§ 瀏覽學位論文書目資料
系統識別號 U0002-2907202114313900
DOI 10.6846/TKU.2021.00822
論文名稱(中文) 利用表面增強拉曼技術結合機器學習法檢測二硫代胺基甲酸鹽類農藥之研究
論文名稱(英文) Research on the Detection of Dithiocarbamate Pesticides by Using Surface-Enhanced Raman Spectroscopy and Machine Learning
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 羅紹緯
研究生(英文) Shao-Wei Luo
學號 608400080
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-06-30
論文頁數 71頁
口試委員 指導教授 - 許世杰(roysos1@gmail.com)
委員 - 簡儀欣
委員 - 陳效謙
關鍵字(中) 表面拉曼增強訊號
機器學習
電化學
農藥
二硫代氨基甲酸酯
關鍵字(英) Surface-enhanced Raman spectroscopy
Dithiocarbamate
pesticide
machine learning
Cyclic voltammetry
第三語言關鍵字
學科別分類
中文摘要
食品安全衛生近年來是大眾所關注的議題,而如何有效製作出快速檢測出有毒物質一直是業界與學界所想達成的目標,為此表面拉曼增益技術(Surface Enhance Raman Scattering, SERS)正是一個可以達到此目標的一項檢測技術。
    本研究利用SERS檢測二硫代氨基甲酸酯 (Dithiocarbamate, DTC) 當中的得恩地 (thiram) 、富爾邦 (ferbam)與福美鋅(ziram),其方法是透過電化學中的循環伏安法製備SERS基板,並且直接將農藥滴上SERS基板直接做檢測,其中發現當使用1 M的硫酸作為電解質並且進行掃描六圈時會有最佳的SERS效果,同時在SEM的表面觀察中也可以發現奈米粒子成長的非常具有均勻性,並且使用該條件的SERS基板分別檢測到了5 ppm的得恩地、10 ppm的富爾邦與5 ppm的福美鋅。
     由於可見該二硫代氨基甲酸酯類農藥的拉曼光譜類似,本研究透過了人工智慧的輔助,將拉曼光譜結合人工智慧與機器學習的演算法進行分析,分別達到96.7%的預測準度與95%的預測準度,證明了SERS基板搭配人工智慧的可行性,開發了一套能夠快速、準確與便宜的農藥檢測系統。
英文摘要
In recent years, food safety have been a topic of public issues. How to effectively and quickly detect toxic substances that has always been the goal of the industry and academia. For the reason, Surface Enhance Raman Scattering (SERS) is detection technology that can achieve this goal.
The study used SERS to detect dithiocarbamate (DTC) of thiram, ferbam and ziram. The SERS substrate is prepared by cyclic voltammetry of electro-chemistry. Afterwards, the pesticide directly drop on the SERS substrate. When 1 M sulfuric acid and CV6 have best SERS effect. At the same time, The SEM image can find that the nanoparticle growth is very uniform. And the SERS substrate using this condition detected 5 ppm of Thiram, 10 ppm of Fer-bam, and 5 ppm of Ziram.
Since it can be seen that the Raman spectra of the dithiocarbamate pesticides are similar, so the study uses SERS combined with artificial intelligence and machine learning. In the result, artificial intelligence and machine learning achieves prediction accuracy of 96.7% and 95%, respectively. The result 
proved that the SERS substrate with artificial intelligence, have fast, accurate and cheap pesticide detection system.
第三語言摘要
論文目次
目錄
致謝	I
摘要	II
目錄	V
圖目錄	VII
表目錄	IX
 第一章  緒論	1
1.1 前言	1
1.2 研究動機與目的	4
 第二章  理論基礎	5
2.1 SERS基板與技術發展	5
2.2 現今農藥的檢測方式	9
2.3 SERS應用於農藥發展	13
 第三章  實驗方法與步驟	17
3.1 實驗材料	17
3.2 實驗裝置與原理	20
3.2.1 電化學分析儀	20
3.2.2 拉曼光譜儀	22
3.2.3 掃描式電子顯微鏡與能量色散X射線譜	23
3.2.4 可見光微型光譜儀	25
3.3 實驗步驟	26
 第四章  實驗結果與討論	31
4.1 金與銅複合材料奈米結構SERS基板之電化學討論	31
4.2 金與銅複合材料奈米結構SERS基板之表面形貌分析	36
4.3 金與銅複合材料奈米結構SERS基板之吸收光譜	40
4.3 金與銅複合材料奈米結構SERS基板之R6G結果	42
4.3.1 實驗條件與SERS效益分析與討論	42
4.3.2 SERS基板增益效果計算與分析	44
4.4 以SERS基板檢測微量農藥之探討分析	46
4.4.1 以SERS基板檢測微量得恩地結果與探討	46
4.4.2 以SERS基板檢測微量富爾邦結果與探討	49 
4.4.3 以SERS基板檢測微量福美鋅結果與探討	51
4.5 利用機器學習結合SERS系統分析農藥與討論	53
4.5.1 以主成分分析法(PCA)進行數據分析	53
4.5.2 以隨機森林 (Random Forest) 預測模型之分析	55
4.5.3 以卷積神經網絡(CNN)預測模型之分析	57
 第五章  結論	61
 第六章  參考文獻	63
圖目錄
圖 2 1得恩地(thiram)、富爾邦 (ferbam) 與福美鋅 (ziram)結構圖	10
圖 2 2二硫代胺基甲酸鹽類斷裂與貴金屬鍵結示意圖 	11
圖 2 3金/銅奈米粒子的生成示意圖	14
圖 3 1電化學CHI 6113E分析儀	21
圖 3 2拉曼光譜儀設備	22
圖 3 3掃描式電子顯微鏡設備	24
圖 3 4可見光微型光譜儀設備	25
圖 3 5網版印刷電極 (a) 剖面圖 (b)結構圖	27
圖 3 6 R6G的檢測實驗步驟圖	28
圖 3 7得恩地、富爾邦與福美鋅的實驗流程步驟	30
圖 4 1 SERS基板之完整的循環伏安圖	35
圖 4 2 SERS基板之第一圈與第二圈的循環伏安圖	35
圖 4 3一萬倍下的SERS基板之SEM圖	36
圖 4 4六萬倍下的SERS基板之SEM圖	37
圖 4 5 SERS基板之元素分析的位置	38
圖 4 7一號位置之能量色散X射線譜	39
圖 4 8 二號位置之能量色散X射線譜	39
圖 4 8金奈米粒子與銅奈米粒子形成之SERS結構示意圖	40
圖 4 9 SERS基板之反射光譜圖	41
圖 4 10 SERS基板之吸收光譜圖	41
圖 4 11 10-6 M的R6G訊號在不同圈數的SERS基板	43
圖 4 12 10-6 M的R6G訊號在不同電解質中濃度的SERS基板	44
圖 4 13 增益後與增益前10-6 M的R6G拉曼光譜圖	45
圖 4 14 二硫代胺基甲酸鹽類與SERS基板接枝之示意圖	47
圖 4 15得恩地 (Thiram) 各濃度在SERS基板上之光譜	48
圖 4 16得恩地 (Thiram) 對拉曼訊號之關係圖	48
圖 4 17富爾邦 (Ferbam) 各濃度在SERS基板上之光譜	50
圖 4 18 富爾邦 (Ferbam) 對拉曼訊號之關係圖	50
圖 4 19福美鋅 (Ziram) 各濃度在SERS基板上之光譜	52
圖 4 20 福美鋅 (Ziram) 對拉曼訊號之關係圖	52
圖 4 21各農藥之主成分分析圖	55
圖 4 22以隨機森林預測之分析	56
 
表目錄
表 2 1利用SERS檢測之文獻整理一覽	7
表 2 1利用SERS檢測之文獻整理一覽(續)	8
表 2 2利用其他方法檢測之二硫代氨基甲酸酯類文獻整理一覽	12
表 2 3利用SERS進行農藥檢測之文獻一覽表	15
表 2 3利用SERS進行農藥檢測之文獻一覽表(續)	16
表 3 1循環伏安法固定設置參數	28
表 3 2循環伏安法變因參數	29
表 4 1以9成數據訓練累積學習之分析	59
表 4 2以5成數據訓練累積學習之分析	59
表 4-3以9成數據訓練模型預測之分析	59
表 4-4以5成數據訓練模型預測之分析	59
參考文獻
[1]     K. J. N. Krishnan, "The Raman effect in X-Ray scattering," vol. 122, no. 3086, pp. 961-962, 1928.
[2]	T. H. J. n. Maiman, "Stimulated optical radiation in ruby," vol. 187, no. 4736, pp. 493-494, 1960.
[3]	J. Langer et al., "Present and future of surface-enhanced Raman scattering," vol. 14, no. 1, pp. 28-117, 2019.
[4]	P. J. A. McMichael and h. values, "A food regime analysis of the ‘world food crisis’," vol. 26, no. 4, p. 281, 2009.
[5]	W. h. r. World Health Organization %J WHO online, "Facts: Global health situation and trends 1955–2025," 1998.
[6]	J. J. P. T. o. t. R. S. B. B. S. Pretty, "Agricultural sustainability: concepts, principles and evidence," vol. 363, no. 1491, pp. 447-465, 2008.
[7]	J. N. Pretty, The pesticide detox: towards a more sustainable agriculture. Earthscan, 2012.
[8]	A. Grube, D. Donaldson, T. Kiely, and L. J. U. E. Wu, Washington, DC, "Pesticides industry sales and usage," 2011.
[9]	K.-H. Kim, E. Kabir, and S. A. J. S. o. t. T. E. Jahan, "Exposure to pesticides and the associated human health effects," vol. 575, pp. 525-535, 2017.
[10]	S. Mostafalou and M. J. T. Abdollahi, "The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms," vol. 409, pp. 44-52, 2018.
[11]	F. Hernandez, J. Sancho, O. J. A. Pozo, and b. chemistry, "Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples," vol. 382, no. 4, pp. 934-946, 2005.
[12]	J. Aulakh, A. K. Malik, V. Kaur, and P. J. C. r. i. a. c. Schmitt-Kopplin, "A Review on solid phase micro extraction—high performance liquid chromatography (SPME-HPLC) analysis of pesticides," vol. 35, no. 1, pp. 71-85, 2005.
[13]	J. J. J. o. E. S. Sherma and P. B. Health, "Review of advances in the thin layer chromatography of pesticides: 2010–2012," vol. 48, no. 6, pp. 417-430, 2013.
[14]	Z. Zhang, Q. Yu, H. Li, A. Mustapha, and M. J. J. o. f. s. Lin, "Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables," vol. 80, no. 2, pp. N450-N458, 2015.
[15]	X. Chen, T. H. Nguyen, L. Gu, and M. J. J. o. f. s. Lin, "Use of standing gold nanorods for detection of malachite green and crystal violet in fish by SERS," vol. 82, no. 7, pp. 1640-1646, 2017.
[16]	L. J. A. s. s. Zhang, "Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection," vol. 270, pp. 292-294, 2013.
[17]	B. Saute and R. J. A. Narayanan, "Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles," vol. 136, no. 3, pp. 527-532, 2011.
[18]	W. L. Fu, S. J. Zhen, and C. Z. J. A. Huang, "One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection," vol. 138, no. 10, pp. 3075-3081, 2013.
[19]	Y. Pan et al., "A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides," vol. 182, no. 9-10, pp. 1775-1782, 2015.
[20]	Y. Zhao, Y. Tian, P. Ma, A. Yu, H. Zhang, and Y. J. A. M. Chen, "Determination of melamine and malachite green by surface-enhanced Raman scattering spectroscopy using starch-coated silver nanoparticles as substrates," vol. 7, no. 19, pp. 8116-8122, 2015.
[21]	H. Luo, Y. Huang, K. Lai, B. A. Rasco, and Y. J. F. C. Fan, "Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples," vol. 68, pp. 229-235, 2016.
[22]	J. Sitjar et al., "Ag nanostructures with spikes on adhesive tape as a flexible sers-active substrate for in situ trace detection of pesticides on fruit skin," vol. 9, no. 12, p. 1750, 2019.
[23]	H. Wu et al., "Flexible bipyramid-AuNPs based SERS tape sensing strategy for detecting methyl parathion on vegetable and fruit surface," vol. 285, pp. 123-128, 2019.
[24]	Z. Xiong, M. Lin, H. Lin, and M. J. C. p. Huang, "Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice," vol. 189, pp. 79-86, 2018.
[25]	L. Jiang, K. Gu, R. Liu, S. Jin, H. Wang, and C. J. S. A. S. Pan, "Rapid detection of pesticide residues in fruits by surface-enhanced Raman scattering based on modified QuEChERS pretreatment method with portable Raman instrument," vol. 1, no. 6, p. 627, 2019.
[26]	Q. Ding et al., "Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole," vol. 186, no. 7, p. 453, 2019.
[27]	T. Xuan et al., "Fabrication and characterization of the stable Ag-Au-metal-organic-frameworks: An application for sensitive detection of thiabendazole," vol. 293, pp. 289-295, 2019.
[28]	Y. Yu et al., "Gold-Nanorod-Coated Capillaries for the SERS-Based Detection of Thiram," vol. 2, no. 1, pp. 598-606, 2019.
[29]	G. Yang et al., "Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish," vol. 187, pp. 1-10, 2020.
[30]	M. Fleischmann, P. Hendra, and A. J. C. p. l. McQuillan, "RAMAN SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELEC," vol. 26, no. 2, 1974.
[31]	D. L. Jeanmaire, R. P. J. J. o. e. c. Van Duyne, and i. electrochemistry, "Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," vol. 84, no. 1, pp. 1-20, 1977.
[32]	J. Lipkowski and P. N. Ross, Adsorption of molecules at metal electrodes. VCH New York, 1992.
[33]	P. Kambhampati, C. Child, M. C. Foster, and A. J. T. J. o. c. p. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," vol. 108, no. 12, pp. 5013-5026, 1998.
[34]	Y. Cui, B. Ren, J.-L. Yao, R.-A. Gu, and Z.-Q. J. T. J. o. P. C. B. Tian, "Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy," vol. 110, no. 9, pp. 4002-4006, 2006.
[35]	A. Roguska, A. Kudelski, M. Pisarek, M. Opara, and M. J. A. s. s. Janik-Czachor, "Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate," vol. 257, no. 19, pp. 8182-8189, 2011.
[36]	T. Mu et al., "Detection of pesticide residues using Nano-SERS chip and a smartphone-based Raman sensor," vol. 25, no. 2, pp. 1-6, 2018.
[37]	L. Zeiri et al., "Silver metal induced surface enhanced Raman of bacteria," vol. 208, no. 1-3, pp. 357-362, 2002.
[38]	Y.-C. J. L. Liu, "Evidence of chemical effect on surface-enhanced Raman scattering of polypyrrole films electrodeposited on roughened gold substrates," vol. 18, no. 1, pp. 174-181, 2002.
[39]	W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. J. T. j. o. p. c. B. Ziegler, "Characterization of the surface enhanced Raman scattering (SERS) of bacteria," vol. 109, no. 1, pp. 312-320, 2005.
[40]	K. R. Ackermann, T. Henkel, and J. J. C. Popp, "Quantitative online detection of low‐concentrated drugs via a SERS microfluidic system," vol. 8, no. 18, pp. 2665-2670, 2007.
[41]	H. Chu, Y. Huang, and Y. J. A. s. Zhao, "Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection," vol. 62, no. 8, pp. 922-931, 2008.
[42]	K.-H. Yang, Y.-C. Liu, and C.-C. J. J. o. M. C. Yu, "Enhancements in intensity and stability of surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates," vol. 18, no. 40, pp. 4849-4855, 2008.
[43]	S. Efrima, L. J. J. o. R. S. A. I. J. f. O. W. i. a. A. o. R. S. Zeiri, Including Higher Order Processes,, a. Brillouin, and R. Scattering, "Understanding SERS of bacteria," vol. 40, no. 3, pp. 277-288, 2009.
[44]	M. Kahraman, K. Keseroğlu, and M. J. A. s. Çulha, "On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra," vol. 65, no. 5, pp. 500-506, 2011.
[45]	F.-D. Mai, T.-C. Hsu, Y.-C. Liu, K.-H. Yang, and B.-C. J. C. C. Chen, "A new strategy to prepare surface-enhanced Raman scattering-active substrates by electrochemical pulse deposition of gold nanoparticles," vol. 47, no. 10, pp. 2958-2960, 2011.
[46]	Y. Zhu et al., "Gold nanorod assembly based approach to toxin detection by SERS," vol. 22, no. 6, pp. 2387-2391, 2012.
[47]	H. Li, P. Liu, Y. Liang, J. Xiao, and G. J. N. Yang, "Super-SERS-active and highly effective antimicrobial Ag nanodendrites," vol. 4, no. 16, pp. 5082-5091, 2012.
[48]	Y. Zhao et al., "Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties," vol. 4, no. 4, pp. 641-647, 2013.
[49]	J.-M. Li, Y. Yang, and D. J. J. o. M. C. C. Qin, "Hollow nanocubes made of Ag–Au alloys for SERS detection with sensitivity of 10− 8 M for melamine," vol. 2, no. 46, pp. 9934-9940, 2014.
[50]	A. I. Radu et al., "Toward food analytics: fast estimation of lycopene and β-carotene content in tomatoes based on surface enhanced Raman spectroscopy (SERS)," vol. 141, no. 14, pp. 4447-4455, 2016.
[51]	J. Feng et al., "Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection," vol. 81, pp. 138-142, 2016.
[52]	S. Patze, U. Huebner, F. Liebold, K. Weber, D. Cialla-May, and J. J. A. c. a. Popp, "SERS as an analytical tool in environmental science: The detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup," vol. 949, pp. 1-7, 2017.
[53]	S. Mujawar, S. C. Utture, E. Fonseca, J. Matarrita, and K. J. F. c. Banerjee, "Validation of a GC–MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables," vol. 150, pp. 175-181, 2014.
[54]	L. Zhang, B. Wang, G. Zhu, X. J. S. A. P. A. M. Zhou, and B. Spectroscopy, "Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram," vol. 133, pp. 411-416, 2014.
[55]	B. Saute and R. J. J. o. R. S. Narayanan, "Solution‐based SERS method to detect dithiocarbamate fungicides in different real‐world matrices," vol. 44, no. 11, pp. 1518-1522, 2013.
[56]	S. Sanchez-Cortes, C. Domingo, J. Garcia-Ramos, and J. J. L. Aznarez, "Surface-enhanced vibrational study (SEIR and SERS) of dithiocarbamate pesticides on gold films," vol. 17, no. 4, pp. 1157-1162, 2001.
[57]	K. Kim and H. S. J. T. J. o. P. C. B. Lee, "Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper," vol. 109, no. 40, pp. 18929-18934, 2005.
[58]	H. Irth, G. De Jong, U. T. Brinkman, and R. J. J. o. C. A. Frei, "Metallic copper-containing post-column reactor for the detection of thiram and disulfiram in liquid chromatography," vol. 370, pp. 439-447, 1986.
[59]	C. Fernandez, A. Reviejo, L. Polo, and J. J. T. Pingarron, "HPLC-electrochemical detection with graphite-poly (tetrafluoroethylene) electrode determination of the fungicides thiram and disulfiram," vol. 43, no. 8, pp. 1341-1348, 1996.
[60]	S. B. Ekroth, B. Ohlin, B.-G. J. J. o. a. Österdahl, and f. chemistry, "Rapid and simple method for determination of thiram in fruits and vegetables with high-performance liquid chromatography with ultraviolet detection," vol. 46, no. 12, pp. 5302-5304, 1998.
[61]	J. S. Aulakh, A. K. Malik, and R. J. T. Mahajan, "Solid phase microextraction-high pressure liquid chromatographic determination of nabam, thiram and azamethiphos in water samples with UV detection: preliminary data," vol. 66, no. 1, pp. 266-270, 2005.
[62]	O. Filipe, M. Vidal, A. Duarte, and E. J. T. Santos, "A solid-phase extraction procedure for the clean-up of thiram from aqueous solutions containing high concentrations of humic substances," vol. 72, no. 3, pp. 1235-1238, 2007.
[63]	S. Rastegarzadeh and S. J. T. Abdali, "Colorimetric determination of thiram based on formation of gold nanoparticles using ascorbic acid," vol. 104, pp. 22-26, 2013.
[64]	S. Rastegarzadeh, N. Pourreza, A. J. S. A. P. A. M. Larki, and B. Spectroscopy, "Dispersive liquid–liquid microextraction of thiram followed by microvolume UV–vis spectrophotometric determination," vol. 114, pp. 46-50, 2013.
[65]	J. V. Rohit and S. K. J. J. o. n. r. Kailasa, "Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry," vol. 16, no. 11, p. 2585, 2014.
[66]	K. Charoenkitamorn, O. Chailapakul, and W. J. T. Siangproh, "Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography," vol. 132, pp. 416-423, 2015.
[67]	Y. Zhang et al., "Fluorescent carbon dots for probing the effect of thiram on the membrane of fungal cell and its quantitative detection in aqueous solution," vol. 273, pp. 1833-1842, 2018.
[68]	A. M. Alak and T. J. A. c. Vo-Dinh, "Surface-enhanced Raman spectrometry of organo phosphorus chemical agents," vol. 59, no. 17, pp. 2149-2153, 1987.
[69]	J.-S. Kang, S.-Y. Hwang, C.-J. Lee, and M.-S. J. B.-K. C. S. Lee, "SERS of dithiocarbamate pesticides adsorbed on silver surface; Thiram," vol. 23, no. 11, pp. 1604-1610, 2002.
[70]	B. Saute, R. Premasiri, L. Ziegler, and R. J. A. Narayanan, "Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides," vol. 137, no. 21, pp. 5082-5087, 2012.
[71]	X. Zheng et al., "High performance Au/Ag core/shell bipyramids for determination of thiram based on surface‐enhanced Raman scattering," vol. 43, no. 10, pp. 1374-1380, 2012.
[72]	B. Wang, L. Zhang, X. J. S. A. P. A. M. Zhou, and B. Spectroscopy, "Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram," vol. 121, pp. 63-69, 2014.
[73]	Q. Wang, D. Wu, and Z. J. R. A. Chen, "Ag dendritic nanostructures for rapid detection of thiram based on surface-enhanced Raman scattering," vol. 5, no. 86, pp. 70553-70557, 2015.
[74]	P. Guo et al., "Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size-and shape-dependent Raman enhancement," vol. 7, no. 7, pp. 2862-2868, 2015.
[75]	H. Sun, H. Liu, and Y. J. A. S. S. Wu, "A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice," vol. 416, pp. 704-709, 2017.
[76]	M. Lee et al., "Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface," vol. 3, no. 1, pp. 151-159, 2018.
[77]	H. Lai, W. Shang, Y. Yun, D. Chen, L. Wu, and F. J. M. A. Xu, "Uniform arrangement of gold nanoparticles on magnetic core particles with a metal-organic framework shell as a substrate for sensitive and reproducible SERS based assays: application to the quantitation of malachite green and thiram," vol. 186, no. 3, pp. 1-9, 2019.
[78]	T. C. Dao, T. Q. N. Luong, T. A. Cao, N. M. J. A. i. N. S. N. Kieu, and Nanotechnology, "High-sensitive SERS detection of thiram with silver nanodendrites substrate," vol. 10, no. 2, p. 025012, 2019.
[79]	D.-J. Lee and D. Y. J. S. Kim, "Hydrophobic Paper-Based SERS Sensor Using Gold Nanoparticles Arranged on Graphene Oxide Flakes," vol. 19, no. 24, p. 5471, 2019.
[80]	L. Sun, Z. Yu, and M. J. A. Lin, "Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice," vol. 144, no. 16, pp. 4820-4825, 2019.
[81]	S. Lu, T. You, N. Yang, Y. Gao, P. J. A. Yin, and B. Chemistry, "Flexible SERS substrate based on Ag nanodendrite–coated carbon fiber cloth: simultaneous detection for multiple pesticides in liquid droplet," vol. 412, no. 5, pp. 1159-1167, 2020.
[82]	S. Asgari et al., "Nanofibrillar cellulose/Au@ Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce," vol. 187, no. 7, pp. 1-11, 2020.
[83]	N. Hussain, H. Pu, A. Hussain, D.-W. J. S. A. P. A. M. Sun, and B. Spectroscopy, "Rapid detection of ziram residues in apple and pear fruits by SERS based on octanethiol functionalized bimetallic core-shell nanoparticles," vol. 236, p. 118357, 2020.
[84]	N. Hussain, H. Pu, and D.-W. J. F. C. Sun, "Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS," vol. 350, p. 129025, 2021.
[85]	L.-Y. Chen, K.-H. Yang, H.-C. Chen, Y.-C. Liu, C.-H. Chen, and Q.-Y. J. A. Chen, "Innovative fabrication of a Au nanoparticle-decorated SiO 2 mask and its activity on surface-enhanced Raman scattering," vol. 139, no. 8, pp. 1929-1937, 2014.
[86]	E. P. Agency. Electronic Code of Federal Regulations. Available: http://www.ecfr.gov/cgi-bin/retrieveECFR?gp=1&SID=4451dd069311a99184f2c3a4126293eb&ty=HTML&h=L&mc=true&n=pt40.24.180&r=PART
[87]	W. Zhang, A. D. Bas, E. Ghali, and C. J. T. o. N. M. S. o. C. Yeonuk, "Passive behavior of gold in sulfuric acid medium," vol. 25, no. 6, pp. 2037-2046, 2015.
[88]	S. Cherevko, A. A. Topalov, A. R. Zeradjanin, I. Katsounaros, and K. J. J. R. A. Mayrhofer, "Gold dissolution: towards understanding of noble metal corrosion," vol. 3, no. 37, pp. 16516-16527, 2013.
[89]	J. P. J. J. o. t. E. S. Hoare, "A Cyclic Voltammetric Study of the Gold‐Oxygen System," vol. 131, no. 8, p. 1808, 1984.
[90]	Z. B. Vendrame and R. S. J. J. o. t. B. C. S. Gonçalves, "Electrochemical evidences of the inhibitory action of propargyl alcohol on the electrooxidation of nickel in sulfuric acid," vol. 9, no. 5, pp. 441-448, 1998.
[91]	A. Moreira, A. V. Benedetti, P. Cabot, and P. J. E. A. Sumodjo, "Electrochemical behaviour of copper electrode in concentrated sulfuric acid solutions," vol. 38, no. 7, pp. 981-987, 1993.
[92]	X. Xu et al., "Revisiting the factors influencing gold electrodes prepared using cyclic voltammetry," vol. 283, pp. 146-153, 2019.
[93]	J. M. J. H. o. o. Palmer, "The measurement of transmission, absorption, emission, and reflection," vol. 2, pp. 25.1-25.25, 1995.
論文全文使用權限
校內
校內紙本論文延後至2026-08-11公開
同意電子論文全文授權校園內公開
校內電子論文延後至2026-08-11公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2026-08-11公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信