺放的位置無法有效的脫離建物本身造成的渦流,而使得其紊流強度過大,無法與風洞試驗之結果做有效的驗證。其中紊流強度會隨著風速的增大而隨之遞減。在頻譜分析上,實場監測所得頻譜和Karman的經驗公式非常吻合,而高頻的部分有受到干擾,其數值也較實驗和文獻之數值低。另外,在識別結構頻率時,X向和Y向較扭轉向來得準確且穩定。在結構物受風時的微動訊號所計算出來之阻尼比,有一拋物線趨勢,此趨勢到1%左右趨於平穩。風洞試驗所計算出來的位移反應變異數皆較實場監測所得到的結果來得小。造成此現象有兩個原因:在做風洞試驗時,沒有完全的考量到附近的山區和圓盤外較高建物對測點本身造成的影響;在縮尺上的設計,和風洞模擬之流況縮尺不相同造成。

另外,在實場監測和風洞試驗驗證上,有以下兩點結論:
1.位移反應~在實場和實驗的位移比較上,X向較為相似,但在Y向的誤差較
X向大。
2.風速頻譜~實場和實驗不完全符合是因為紊流強度無法完全的模擬實場。
英文摘要
This paper mainly focused on the related technology development of the wind engineering field measurements. The aim is to establish a database of Taiwan (Typhoon) climate features, including structures under the wind reaction and wind characteristics, which can be used as the final certification of a physical wind tunnel simulation, computational fluid dynamics, and numerical analysis and simulation results. In addition, the comparison and discussion between the wind tunnel experiments and field measurement are done. 

By installation of speed-meter, acceleration-meter and anemometer, we can measure the wind response of the building under different wind speeds. Therefore wind tunnel experiments will give vibration conditions of tall building under a certain wind speed through the measurement of strength of wind and the calculation of structure dynamics, and compare with the actual results of the field measurement. The installation of the anemometer in the building is restricted in locations due to scenery considerations. If installed in the top floor of building, it is hard to effectively depart from the airstream tail regional caused by the building. Therefore, data of wind speed with filed measurement and data of real wind speed of the approaching wind flow will have differences. Consequently, in the wind tunnel experiments the correction to the wind speed measurement is necessary, so that data of wind speed with filed measurement can correctly reflect the properties of the wind speed of the approaching airstream. 

By the real monitoring data, this study shows that the placed location of the ultrasound anemometer can not be effectively away from the vortex caused by the building itself, which makes it too much turbulence intensity, therefore, not compatible with the wind tunnel testing results effectively. The intensity of turbulence will decrease as the increasing of the wind speed. Regarding he spectrum analysis, the spectrum by filed measurement matched with Karman’s empirical formula, but yet, the high-frequency part had a disruption, and its value was lower than that of experiments and literatures. Moreover, when identifying the structure frequency, X direction and Y direction are more accurate and stable than the twist direction. The calculated damping ratio by the fretting signals when the structure encounters the wind gives a parabolic trend, and that trend becomes flat at about 1%. The variance of the displacement response calculated by wind tunnel tests is smaller than that of results of the filed measurement. This phenomenon can be explained by two reasons: when doing wind tunnel tests, we failed to consider influences at measuring points caused by the nearby mountains and high buildings outside the disk. Aslo, for the scale in the design, this was caused by the difference of the scale from that in wind tunnel simulation. 

Moreover, for the verification of the filed measurement and wind tunnel tests, the following two conclusions are made: 
-displacement response: for the comparison of the displacement between the filed measurement and the experimental one, it’s more similar in the X direction, but the error in the Y direction is larger than that in the X direction. 
-speed spectrum: Being not completely matched between the filed measurement and the experimental one is because the turbulent intensity can not fully simulate the real situation.
第三語言摘要
論文目次
第壹章、	緒論	1
1.1  前言	1
1.2  研究動機	1
1.3  研究方法與內容	1
1.4  論文架構	2
第貳章、	文獻回顧	3
2.1  風洞實驗之流場特性模擬	3
2.2  阻塞效應	4
2.3  雷諾數效應	5
2.4  實場監測分析	6
2.5  系統識別運用	7
2.6  隨機遞減技巧	8
2.7  風力量測方法	9
第參章、	理論背景	11
3.1  大氣邊界層之流場特性	11
3.1.1平均風速剖面	11
3.1.2紊流強度	12
3.1.3紊流長度尺度(Length scales of turbulence)	13
3.1.4擾動風速頻譜	14
3.1.5縱向速度擾動的交頻譜	14
3.2  散漫數據處理	15
3.3  結構動力特性	16
3.3.1結構動力學理論	16
3.3.1.1單自由度運動方程式	16
3.3.1.2多自由度運動方程式	18
3.4  鈍體氣動力現象	18
3.5  風力對結構物之作用	20
3.5.1風力計算理論	20
3.5.2風力作用下之位移反應計算	20
3.6  系統識別運用之理論	22
3.6.1頻率識別	22
3.6.2頻譜分析理論	22
3.6.3  隨機遞減法之原理	24
3.6.3.1隨機遞減法	24
3.6.3.2單自由度系統之自隨機遞減訊號	25
3.6.4  阻尼計算	30
第肆章、	實場監測與風洞實驗之採樣與儀器配置	32
4.1  實場採樣方式與儀器配置	32
4.2  風場之量測與資料分析	36
4.3  速度與加速度之量測與分析	38
4.4  風洞流場配置與模擬	39
4.5 模型製作與配置	39
4.6  風速量測	40
4.7  模型風壓之量測	41
第伍章、	實場監測與風洞實驗之數據分析結果	48
5.1 實場監測之風場量測與資料分析	48
5.2 實場監測之速度與加速度之量測與資料分析	51
5.3 風洞試驗之風速量測與資料分析	53
5.4 風洞試驗之風壓量測與資料分析	54
5.5  實場監測和實驗數值之位移反應探討	55
5.6  實場監測和實驗數值之風力頻譜探討	56
第陸章、	結論與建議	58
6.1  結論	58
6.2  建議	60
參考文獻	62
附表	66
附圖	67





附表目錄
表[4- 1] Haitang_ Turbulence intensity 統計資料	66
表[4- 2] Matsa_ Turbulence intensity 統計資料	66

表[5- 1] Haitang_ Turbulence intensity 統計資料	66
表[5- 2] Matsa_ Turbulence intensity 統計資料	66

附圖目錄
圖[2- 1] A typical sample of the damping of buildings in J. Q. FANG	67
圖[2- 2] Power spectrum density of wind speed in Q.S. Li	67
圖[2- 3] Power spectrum of acceleration response in the X direction	68
圖[2- 4] Power spectrum of acceleration response in the Y direction	68
圖[2- 5] Turbulence intensity versus mean wind speed	69
圖[2- 6] Amplitude-dependent damping characteristics of the tall building	69

圖[3- 1] m隨Zo遞增之關係圖	70
圖[3- 2] 鈍體分離流及渦漩示意圖	70

圖[4- 1] 百世大樓俯瞰圖	72
圖[4- 2] 百世大樓儀器安裝位置圖	73
圖[4- 3] 超音波風速計	74
圖[4- 4] 三軸加速度計	75
圖[4- 5] 單軸加速度計	75
圖[4- 6] 資料擷取器	75
圖[4- 7] 各颱風路徑圖	76
圖[4- 8] 淡江大學結構氣動力風洞實驗室平面圖	76
圖[4- 9] 地況A 之 (1)平均風速 (2)紊流強度(3) 長度尺度 剖面	77
圖[4- 10] 決定擾流板之高度與寬度之經驗曲線圖	78
圖[4- 11] 地況A 之邊界層模擬圖	78
圖[4- 12] 地況A 之錐形擾流板設計尺寸圖	79
圖[4- 13] 模擬邊界層流場之粗糙元素尺寸圖	79
圖[4- 14] 中央百世大樓壓克力模型	80
圖[4- 15] 正立面圖	81
圖[4- 16] 側立面圖	82
圖[4- 17] 管線校正設置圖	83
圖[4- 18] 管線校正設置圖	83
圖[4- 19] 管線裝設示意圖	84
圖[4- 20] 管線裝設示意圖	84
圖[4- 21] 模型及圓盤圖 270度~90度	85
圖[4- 22] 模型及圓盤圖 90度~180度	85
圖[4- 23] 30樓之風力歷時示意圖	86
圖[4- 24] 計算結構位移反應變異數之流程圖	86
圖[4- 25] ETABS MODEL	87
圖[4- 26] Model Mode Shape	88

圖[5- 1] 海棠颱風_每10分鐘之風速風向歷時	89
圖[5- 2] 瑪沙颱風_每10分鐘之風速風向歷時	89
圖[5- 3] Haitang_Turbulence intensity versus mean wind speed	90
圖[5- 4] Matsa_Turbulence intensity versus mean wind speed	90
圖[5- 5] Total Typhoon_Turbulence intensity versus mean wind speed	91
圖[5- 6] Haitang颱風無因次化風速頻譜圖	92
圖[5- 7] Matsa颱風無因次化風速頻譜圖	92
圖[5- 8] X向和Y向振動反應的歷時	93
圖[5- 9] Haitang颱風X向和Y向風速與反應的比較圖	93
圖[5- 10] Matsa颱風X向和Y向風速與反應的比較圖	93
圖[5- 11] X向頻率圖                      圖[5- 12] Y向頻率圖	94
圖[5- 13] 扭轉向頻率圖	94
圖[5- 14] Haitang Typhoon (X direction)	95
圖[5- 15] Haitang Typhoon  (Y direction)	95
圖[5- 16] Matsa Typhoon (X direction)	96
圖[5- 17] Matsa Typhoon  (Y direction)	96
圖[5- 18]  熱膜探針擺設圖	97
圖[5- 19] Iu比較圖	97
圖[5- 20] Haitang (40度) 建物上方與逼近流之無因次化風速頻譜	98
圖[5- 21] Matsa (140度) 建物上方與逼近流之無因次化風速頻	99
圖[5- 22] 平均風力係數隨風向角之變化圖	99
圖[5- 23] 平均風力係數隨風向角之變化圖	100
圖[5- 24] 無因次化風速對反應隨風向角之變化圖	100
圖[5- 25]無因次化風速對反應隨風向角之變化圖	101
圖[5- 26] 無因次化風速對反應隨風向角之變化圖	101
圖[5- 27] 無因次化風速對反應隨風向角之變化圖	102
圖[5- 28] 各風速下隨風向角變化之位移變異數圖	102
圖[5- 29] X向實驗與實場監測之反應比較(40度)	103
圖[5- 30] Y向實驗與實場監測之反應比較(40度)	103
圖[5- 31] X向實驗與實場監測之反應比較(140度)	104
圖[5- 32] X向實驗與實場監測之反應比較(140度)	104
圖[5- 33] X向實驗與實場監測之反應比較	105
圖[5- 34] Y向實驗與實場監測之反應比較	106
圖[5- 35] Haitang Typhoon(40°) Power spectral density of wind speed	106
圖[5- 36] Matsa Typhoon (140°) Power spectral density of wind speed	107
參考文獻
[1].Cermak, J.E., Peterka, J.A., 1974, “Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections”, Center for Building Technology, IAT, National Bureau of Standards Washington, D.C., June.

[2].Armitt, J. &Counihan, J. , 1968," The Simulation of the Atmospheric Environment ", Vol.2.﹐pp.49-71.

[3].Counihan﹐J. ,1970﹐" An Improved Method of Simulation Atmospheric Boundary Layer "﹐Atmospheric Environment﹐Vol.4﹐pp.159-275.

[4].Counihan﹐J.﹐1970﹐" Further Measurements in a Simulated Atmospheric Bounday Layer "﹐Atmospheric Environment﹐Vol.4﹐pp.159-275.

[5].Counihan﹐J.﹐1973﹐" Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel "﹐Atmospheric Environment﹐Vol.7﹐pp.673-689.

[6].Standen﹐N. M.﹐1972﹐" A Spire Array for Generating Thick Turbulent Shear Layers for Natural Wind Simulation in Wind Tunnels"﹐Rep. LTR-LA-94﹐National Aeronautical Establishment﹐Ottawa﹐Canada.

[7].Barret, R. V., 1972, " A Versatile Compact Wind Tunnel for Industrial Aerodynamics" ﹐Technical note ﹐ Atmospheric Environment ﹐ Vol.6 ﹐pp.491-495.

[8].Cook﹐N. J.﹐1973﹐"On Simulating the lower Third of the Urban Adiabatic Boundary Layer in a Wind Tunnel"﹐Atmospheric Environment﹐Vol.7﹐pp.691-705.

[9].Cermak﹐J. E.﹐ Peterka﹐J. A.﹐1974﹐ " Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections"﹐Center for Building Technology﹐IAT﹐National Bureau of Standards Washington﹐D.C.﹐June.

[10].Jensen, M., “The Model Law for Phenomena in Natrual Wind”, Ingeioen International Edition, Vol.2 No.4 (1958), p.3121-123

[11].Whitbread, R.E., “Model Simulation of Wind Effects on Structures”, Proceeding of the Conference on Wind Effects on Buildings and Structures (1963), p284-306

[12].Kubo, Y., Miyazaki, M., &Kato, K., “Effects of end plates and blockage of structural members on drag forces” J. Wind Eng. Ind. Aero., Vol.32, pp.329-342 (1989)

[13].Hunt﹐A.﹐1982﹐" Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales " J. Wind Eng. Ind. Aero.﹐Vol. 10﹐ pp.137-163.

[14].Nakamura﹐Y.﹐Ohya﹐Y.﹐ 1984﹐ " The effects of turbulence on the mean flow past two dimensional rectangular cylinders ", J. of Fluid. Mech.﹐Vol.149﹐pp.255-273.

[15].Townsend, A., “The Structure of Turbulent Shear Flow”, Cambridge Univ. Press. (1956), p315.

[16].Trifunac, M. D., "Comparisions Between Ambient and Forced Vibration Experiments," Earthquake Engineering and Structural Dynamics, Vol. 1, pp133-150 (1972).

[17].J.R. Wu, P.F. Liu, Q.S. Li .”Effects of amplitude-dependent damping and time constant on wind-induced responses of super tall building”

[18].J.Q. Fang , A.P. Jeary , Q.S. Li* , C.K. Wong “Random damping in Buildings and its AR model”.Journal of Wind Engineering and Industrial Aerodynamics (1999) 

[19].J. Q. FANG,* Q. S. LI, A. P. JEARY AND D. K. LIU .“DAMPING OF TALL BUILDINGS:ITS EVALUATION AND PROBABILISTIC CHARACTERISTICS”.(1999)

[20].Q.S. Li, J.Y. Fu, Y.Q. Xiao, Z.N. Li, Z.H. Ni, Z.N. Xie, M. Gu.”Wind tunnel and full-scale study of wind effects on China’s tallest building”,2004

[21].Mcverry, G. H., “Structural Identification in The Frequency Domain From Earthquake Records”, “Journal of Earthquake Engineering and Structural Dynamics”, Vol. 8, pp. 161-180 (1980).

[22].Li, Y. and Mau, S. T., “A Case Study of MIMO System Identification Applied to Building Seismic Record”, “Journal of Earthquake Engineering and Structural Dynamics”, Vol. 20, pp. 1045-1064 (1991).

[23].Caravani, P., Watson, M. L., and Thomson, W. T., “Recursive Least Square Time Domain Identification of Structural Parameters”, “Journal of Applied Mechanics”, ASME, Vol. 44, pp. 135-140 (1977).

[24].林其璋、高雍超、王哲夫,「應用部份量測反應之結構系統識別」,中國土木水利工程學刊,第七卷,第三期,第307-316 頁(1995)。

[25].羅俊雄、林泓模,「離散時間域結構物地震反應之系統識別」,國立台灣大學土木工程研究所碩士論文,台北(1995)。

[26].Masri, S.F., Beckey, G. A., and Sassi, H., “Non-parametric Identification of a Class of Non-linear Multi-degree Dynamic System”, “Journal of Earthquake Engineering and Structura Dynamics”, Vol. 10, pp. 1-30 (1992).

[27].黃仁宗,「受震系統之遞迴式系統識別」, 國立成功大學土木工程研究所碩士論文, 台南(1996)。

[28].Cole. H. A. Jr., "Methods and Apparatus for Measuring the Damping Characteristic of a Structure," Unites States Patent, No. 3, 620.069 (1971).

[29].Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., and Cook, M. F.,“A Mathematical Basis for The Random Decrement VibrationSignature Analysis Technique, “Journal of Mechanical Design”, Vol.104, pp. 307-313 (1982).

[30].Bedewi, N. E., “The Mathematical Foundation of The Auto- andCross-Random Decrement Techniques and The Development of aSystem Identification Technique for The Detection of Structural Deterioration”, Ph. D Thesis, University of Maryland College Park(1986).

[31].黃炯憲、葉錦勳、林憲忠、葉公贊,「隨機遞減法在微震量測之應用- 比例阻尼系統」, 國家地震工程研究中心研究報告NCREE-96-013 ,台北(1996)。

[32].王國棟,「微動量測之系統識別” ,國立成功大學土木工程研究所碩士論文」,台南(1999)。

[33].Irwin. H. p. A. H., Cooper, K. R., Girard, R., 1979, “Correction of  distorsion dffects caused by tubing system in measurements of fluctuating pressures.”, J. Wind Engr. Ind. Aero., Vol.5, p.93-107.

[34].Kareem. A., 1984, “Pressure fluctuations on a square building model in boundary-layer flows.”, Journal of Wind Wngineering and Industrial Aerodynamics. Vol.16, p.17-41.

[35].Stathopoulos. T., 1975, “Technique of pneumatically averaging pressures.”, BLWT-Report-2-75, University of West Ontrio.

[36]. Gumley, S.J., 1983, “Tubing system for pneumatic averaging of fluctuating pressure.”, J. Wind Engr. Ind. Aero., Vol.12, p.189-228.

[33].Davenport, A.G. ,”The Relationship of Wind Structure to Wind Loading”, Proc. Symp. On Wind Effects on Buildings and Structures, Vol.1, National Physical Laboratory, Teddington, U.K. Her Majesty’s Stationary Office, London, p53-102. (1965)

[34].American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.

[35].Counihan, J., “Adiabatic Atmospheric Boundary Layer: a Review and Analysis of Data From the Period 1880-1972”, Atmos. Environ., 9(1975), 871-905.

[36] Davenport, A.G., “The Spectrum of Horizontal Gustiness Near the Ground in High Winds”, J. Royal Meteorol. Soc 87, (1961), p194-211

[37]Kaimal, J.C. et al., “Spectral Characteristic of Surface layer Turbulence ”, J. Royal Meteorol. Soc., 98, (1972), p563-589

[38].Yang, J.C.S. et al, “Damping of an Offshore Platform Model by Random dec. Method”, Mechanical Engineering, University of Maryland, Collage Park, MD.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信