淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2908200714503600
中文論文名稱 薄膜表面形態對粒子結垢之影響
英文論文名稱 Effect of Membrane Morphology on Particle Fouling
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 廖千瑤
研究生英文姓名 Chien-Yao Liao
學號 694361444
學位類別 碩士
語文別 中文
口試日期 2007-06-28
論文頁數 99頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-莊清榮
委員-童國倫
委員-鄭東文
中文關鍵字 微過濾  阻塞模式  薄膜阻塞  薄膜形態  粒子結垢 
英文關鍵字 microfiltration  blocking model  membrane blocking  membrane morphology  particle fouling 
學科別分類
中文摘要 本研究是利用薄膜阻塞模式,分析不同之薄膜對微過濾中之薄膜阻塞與粒子結垢之影響。在實驗中採用平均孔徑相近的三種不同薄膜,分別為 Millipore 公司生產的 Isopore、Durapore 和 MF-Millipore 薄膜,進行 PMMA 粒子懸浮液之恆壓過濾,藉以探討三者間之薄膜阻塞模式與過濾阻力之差異性。本研究基於薄膜阻塞模式的分析建立了薄膜阻塞圖,來關聯阻塞指數、過濾速率與累積粒子量之間的關係。阻力係數並可關聯成阻塞指數的單一函數。由分析結果可知:薄膜阻塞發生在過濾剛開始的一段期間,而當過濾速率或累積粒子量達到臨界值時,阻塞指數會突然下降到零,此時便可改用濾餅過濾模式來解釋。在相同濾速下,MF 薄膜最容易被阻塞,而 Isopore 因為膜孔密度較低而有次高的阻塞指數。若是粒子累積量相同,則 Isopore 有最高的阻塞指數,Durapore 次之,而 MF 膜最低。比較三種薄膜的臨界值發現:MF 膜的臨界點發生在較低之累積粒子量與較高之濾速,其次為 Durapore,而 Isopore 的臨界點則累積粒子量為最高、濾速為最低。造成此種差異是因為薄膜表面形態與孔道結構的差異所致。
英文摘要 The effects of membrane morphology on the membrane blocking and particle fouling in a “dead-end” microfiltration system are studied by use of membrane blocking models. Three kinds of membranes, Isopore, Durapore, and MF-Millipore membranes manufactured by Millipore Company in USA, with two mean pore sizes are used for filtering 0.15μm PMMA particles in experiments. The values of blocking index and resistance coefficient during filtration under various operating conditions are analyzed and discussed. The membrane blocking charts are established for relating the blocking index, filtration rate, and particle accumulation for the used membranes. The resistance coefficients obtained under various conditions can be correlated to a unique function of blocking index. Different modes of membrane blockings occur in the early period of a filtration, the blocking index decreases continuously during that period. The blocking index then suddenly drops to zero at a critical point, and the filtration follows the cake filtration model henceforward. The experimental data show that MF-Millipore membrane is the easiest to be blocked under a fixed filtration rate. However, Isopore is also easier to be blocked than Durapore membrane due to its low pore density. In addition, Isopore membrane has the highest blocking index while MF-Millipore membrane has the lowest under a given particle accumulation. To compare the critical conditions of three kinds of membranes, the critical condition of MF-Millipore membrane occurs at the lowest particle accumulation and the highest filtration rate, however, the critical condition of Isopore membrane occurs at the highest particle accumulation and the lowest filtration rate. Those results are due to different membrane surface morphologies and membrane pore structures.
論文目次 目 錄
頁次
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VII
表目錄 X

第一章 序論 1
1-1 前言 1
1-2 研究動機與目標 4
第二章 文獻回顧 5
2-l 薄膜結垢對過濾的影響 5
2-2 薄膜表面形態的研究 7
2-3 微過濾薄膜之選擇 12
2-4 操作條件對薄膜阻塞之影響 14
2-5 過濾阻塞模式 18
第三章 理論 23
3-1 阻力串聯模式 23
3-2 濾餅之過濾比阻、孔隙度和固體壓縮壓力之關係 25
3-3薄膜之阻塞模式 26
第四章 實驗裝置與步驟 30
4-1 實驗物料 30
4-1-1 懸浮液 30
4-1-2 濾材 30
4-1-3 緩衝溶液 31
4-2 實驗裝置 32
4-2-1 恆壓過濾實驗裝置 32
4-2-2 分析儀器 34
4-3 實驗步驟 35
第五章 結果與討論 36
5-1 過濾壓力對薄膜阻塞模式之影響 36
5-2 薄膜表面形態對薄膜阻塞模式之影響 52
5-3 不同薄膜孔徑對阻塞模式之影響 71
第六章 結論 79
符號說明 81
參考文獻 83
附 錄 88
附錄A 實驗物料之種類及物性 88
附錄B 實驗數據計算公式 93
附錄C 薄膜SEM照片 96
附錄D 緩衝溶液的配製 99


圖 目 錄
頁次
第一章

Fig. 1-1 The classification of membrane filtration process. 2
Fig. 1-2 Schematics of cake filtration and cross-flow filtration. 3

第二章

Fig. 2-1 A schematic of the concentration polarization of solute on the membrane surface. 6
Fig. 2-2 Effect of membrane pore size on flux. 12
Fig. 2-3 Structure of membrane pore. 14
Fig. 2-4 Fouling schematics. 21

第三章

Fig. 3-1 Overview of various types of resistance in membrane filtration 24

第四章

Fig. 4-1 A schematic diagram of “dead-end” microfiltration system. 33
Fig. 4-2 A schematic diagram of filter chamber. 33

第五章

Fig. 5-1 A plot of dt/dv vs. v filtration curves for PMMA suspensions under different filtration pressures. 37
Fig. 5-2 The curves of d2t/dv2 vs. dt/dv under various filtration pressures. 39
Fig. 5-3 The effect of filtration rate on the blocking index during microfiltration under four different filtration pressures. 42
Fig. 5-4 The effect of particle accumulation on the blocking index during microfiltration under four different filtration pressures. 44
Fig. 5-5 A membrane blocking chart relating i, q and cv for 0.15μm PMMA particles and 0.4μm Isopore® membrane. 45
Fig. 5-6 Two typical examples for explaining how the blocking index varies during microfiltration. 47
Fig. 5-7 Effect of filtration pressure on the values of αav and Kc . 49
Fig. 5-8 A plot of K/Kc vs. i under various operating conditions. 51
Fig. 5-9 Compare the effect of filtration rate on the blocking index under two different filtration pressures with three different kinds of 0.45μm membranes. 53
Fig. 5-10 Compare the filtration rate with three different kinds of 0.45μm membranes. 55
Fig. 5-11 Compare the effect of particle accumulation on the blocking index under two different filtration pressures with three different kinds of 0.45μm membranes. 56
Fig. 5-12 A membrane blocking chart relating i, q and cv for 0.15μm PMMA particles and 0.45μm Durapore® membrane. 59
Fig. 5-13 A membrane blocking chart relating i, q and cv for 0.15μm PMMA particles and 0.45μm MF-Millipore® membrane. 60
Fig. 5-14 The constant blocking index for three kinds of different 0.45μm membranes. 61
Fig. 5-15 The critical point under different filtration pressure for 0.45μm membranes. 63
Fig. 5-16 A membrane blocking chart relating i, q and cv for 0.15μm PMMA particles and 0.2μm Isopore® membrane. 63
Fig. 5-17 A membrane blocking chart relating i, q and cv for 0.15μm PMMA particles and 0.22μm Durapore® membrane. 66
Fig. 5-18 A membrane blocking chart relating i, q and cv for 0.15μm PMMA particles and 0.22μm MF-Millipore® membrane. 67
Fig. 5-19 The constant blocking index for three kinds of different 0.22μm membranes. 68
Fig. 5-20 The critical point under different filtration pressure for 0.22μm membranes. 70
Fig. 5-21 Compare the effect of filtration rate on the blocking index under two different filtration pressures with 0.2 and 0.4μm Isopore membranes. 72

Fig. 5-23 Compare the effect of particle accumulation on the blocking index under four different filtration pressures with 0.2 and 0.4μm Isopore membranes. 74
Fig. 5-23 The critical point under different filtration pressure for 0.22 and 0.45μm membranes. 77


附 錄

Fig. A-1 Isopore membrane 89
Fig. A-2 Durapore membrane. 90
Fig. A-3 MF-Millipore membrane. 91
Fig. C-1 SEM of particle deposition and blocking in 0.4μm Isopore membrane. 96
Fig. C-2 SEM of particle deposition and blocking in 0.2μm Isopore membrane. 96
Fig. C-3 SEM of particle deposition and blocking in 0.45μm Durapore membrane. 97
Fig. C-4 SEM of particle deposition and blocking in 0.22μm Durapore membrane. 97
Fig. C-5 SEM of particle deposition and blocking in 0.45μm MF-Millipore membrane. 98
Fig. C-6 SEM of particle deposition and blocking in 0.22μm MF-Millipore membrane. 98


表 目 錄
頁次
第三章

Table 3-1 The coefficients of blocking models 29

第四章

Table 4-1 Properties of membranes used in this study. 31
Table 4-2 The operating conditions in this study. 34

附 錄

Table A-1 The Zeta potential of membranes surface.. 92
Table B-1 The value of Rm of membranes under different
operation pressures 94
Table D-1 Preparation of the buffer solutions. 99


參考文獻 參考文獻

Berthold G., The membrane-coupled activated sludge process in municipal wastewater treatment, Technomic Publishing Company, Germany, pp.35 (2001).

Bian, R., Watanabe, Y., Tambo, N. and Ozawa, G., Removal of humic substances by UF and NF membrane systems, Wat. Sci. Tech. 40(9), 121-129 (1999).

Bourgeous K. N., Darby J. L., and tchobanoglous G., “Ultrafiltration of Wsatewater :Effect of Particles, Mode of Operation, and Backwash Effectiveness”,Wat. Res.,35(1),77-90 (2001).

Bowen, W. R., Calvo, J. I. and Hernandez, A., Steps of membrane blocking in flux decline during protein microfiltration. J. Membrane Sci. 101, 153-165 (1995).

Carme G., Davis R.H., Membrane fouling during microfiltration of protein mixtures, Journal of Membrane Science, Vol.119, 269-284 (1996).

C.C. Ho, A.L. Zydney, Effect of membrane morphology on the initial rate of protein fouling during microfiltration, J. Membr. Sci. 155, 261-275 (1999).

C.C. Ho, A.L. Zydney, A combined pore blockage and cake filtration model for protein fouling during microfiltration, J. Colloid Interface Sci. 232, 389-399 (2000).

C.C. Ho, A.L. Zydney, “Protein Fouling of membrance Asymmetric and Composite Microfiltration Membranes”, Ind. Eng. Chem. Res., 40, 1412-1421 (2001).

C.C. Ho, A.L. Zydney, “Effect of Membrane Morphology on System Capacity During Normal Flow Microfiltration” Biotechnol. Bioeng., 538-543 (2003).
Cheryan, M., Ultrafiltration and microfiltration handbook. Technomic Publishing Company, USA (1998).

Chu H. P., Li X.Y. “Membrane Fouling in a Membrane Bioreactor (MBR): Sludge Cake Formation and Fouling Characteristics” Biotechnol. Bioeng., 323-331 (2005).

Eiji Iritani, Yasuhito Mukai, “Blocking Resistance of Membrane during Cake Filtration of Dilute Suspensions” AIChE Journal, 2609-2614 (2005).

Elimelech, M., Zhu, X., Childress, A. E. and Hong, S.,Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes, J. Membrane Sci. 127, 101-109 (1997).

Fane, A. G., C. J. D. Fell and A. Suki, “Flux decline in protein ultrafiltration,” J. Membr. Sci., 21(3) 269-283 (1983).

Fane, A. G., C. J. D. Fell and A. Suki, “The effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes,” J. Membr. Sci., 16 195-210 (1983).

Gill, W. N., D. E. Wiley, C. J. D. Fell, and A. G. Fane,“Effect of Viscosity on Concentration Polarization inUltrafiltration,” AIChE J., 34, 1563 (1988).

Hermans P.H., Bredee H.L., Principles of the mathematical treatment of constant pressure filtration, J. Soc. Chem. Ind. 55 (1936).

Hermia J., “Constant pressure blocking filtration laws-Application to Power-Law non-Newtonian Fluids”, Trans. Inst. Chem. Engrs., 60, 183-187 (1982).

Hwang K.J., Lin T.T., Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration, J. Membr. Sci. 199, 41-52 (2002).

Hwang K.J., Liao C.Y., K.L. Tung “Analysis of particle fouling during microfiltration by use of blocking models” J. Membrane Sci. 287, 287–293 (2007)

Iritani, Eiji, Y. Mukai, Y. Tanaka and T. Murase, “Flux decline behavior in dead-end microfiltration of protein solutions,” J. Membr. Sci., 103 181-191 (1995).

J. Jacob, P. Pradanos, J. I. Calvo, A. Hernandez and G. Jonsson, “Fouling kinetics and associated dynamics of structural modifications”, Colloids and Surfaces A:Physicochemical and Eng. Aspects,138, 173 (1998).

Kim, K. J., A. G. Fane, C. J. D. Fell and D. C. Joy, “Fouling mechnism of membranes during protein ultrafiltration,” J. Membr. Sci., 68 79-91 (1992).

MareČek, J.,“ Filter Cloth Plugging and Effect on the Filter Performance,” Ind. Eng. Chem.process. Des. Dev., Vol.20, P.693 (1981).

Matsumoto, Y., S. Nakao and S. Kimura, “Cross-flow filtration of solution of polymers using ceramic mivrofiltration,” Int. Chem. Eng., 28 677-683 (1988).

Mores W. D. and R. H. Davis, “Protein Fouling of Surface-Modified Polymeric Microfiltration Membranes”, J. Membrane Sci., 116, 47-60 (1996).

Mores W. D. and R. H. Davis, “Direct Visual Observation of Yeast Deposition and Removal during Microfiltration”,J. Membrane Sci.,189,217-230 (2001).

Pirbazari, M., Bad riyha, B. N. and Ravindran, V. “MF-PAC for Treating Waters Contaminated With Natural and Synthetic Organics”, J. AWWA, Vol. 83, No.12, pp.61-68 (1992).

Schafer, A. I., Fane, A. G.. and Waite, T. D., Fouling effects on rejection in the membrane filtration of natural waters. Desalination 131, 215-224 (2000).
Shanlararaman Chellam and Wengong Xu “Initial Stages of Bacterial Fouling during Dead-End Microfiltration”, Environ. Sci. Technol. 39,6470-6476 (2005).

Shankararaman Chellam, Wendong Xu “Blocking laws analysis of dead-end constant flux microfiltration of compressible cakes” J. Colloid Interface Sci. 301,248–257 (2006).

Staude E., Membrane und membranprozesse. VCH Verlagsgesellschaft, Weinheim, (1992).

Tiller, F.M., and J.R. Cramp and F. Ville, ”A Revised Approach to the Theory of Cake Filtration,” in: P. Sanasundaran (Ed.). Fine Particles Processing, Vol.2, Amer. Inst. Min. Met. Petr. Eng., New York, 1549-1558 (1980).

Tracey, E. M. and R. H. Davis, “Protein fouling of track–etched polycarbonate microfiltration membranes,” J. Colloid Interface Sci., 167 104-116 (1994).

Tung K.L. and Chuang C.J., “Effect of Pore Morphology on Fluid Flow and Particle Deposition on a Track-Etched Polycarbonate Membrane”, Desalination, 146,149-134 (2002).

Vrijenhoek, E. M., Hong, S. and Elimelech, M., Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membrane Sci. 188, 115-128 (2001).

Velasco C. and Hernández A., “Protein fouling in microfiltration: deposition mechanism as a functionof pressure for different pH”, J. Colloid Interface Sci., 266, 148–152 (2003).

W. R. Bowen, J. I. Calvo and A. Hernandez, “Steps of membrane blocking in fluxdecline during protein microfiltration”, J.Mem.Sci.,101, 153 (1995).

Yeh, H. M., Cheng, T. W. and Wu, H. H.,Membrane ultrafiltration in hollow- fiber module with the consideration of pressure declination along the fibers. Sep. Purif. Technol. 13, 171-180 (1998).

Yuan W. and Zydney A. L., Humic acid fouling during ultrafiltration. Enviro. Sci. Tech., 34(23), 5043-5050 (2000).

Yuan, W., Kocic, A., and Zydney, A. L. “ Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model. ” J. Membrane Sci. 198,51-62 (2002).

呂維明、呂文芳 編著,“過濾技術”,高立圖書有限公司, Chap.8, Chap.12, Chap.16 (1994)。
呂維明 編著,“固液過濾技術”,高立圖書有限公司, Chap.7, Chap.15 (2004)。
王筱菁,“膜材結構對蛋白質微過濾反覆操作程序影響之探討”,碩士論文,中原大學化工系 (2002)。
林東宥,“微過濾程序中蛋白質結垢行為之探討”,碩士論文,台灣大學化工系 (2000)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-08-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-08-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信