§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2907201921385500
DOI 10.6846/TKU.2019.00989
論文名稱(中文) ATR72全機在惡劣情境下之氣動力性能分析
論文名稱(英文) The Aerodynamic Performance Analysis of a Full ATR72 Aircraft under Adverse Scenario
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士在職專班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 張榮哲
研究生(英文) Jung Che Chang
學號 706430013
學位類別 碩士
語言別 英文
第二語言別
口試日期 2019-06-27
論文頁數 98頁
口試委員 指導教授 - 宛同(twan@mail.tku.edu.tw)
委員 - 潘大知(dpan@mail.ncku.edu.tw)
委員 - 官文霖(michael.guan@gmail.com)
關鍵字(中) 計算流體力學
全機
螺旋槳
空氣動力學
飛行安全
關鍵字(英) CFD
Full Configuration
Propeller
Aerodynamics
Flight Safety
第三語言關鍵字
學科別分類
中文摘要
本論文旨在探討ATR72全機受到颱風外圍環流下的氣動力影響,其中包含陣風以及降雨的影響。使用CATIA繪圖軟體將ATR72全機與螺旋槳建模;匯入模擬軟體後,在推力與阻力平衡下取出巡航時的氣動力參數,並與Seeckt [1] 比較做為全機驗證;接著使用數個橋接模擬將巡航與進場做連結,每次更變一組參數,並用定量或定性的方式分析之;之後在進場模擬中加入單一飛安事件的黑盒子資料,並獲取飛機進場期間不受風雨時的氣動力參數;接著在模擬中加入當時機場自動天氣觀測系統所記錄的陣風以及雨的參數;對兩者進行分析與討論,其中飛機姿態與側向力的結果與飛安失事調查報告相符,並且飛機姿態的變化受到向上左後方翻滾的力,因此間接證明獲取氣動力參數的方法是可行的,而飛機的外型亦是極為接近的;最後,如我們所知,當飛機使用高升力裝置以及用較低的速度飛行時容易受到側風的影響,而我們藉由此研究得到該飛安事件中飛機之側向力係數與滾轉係數受側風影響的量化結果並提出建議。
英文摘要
This thesis discusses the aerodynamic performance of a full ATR72 configuration under the scenarios, with or without gusts and rain, which affected by the outer rain bands of a typhoon. Combined with learning concepts in the aircraft design courses and related information in aircraft manuals, the full scale ATR72 geometry with rotating propellers in clean and landing configurations are built with software, CATIA. Under the force equilibrium condition in cruising, a specific method to obtain the performance parameters is found. At first, parameters in cruising are validated with Seeckt [1] and followed by several linking cases in advance of the approaching cases with stable descent rate. One group of parameters is replaced from one to another for linking and connecting each other with qualitative and quantitative analysis. Afterward, the realistic weather data refer to the flight data recorder (FDR) and take into simulating a specific event about ATR72. Thus the approaching parameters are obtained. For gusty winds and rain conditions, this information is taken from the data of Automated Weather Observing System (AWOS) and inputted. The corresponding parameters can be compared between approaching cases with or without crosswinds and rain and providing the basis for analysis. By comparison, the parameters are changing with gusty winds and rain, and further the results of the side force and attitude are consistent with the event investigation. Then it indirectly proves that both the method for data acquisition and our ATR72 geometry are valid. Lastly, as we know, the aircraft is easier to be affected by the crosswinds while HLDs extending, and flying at a lower speed. The results of the side-force coefficient and the rolling moment coefficient are quantified to show how much it is in the situation of this event.
第三語言摘要
論文目次
Contents

Abstract	III
Contents	V
List of Tables	VIII
List of Figures	IX
List of Abbreviations	XIII
List of Symbols	XV
Chapter 1 Introduction	1
   1.1 Research Background and Purpose	1
   1.2 Case Study	3
   1.3 Framework	6
Chapter 2 Literature Review	11
Chapter 3 Theoretical Foundations	16
   3.1 Governing Equations	16
   3.2 Multiple Rotating Frame	17
   3.3 Wind Manipulation	20
   3.4 DPM Model	25
   3.5 Assumptions	27
Chapter 4 Numerical Modeling	30
   4.1 Research Tools	30
   4.2 Validation Cases	30
   4.3 Geometric Modeling	39
   4.4 Grid Generation	45
   4.5 Flight Environment	48
   4.6 Boundary Conditions	49
   4.7 Solver	50
   4.8 Turbulence Model	51
   4.9 Method of Data Aquisition	51
Chapter 5 Results and Disccusions	54
Chapter 6 Conclusions	70 
References	72
Appendix I	79
Appendix II	80
Appendix III	81
Appendix IV	82

List of Figures

Fig. 1 The ATR72-500 photograph	4
Fig. 2 The pilot’s operation and flight track, flight no. GE-222 [3]	5
Fig. 3 The runway 20 VOR approach chart, Makung airport [3]	5
Fig. 4 The (a) clean and (b) landing configuration, ATR72	7
Fig. 5 The flow chart for all cases in this study	7
Fig. 6 Surface mesh, Boeing 747-200 [4]	12
Fig. 7 Pressure contours, Boeing 747-200 [4]	12
Fig. 8 Surface grid, F-111/TACT [5]	13
Fig. 9 The force and moment coefficients for M=1.6, F-111/TACT [5]	13
Fig. 10 AX-1 models of deformed and un-deformed configurations [6]	14
Fig. 11 The actuator disk model [7]	15
Fig. 12 The rotating mesh and fixed mesh [8]	15
Fig. 13 The stationary and moving reference frame [9]	17
Fig. 14 The multiple reference frame approach [9]	19
Fig. 15 The coordinate system of computational domains	20
Fig. 16 Total velocity and each component, sustained crosswind	23
Fig. 17 The output of total pure fluctuations	24
Fig. 18 Total velocity and each component, pure fluctuations	24
Fig. 19 Total velocity and each component, gusty crosswinds	25
Fig. 20 The NASA experimental model of helicopter rotor in hover [14]	31
Fig. 21 Pressure coefficient at 0.50 (a) lower and (b) upper, steady	32
Fig. 22 Pressure coefficient at 0.68 (a) lower and (b) upper, steady	32
Fig. 23 Pressure coefficient at 0.80 (a) lower and (b) upper, steady	32
Fig. 24 Pressure coefficient at 0.89 (a) lower and (b) upper, steady	33
Fig. 25 Pressure coefficient at 0.96 (a) lower and (b) upper, steady	33
Fig. 26 Pressure coefficient at 0.50 (a) lower and (b) upper, transient	33
Fig. 27 Pressure coefficient at 0.68 (a) lower and (b) upper, transient	34
Fig. 28 Pressure coefficient at 0.80 (a) lower and (b) upper, transient	34
Fig. 29 Pressure coefficient at 0.89 (a) lower and (b) upper, transient	34
Fig. 30 Pressure coefficient at 0.96 (a) lower and (b) upper, transient	35
Fig. 31 Velocity magnitude at X/C =0.96, steady	35
Fig. 32 Velocity magnitude viewed form top, steady	35
Fig. 33 The experiment model of ONERA M6 wing [15]	36
Fig. 34 The coefficient of pressure at (a) 0.20 and (b) 0.44, steady	37
Fig. 35 The coefficient of pressure at (a) 0.65 and (b) 0.80, steady	37
Fig. 36 The coefficient of pressure at (a) 0.90 and (b) 0.95, steady	37
Fig. 37 The coefficient of pressure at 0.99, steady	38
Fig. 38 Mach number at a wing section	38
Fig. 39 Mach (left) and C_p (right) distribution at upper wing	38
Fig. 40 The whole computational domains	40
Fig. 41 The full-size ATR72 configuration	40
Fig. 42 The span length of the main wing, ATR72	42
Fig. 43 The (a) drag polar and (b) lift coefficient to AOA, ATR72SM-IL	42
Fig. 44 The airfoil of main wing, ATR72SM-IL	42
Fig. 45 The airfoil of stabilator, NACA 63012A	43
Fig. 46 The diameter of a set of propellers	44
Fig. 47 The span length of the flaps, ATR72	44
Fig. 48 Mesh of the whole domain	45
Fig. 49 Refined mesh near the aircraft	45
Fig. 50 Neighbor mesh of the main wing and HLDs	46
Fig. 51 Mesh of the propeller section	47
Fig. 52 Mesh along the wingspan section	47
Fig. 53 Mesh located near the fuselage and lower wing surface	47
Fig. 54 The six named surfaces of the outer domain	49
Fig. 55 The method of data acquisition	52
Fig. 56 Pressure distribution at (a) 129.74 m/s (b) 62.69 m/s, side view	57
Fig. 57 Velocity magnitude at (a) 129.74 m/s (b) 62.69 m/s, side view	57
Fig. 58 Pressure distribution at (a) 129.74 m/s (b) 62.69 m/s, side view	57
Fig. 59 Velocity magnitude at (a) 129.74 m/s (b) 62.69 m/s, side view	57
Fig. 60 Pressure distribution at (a) 129.74 m/s (b) 62.69 m/s, front view	58
Fig. 61 Velocity magnitude at (a) 129.74 m/s (b) 62.69 m/s, front view	58
Fig. 62 Pressure distribution, (a) calm (b) sustained crosswind, front view	59
Fig. 63 Velocity magnitude, (a) calm (b) sustained crosswind, front view	59
Fig. 64 Q-criterion at 4e-5, (a) calm (b) sustained crosswind, front view	59
Fig. 65 Q-criterion at 4e-5, (a) calm (b) sustained crosswind, top view	60
Fig. 66 The changes of C_L, C_D and C_SF affected by gusty winds, case 8	61
Fig. 67 The changes of C_L, C_M and C_ℵ affected by gusty winds, case 8	62
Fig. 68 Difference between extreme value and average value, case 8	63
Fig. 69 (a) pressure contour, (b) velocity magnitude at 1.0 sec, case 8	63
Fig. 70 (a) pressure contour, (b) velocity magnitude at 1.1 sec, case 8	64
Fig. 71 (a) pressure contour, (b) velocity magnitude at 1.2 sec, case 8	64
Fig. 72 pressure contour viewed from (a) top (b) bottom, 1.0 sec, case 8	64
Fig. 73 pressure contour viewed from (a) top (b) bottom, 1.1 sec, case 8	64
Fig. 74 pressure contour viewed from (a) top (b) bottom, 1.2 sec, case 8	65
Fig. 75 Q-criteria at 1.7e-5, 1.0 sec, case 8	65
Fig. 76 Q-criteria at 1.7e-5, 1.1 sec, case 8	65
Fig. 77 Q-criteria at 1.7e-5, 1.2 sec, case 8	65
Fig. 78 Velocity magnitude of raindrops, case 9	67
Fig. 79 The changes of C_L, C_D and C_SF affected by gusty winds, case 9	68
Fig. 80 The changes of C_L, C_M and C_ℵ affected by gusty winds, case 9	68
Fig. 81 Rain affects the aircraft performance, case 9	69


List of Tables

Table 1 The replaced variables in the different cases	8
Table 2 The x, y, z components of wind at different AOA	21
Table 3 The ATR72 geometric parameters	39
Table 4 The flight environmental setup in all cases	49
Table 5 The comparison from case 1 to Seeckt [1]	54
Table 6 Computational results for the steady state cases	55
Table 7 Computational results for the transient state cases	55
Table 8 The average and extreme values in case 8	62
Table 9 The average and extreme values in case 9	69
參考文獻
1. K. Seeckt, “Conceptual Design and Investigation of Hydrogen-Fueled Regional Freighter Aircraft,” Licentiate Thesis, KTH, Stockholm, Sweden, 2010.

2. “GE 791 Occurrence Investigation Report,” Aviation Safety Council, ASC-AOR-05-04-001, Vol. 1, Taipei, Taiwan.

3. “GE 222 Occurrence Investigation Data Collection Group Report,” Aviation Safety Council, ASC-FRP-14-12-01, Taipei, Taiwan.

4. A. Jameson, T. J. Baker, and N. P. Weatherill, “Calculation of Inviscid Transonic Flow over a Complete Aircraft,” 24th AIAA Aerospace Sciences Meeting, AIAA-86-0103, Jan. 1986.
DOI: 10.2514/6.1986-103

5. G. E. Smith, K. B. Walkley, and J. R. Snyder, “Aerodynamic Analysis of a Complex Configuration Using a Full Potential Code,” 5th AIAA Aerospace Sciences Meeting, 1987.
DOI: 10.2514/6.1987-2418

6. M. Carrizalez, G. Dussart, V. Portapas, A. Pontillo and M. Lone, “Comparison of Reduced Order Aerodynamic Models and RANS Simulations for Whole Aircraft Aerodynamics,” 2018 AIAA Atmospheric Flight Mechanics Conference, Jan. 2018.
DOI: 10.2514/6.2018-0773
 
7. F. Moens and P. Gardarein, “Numerical Simulation of the Propeller/Wing Interactions for Transport Aircraft,” 19th AIAA Applied Aerodynamics Conference, AIAA-2001-2404, Jun. 2001. 
DOI: 10.2514/6.2001-2404

8. J. -M. Bousquet and P. Gardarein, “Improvements on Computations of High Speed Propeller Unsteady Aerodynamics”, Aerospace Science and Technology, Issue 6, Vol. 7, pp. 465-472, 2003.
DOI: 10.1016/s1270-9638(03)00046-4

9. “Flows with Moving Reference Frames,” ANSYS FLUENT Theory Guide, Release 14.0, Nov. 2011.

10. P. T. Willis and P. Tattelman, “Drop-Size Distributions Associated with Intense Rainfall,” Journal of Applied Meteorology, Issue 1, Vol. 28, Jan. 1989, pp.3-15.
DOI: 10.1175/1520-0450(1989)028<0003: DSDAWI>2.0.CO; 2

11. C. W. Ulbrich, “National Variations in the Analytical Form of the Raindrop Size Distribution,” Journal of Climate and Applied Meteorology, Vol. 22, 1983, pp. 1764-1775.

12. A. H. Markowitz, “Raindrop Size Distribution Expressions,” Journal of Applied Meteorology, Issue 9, Vol. 15, Sep. 1976, pp. 1029-1031. 
DOI: 10.1175/1520-0450(1976)015<1029: rsde>2.0.co; 2

13. D. Howe, “Basic Lift, Drag and Mass Representations,” Aircraft Conceptual Design Synthesis, 1st published, Vol. 10.1002/9781118903094, 2000, pp. 150.
DOI: 10.1002/9781118903094.ch6

14. F. X. Caradonna and C. Tung, “Experimental and Analytical Studies of a Model Helicopter Rotor in Hover,” NASA-TM-81232, Sep. 1981.

15. V. Schmitt and F. Charpin, “Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers,” Experimental Data Base for Computer Program Assessment, Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May 1979.

16. “General”, ATR 72 FCOM.

17. M. F. Niţă, “Aircraft Design Studies Based on the ATR 72,” Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Science, Jun. 2008.

18. C. Gacherieu and C. Weber, “Assessment of Algebraic and One-Equation Turbulence Models for the Transonic Turbulent Flow around a Full Aircraft Configuration,” 16th AIAA Applied Aerodynamics Conference, AIAA-98-2737, Jun. 1998.
DOI: 10.2514/6.1998-2737

19. D. Howe, “Configurations of the Wing,” Aircraft Conceptual Design Synthesis, 1st published, Vol. 10.1002/9781118903094, 2000, pp. 123.
DOI: 10.1002/9781118903094.ch5

20. K. Szilder and E. Lozowski, “Progress towards a 3D Numerical Simulation of Ice Accretion on a Swept Wing using the Morphogenetic Approach,” SAE Technical Paper 2015-01-2162, 2015.
DOI: 10.4271/2015-01-2162
 
21.Y. Cao, J. Huang, Z. Xu and J. Yin, “Insight into Rime Ice Accretion on an Aircraft Wing and Corresponding Effects on Aerodynamic Performance,” The Aeronautical Journal, Vol. 120, No. 1229, Jul. 2016, pp. 1101-1122. 
DOI: 10.1017/aer.2016.49

22. J. T. Batina, “Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex-Aircraft Aeroelastic Analysis,” AIAA Journal, Issue 3, Vol. 29, Mar. 1991, pp. 327-333. 
DOI: 10.2514/3.10583

23. R. Agarwal, “Computational Fluid Dynamics of Whole-Body Aircraft,” Annual Review of Fluid Mechanics, Issue 1, Vol. 31, 1999, pp. 125-169.
DOI: 10.1146/annurev.fluid.31.1.125

24. A. W. Stuermer, “Unsteady CFD Simulations of Propeller Installation Effects,” AIAA 2006-4969, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2006-4969, Jul. 2006.
DOI: 10.2514/6.2006-4969

25. A. Ytterstro ̈m, C. Weber, A. Rizzi and J. Vos, “Navier-Stokes Calculations on a Full Configuration Aircraft using Parallel Computers,” 15th AIAA Applied Aerodynamics Conference, AIAA-97-2314, 1997.
DOI: 10.2514/6.1997-2314
 
26. K. Yamamoto, K. Tanaka and M. Murayama, “Effect of a Nonlinear Constitutive Relation for Turbulence Modeling on Predicting Flow Separation at Wing-Body Juncture of Transonic Commercial Aircraft,” 30th AIAA Applied Aerodynamics Conference, AIAA 2012-2895, Jun. 2012.
DOI: 10.2514/6.2012-2895

27. J. Marwitz, M. Politovich, B. Bernstein, F. Ralph, P. Neiman, R. Ashenden and J. Bresch, “Meteorological Conditions Associated with the ATR 72 Aircraft Accident near Roselawn, Iniana, on 31 October 1994,” Bulletin of the American Meteorological Society, Issue 1, Vol 78, Jan. 1997, pp. 41-52.
DOI: 10.1175/1520-0477(1997)078<0041:MCAWTA>2.0.CO;2

28. K. E. Yeoman, “Shortcomings of The ATR 72 Accident Investigation and Disposition of the Case,” 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 99-0495, Jan. 1999.
DOI: 10.2514/6.1999-495

29. D. W. Levy and M. S. Chaffin, “Comparison of Viscous Grid Layer Growth Rate of Unstructured Grids on CFD Drag Prediction Workshop Results,” 28th AIAA Applied Aerodynamics Conference, AIAA 2010-4671, 28 June-1 July 2010.
DOI: 10.2514/6.2010-4671
 
30. E. M. Lee-Rausch, D. P. Hammond, E. J. Nielsen, S. Z. Pirzadeh and C. L. Rumsey, “Application of the FUN3D Unstructured-Grid Navier-Stokes Solver to the 4th AIAA Drag Prediction Workshop Cases,” 28th AIAA Applied Aerodynamics Conference, AIAA 2010-4551, 28 June-1 July 2010.
DOI: 10.2514/6.2010-4551

31. T. Michal and D. Halt, “Development and Application of an Unstructured Grid Flow Solver for Complex Fighter Aircraft Configurations,” 31th AIAA Applied Aerodynamics Conference, 1995.
DOI: 10.2514/6.1995-1785

32. Ph. Villedieu, P. Trontin, D. Guffond and D. Bobo, “SLD Lagrangian Modeling and Capability Assessment in the Frame of ONERA 3D Icing Suite,” 4th AIAA Atmospheric and Space Environments Conference, AIAA 2012-3132, Jun. 2012.
DOI: 10.2514/6.2012-3132

33. A. P. Broeren, M. G. Potapczuk, S. Lee, A. M. Malone, Jr. Bernard P. Paul, B. S. Woodard, “Ice-Accretion Test Results for Three-Scale Swept-Wing Models in the NASA Icing Research Tunnel,” 8th AIAA Atmospheric and Space Environments Conference, AIAA 2016-3733, Jun. 2016.
DOI: 10.2514/6.2016-3733
 
34. K. Szilder and E. Lozowski, “Progress Towards a 3D Numerical Simulation of Ice Accretion on a Swept Wing using the Morphogenetic Approach,” SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures, Vol. 1, Jun. 2015.
DOI: 10.4271/2015-01-2162

35. P. R. Spalart and S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA 30th Aerospace Sciences Meeting and Exhibit, AIAA-92-0439, Jan. 1992.
DOI: 10.2514/6.1992-439
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信