§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2907201519024900
DOI 10.6846/TKU.2015.01076
論文名稱(中文) 層流與紊流中紅血球溶血探討
論文名稱(英文) Red Blood Cell Hemolysis in Laminar and Turbulent Flow
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系博士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 嚴仁鴻
研究生(英文) Jen-Hong Yen
學號 899480023
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2015-06-11
論文頁數 110頁
口試委員 指導教授 - 盧博堅
委員 - 蕭葆羲
委員 - 丁大為
委員 - 張正興
委員 - 陳俊成
關鍵字(中) 溶血
數位質點影像流速儀
雷射都普勒流速儀
亂流黏滯性切應力
數值模擬
拉伸應力
大尺度渦流模擬
能量消散率
關鍵字(英) Hemolysis
digital particle image velocimeter
laser Doppler velocimetry
turbulent viscous shear stress
numerical simulation
extensional stresses
large eddy simulation
energy dissipation rate
第三語言關鍵字
學科別分類
中文摘要
人工器官如心室輔助器、人工心瓣、氧合裝置等,會在心血管中造成非生理性的流況,這些流況所產生的血流應力會引發血液的破壞,特別是紅血球的損傷,稱為溶血。一般以溶血指數(Index of Hemolysis, IH(%))來表示,此溶血指數是切應力大小及暴露時間的函數。Giersiepen et al.(1990)依據Wurzinger et al.(1986)的實驗導出的溶血指數模式,IH(%) 。此模式廣被應用在計算流體力學(CFD)對新設計人工器官的評估上。新型人工器官經由此模式CFD所計算的溶血指數和實際原形的實驗值有相當大的差異。式中的應力是由簡單Couette黏度儀所產生之剪應力,而實際流場應包含有剪應力和拉伸應力。單由剪應力無法準確預估其溶血指數。因此本研究分別利用層流場與紊流場進行真實的紅血球破壞實驗,以了解其中的破壞機制。在層流實驗中,分別利用不同幾何形狀入口的短毛細管與微流道,其在進口端會產生一強烈的拉伸應力場,此流場先經由CFD的計算,求出其應力值,然後採用豬的新鮮紅血球,進行溶血的測試,以了解拉伸應力對溶血的影響。結果顯示和先前的研究結果是一致的,拉伸應力為紅血球破壞的主要機械力,且其閥值約為800-1000 Pa。在紊流實驗中,以軸對稱自由噴射流場所產生的紊流剪力場,進行溶血實驗。首先利用雷射都普勒流速儀(LDV)及質點影像流速儀(PIV),進行流場的量測,再將清洗過的紅血球置入已知紊流應力的流場中,進行溶血實驗。先前的溶血被認為是紊流場中的雷諾應力所造成。近年來提出的假說認為和血球大小相當尺度的小渦流所形成的黏滯消散應力才是破壞血球的真正機械力。但由於受限於目前儀器的解析度,而無法量測到消散應力的最小渦流尺度,經由紊流場中可解析及次格點間的動力平衡假設下,由可解析所得的應變率張量中,利用Smagonrinsky的模式,則可估算紊流消散率,進而推求其黏滯消散應力。結果得到紅血球破壞的主軸切應力閥值為500 Pa,而黏滯消散應力為40 Pa,至少小於雷諾應力一個量級。此黏滯消散應力和層流的實驗結果比較也是除了差ㄧ個量級之外,其時間尺度小於三個量級。由此得知紅血球在紊流與層流中有不同的破壞機制,所以一個可靠的溶血指數模式必須完全了解紅血球在不同剪力場下的破壞機制。
英文摘要
Artificial prostheses such as left ventricular assist devices, artificial heart valves, and oxygenators can create non-physiologic flow conditions within the cardiovascular system. The stress forces generated in these flow fields can induce blood cell damage, particularly red blood cell damage or hemolysis. The Index of Hemolysis (IH; %) is affected by the magnitude of shear stress and exposure time. Giersiepen et al. (1990), based on experiments by Wurzinger et al. (1986), determined that the Index of Hemolysis can be calculated by IH(%) . This model has been widely used in computational fluid dynamics (CFD) for the evaluation of new artificial prosthesis designs. However, the IH calculated via CFD are often inconsistent with actual measured values from experiments done on prototypes. The stress value in the equation is based on the shear stress generated from a simple Couette viscometer; however, actual flow field forces include both shear stress and extensional stress. As such, the shear stress alone cannot accurately determine IH. We applied laminar and turbulent flow that was utilized to hemolysis porcine RBCs, in order to compare the IH derived. In laminar flow, we created a strong extensional stress flow field with the sharp contraction of short capillary and small channels. The flow field generated at the entrance of the capillary was calculated with CFD to determine the stress values, which was followed by hemolysis experiments with porcine red blood cells to determine the effects of extensional stress on hemolysis. Our results were consistent with prior studies in that the extensional stress was the primary mechanical force involved in hemolysis with a threshold value of 800-1000 Pa. In turbulent flow, We applied two-dimensional laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) to measure the flow field of a free submerged axi-symmetric jet that was utilized to hemolysis the porcine red blood cells in selected locations. However, the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. Assuming a dynamic equilibrium between the resolved and sub-grid scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed that the hemolytic threshold of major principal Reynolds stresses is up to 500 Pa and the viscous dissipative stresses is 40-60 Pa, it’s at least an order of magnitude less than the Reynolds stresses. The viscous dissipative stresses for hemolysis also tend to be an order of magnitude lower than the laminar shear thresholds. In addition, the time scales are three orders of magnitude smaller than the laminar shear. Because of these differences, a reliable damage quantification model needs to fully understand about the varying mechanisms of blood cell damage by different shear stress conditions.
第三語言摘要
論文目次
目錄	I
表目錄	III
圖目錄	IV
第一章 緒論	1
1.1 溶血與溶血模式	1
1.2 層流流場之研究	5
1.紅血球細胞的變形	5
2.拉伸應力	6
3.能量消散率	8
1.3 紊流流場之研究	10
1.噴射流	10
2. Kolmogorov尺度理論	10
3. 大尺度渦流模擬(Large eddy simulation)	12
4. 紊流溶血研究	13
1.4 研究目的與動機	16
1. 層流流場實驗	16
2. 紊流流場實驗	17
第二章 層流實驗方法與分析	18
2.1 短毛細管流場方法與分析	18
1. CFD流場模擬	18
2. 實驗設置	19
2.2 收縮微流道流場方法與分析	21
1. CFD流場模擬	21
2. 實驗設置	22
2.3 溶血實驗	23
第三章 紊流實驗方法與分析	25
3.1 質點影像流速儀量測與實驗設置	25
1. 流場設置	25
2. 質點影像流速儀系統	25
3. 大尺度渦流模擬(Large eddy simulation)分析	26
3.2 雷射都卜勒流速儀量測與實驗設置	31
1. 流場設置	31
2. 二分量雷射測速儀量測系統	31
3. 能量頻譜分析	32
第四章 結果與討論	37
4.1 短毛細管流場實驗結果	37
4.2 收縮微流道流場實驗結果	43
4.3 DPIV量測與溶血實驗結果	49
4.4 能量頻譜分析與溶血實驗結果	52
第五章 結論	55
5.1 層流中的溶血評估	55
5.2紊流中的溶血評估	56
5.3建議與未來展望	57
參考文獻	58








表目錄
表1-1-1 過去文獻中溶血閥值與暴露時間的關係表。	104
表4-1-1 短毛細管直角入口流場溶血實驗結果總表	105
表4-1-2 短毛細管斜角入口流場溶血實驗結果總表	106
表4-2-1微流道直角入口流場溶血實驗結果總表	107
表4-2-2 微流道斜角入口流場溶血實驗結果總表	108
表4-3-1噴射流場溶血實驗結果	109
表4-4-1 噴射流場溶血實驗結果(Ue=9.06 m/s)	110













圖目錄
圖1-3-1 噴射流能量的生成與消散曲線(Pope, 2000)。	70
圖1-3-2 紊流場中渦流大小之分布圖(Pope, 2000)。	70
圖2-1-1 流場模擬示意圖(a)軸向斷面(b)徑向斷面。	71
圖2-1-2 (a)孔口拉伸流場溶血實驗設置。1.活塞及血液儲存腔,2.伺服馬達,3.馬達控制器,4.短毛細管圓片,5.不銹鋼盤,6.血液樣品收集針筒。(b)直角與斜角短毛細管圓片尺寸圖。	71
圖2-1-3 流場實驗設置實體照。	71
圖2-2-1 微流道平板設計。(a)突縮狹縫微流道平板,(b)漸縮狹縫微流道平板	72
圖2-2-2 微流道模型設計。(1.微流道,2.微流道平板,3.壓克力,4.玻璃片,5.血液入口端,6.樣品收集端。)	72
圖2-2-3 微流道模型實體照。	73
圖2-2-4 流場實驗設置。(1.馬達控制器,2.伺服馬達,3.活塞,4.收集針筒,5.微流道模型。)	74
圖2-2-5 流場實驗設置實體照。	74
圖3-1-1 噴射流場溶血實驗設置圖	75
圖3-1-2 噴射流場溶血實驗設置實體照	75
圖3-2-1 實驗設置圖	76
圖3-2-2 亂流能量傳輸模式示意圖(Sheng, 2000)	76
圖4-1-1 直角進口流場各項應力分布圖及流線上的應力變化圖。(μ=17 cP,V=12 m/s) (a) τzz; (b) τrr; (c) τrz。流線函數(1) 3.71E-04 kg/s; (2) 2.54E-04 kg/s; (3) 1.39E-04 kg/s; (4) 6.07E-05 kg/s; (5) 0 kg/s。	77
圖4-1-2 斜角進口流場各項應力分布圖及流線上的應力變化圖。(μ=17 cP,V=12 m/s) (a) τzz; (b) τrr; (c) τrz。流線函數(1) 3.33E-04 kg/s; (2) 2.33E-04 kg/s; (3) 1.30E-04 kg/s; (4) 5.75E-05 kg/s; (5) 0 kg/s。	78
圖4-1-3 直角與斜角進口流場在不同黏滯度下各項應力與溶血指數IH之關係圖。(a)   ; (b)  ; (c)  。標準差為6次實驗的均方根值。	79
圖4-2-1 微流道流場在斷面Z=0.00025 m的各項應力分布圖(U=0.9 m/s,μ=17 cP)。(a)直角流場τxx;(b)直角流場τyy;(c)直角流場τzz;(d)斜角流場τxx;(e)斜角流場τyy;(f)斜角流場τzz。	80
圖4-2-2 微流道流場在斷面Z=0.00025 m的各項應力分布圖(U=0.9 m/s,μ=17 cP)。(a)直角流場τxy;(b)直角流場τyz;(c)直角流場τzx;(d)斜角流場τxy;(e)斜角流場τyz;(f)斜角流場τzx。	81
圖4-2-3 微流道流場在斷面Z=0.00025 m的各項應力分布圖(U=0.9 m/s,μ=17 cP)。(a)直角流場拉伸應力;(b)直角流場剪應力;(c)直角流場能量消散率;(d)斜角流場拉伸應力;(e)斜角流場剪應力;(f)斜角流場能量消散率。	82
圖4-2-4 用來計算個應立即寧量消散率之斷面位置標示圖。	83
圖4-2-5 不同入口流速下,各斷面的平均能量消散率的變化曲線圖。	83
圖4-2-6 在不同流場下之各項應力與溶血指數關係圖(a) ;(b)  ;(c)  。標準差為6次實驗的均方根值。	84
圖4-2-7 在不同流場下之各項應力與溶血指數關係圖(a)  ;(b)  ;(c)  。標準差為6次實驗的均方根值。	85
圖4-2-8 在不同流場下之各項應力與溶血指數關係圖(a)  ;(b)  ;(c)  ,標準差為6次實驗的均方根值。	86
圖4-3-1 噴射流場在不同出口流速下之平均軸向流速(m/s)等量線圖。(a)Ue=11.75 m/s;(b)Ue=9.70 m/s;(c) Ue=6.38 m/s。	87
圖4-3-2 噴射流場在不同出口流速下之雷諾應力(Pa)等量線圖。(a)Ue=11.75 m/s;(b)Ue=9.70 m/s;(c) Ue=6.38 m/s。	88
圖4-3-3 噴射流場在6.5D處斷面之平均軸向流速剖面曲線圖。	89
圖4-3-4 噴射流場在6.5D處斷面之雷諾應力剖面曲線圖。	90
圖4-3-5 噴射流場在6.5D處斷面之主軸應力剖面曲線圖。	91
圖4-3-6 噴射流場在6.5D處斷面之紊流黏滯切應力剖面曲線圖。	92
圖4-3-7 各項與溶血指數之關係圖。(a)雷諾應力;(b)主軸應力;(c)紊流黏滯切應力。	93
圖4-4-1 噴射流場的平均速度剖面圖(Ue =9.03m/s)	94
圖4-4-2 噴射流場的雷諾切應力RSS剖面圖(Ue =9.03m/s)	95
圖4-4-3 噴射流場的最大雷諾切應力RSSMaj剖面圖(Ue =9.03m/s)	96
圖4-4-4 噴射流場在X/D=4斷面上之能量頻譜函數圖(Ue =9.03m/s)	97
圖4-4-5 噴射流場在X/D=6斷面上之能量頻譜函數圖(Ue =9.03m/s)	98
圖4-4-6 噴射流場在X/D=8斷面上之能量頻譜函數圖(Ue =9.03m/s)	99
圖4-4-7 噴射流場的紊流黏滯切應力TVSS剖面圖(Ue =9.03m/s)	100
圖4-4-8 噴射流場的Kolmogorov尺度剖面圖(Ue =9.03m/s)	101
圖4-4-9 最大雷諾切應力RSSMaj與溶血指數Hp的關係圖。	102
圖4-4-10 紊流黏滯切應力TVSS與溶血指數Hp的關係圖。	103
參考文獻
1.	Aloi LE, Cherry RS. Cellular response to agitation characterized by energy dissipation at the impeller tip. Chem. Eng. Sci. 1996; 51:1523-1529.
2.	Antiga L and Steinman DA. Rethinking turbulence in blood. Biorheology 2009; 46: 77-81.
3.	Antonia RA, Satyaprakash BR, Hussain AKMF. Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets Physics of Fluids 1980; 23:695-700.
4.	Apel J, Paul R, Klaus S et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs 2001; 25(5): 341-347.
5.	Apel J, Paul R, Klaus S et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs 2001; 25(5): 341-347.
6.	Arora D, Behr M, and Pasquali M. A tensor-based measure for estimating blood damage. Artif Organs 2004; 28(11): 1002-1015.
7.	Arora D, Behr M, and Pasquali M. Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. Artif Organs 2006; 30(7):539-547.
8.	Arora D, Behr M, Coronado-Matutti O, Pasquali M. Estimation of hemolysis in centrifugal blood pumps using morphology tensor approach. Computational Fluid and Solid Mechanics 2005; 578-582.
9.	Artmann GM, Li A, Ziemer J, Schneider G, Sahm U. A photometric method to analyze induced erythrocyte shape changes. Biorheology 1996; 33(3):251-65.
10.	Arvand AM, Hormes M, Reul A. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump. Artif Organs 2005; 29:531-40.
11.	Baldwin JT, Deutsch S, Petrie HL, Tarbell JM. Determination of principal Reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity measurements. J Biomech Eng. 1993;115:396-403.
12.	Beaver GS and Wilson TA. Vortex growth in jets. Journal of Fluid Mechanics 1970; 44:97-112.
13.	Behbahani M, Behr M, Hormes M, Steinseifer U, Arora D, Pasquali M. A review of computational fluid dynamics analysis of blood pumps. Eur. J. Appl. Math. 2009; 20:369-97.
14.	Bentley BJ and Leal LG. An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J. Fluid Mech. 1986; 167:241-283.
15.	Bentley BJ, and Leal LG. A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows. J. Fluid Mech. 1986; 167:219-240.
16.	Bernstein EF, Blachshear PL, Keller KH. Factors influencing erythrocyte destruction in artificial organs. American J. Surgery 1967; 114:126-138.
17.	Blackshear PL, Dorman FD, Steinbach JH. Some mechanical effects that influence haemolysis. ASAIO J.1965; 11:112.
18.	Bluestein D, Li YM, and Krukenkamp IB. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 2002; 35(12): 1533-1540.
19.	Bluestein M, Mockros LF. Hemolytic effects of energy dissipation inflowing blood. Med. Biol. Eng. 1969; 7:1-6.
20.	Carr R and Cokelet GR. Rheology of suspensions of normal and hardened erythrocytes and their mixtures. J. Rheol. 1981; 25(1):67-82
21.	Chan WK, Wong YW, Ding Y et al. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump. Artif Organs 2002; 26(9):785-793.
22.	Chang KS and Olbright WL. Experimental studies of the deformation of a synthetic capsule in extensional flow. J. Fluid Mech. 1993; 250:587-608.
23.	Chang KS and Olbright WL. Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J. Fluid Mech. 1993; 250:609-633.
24.	Chien S, Usami S, Skalak R. Handbook of Physiology  American Physiological Society, Bethesda, MD, 1980, Vol. IV, Sec. 2, Chap. 6.
25.	Chien S,Usami S, Dellenback RJ and Gregersen MI. Sheardependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol. 1970; 219(1):136-42.
26.	Clark RA, Ferziger JH, Reynolds WC. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 1979; 91: 1-16.
27.	Coakley WT, James CJ, Macintosh IJ. Haemolysis of human erythrocytes in dextran solutions during rapid flow in capillaries. Biorheology. 1977; 14(2-3):91-7.
28.	Crough MS, Wang DI. Growth and death in overagitated microcarrier cell cultures. Biotechnol Bioeng 1989; 33:731-744.
29.	Croughan MS, Wang DIC. Growth and death in overagitatedmicrocarrier cell cultures. Biotechnol Bioeng. 1989; 33:731-744.
30.	De WD and Verdonck P. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs 2002; 26(7):576-582.
31.	Deardorff JD. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 1969; 41:453-480.
32.	Dhaene M, Gulbis B, Lietaer N, et al. Red blood cell destruction in single-needle dialysis. Clin. Nephrol 1989; 31:327-31.
33.	Dooley PN and Quinlan NJ. Effect of eddy length scale on mechanical loading of blood cells in turbulent flow, Annals of Biomedical Engineering 2009; 37: 2449-2458.
34.	Down LA, Papavassiliou DV, O’Rear EA. Significance of extensional stresses to red blood cell lysis in a shearing flow. Ann. Biomed. Eng. 2011; 39(6):1632-42.
35.	Ellis JT, Wick TM, Yoganathan AP. Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J. Heart Valve Dis. 1998; 7: 376-386.
36.	Farinas MI, Garon A, Lacasse D, N’dri D. Asymptotically consistent numerical approximation of hemolysis. J. Biomech. Eng. 2006; 128:688-696.
37.	Fife JP, Derksen RC, Ozkan HE, Grewal PS, Chalmers JJ. Evaluation of a contraction flow field on hydrodynamic damage to entompathogenic nematodes—A biological pest control agent. Biotechnol Bioeng. 2004; 86(1):96-107. 
38.	Figlio RS, and Mueller TJ. On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements. J.Biomech. 1981;103:83-90.
39.	Fischer T and Schmid-Schonbein H . Tank tread motion of red cell membranes in viscometric flow: behavior of intracellular and extracellular markers(with film). Blood Cells. 1997; 3:351-365.
40.	Fischer TM, Haest CWM, Stohr M, Kamp D, Deuticke B. Selective alteration of erythrocyte deformability by SH reagents. Biochim. Biophys. Acta. 1978; 510:270-282.
41.	Foessel E, Walter J, Salsac AV, Barthes-Biesel D. Influence of internal viscosity on the large deformation and buckling of a spherical capsules in a simple shear flow. J. Fluid Mech. 2011; 672:477-486.
42.	Forstrom RJ. A new measure of erythrocyte membrane strength: the jet fragility test. PhD. thesis. University of Minnesota; 1969.
43.	Fountain T and Day SW. Experimental study of the hemolytic effects of viscous stresses induced by the dissipation of turbulence energy. ASAIO J. 2008;54(2):40A
44.	Garcia-Briones MA, Chalmers JJ. Flow parameters associated with hydrodynamic cell injury. Biotechnol Bioeng. 1994; 44:1089-1098.
45.	Garon A and Farinas MI. Fast three-dimensional numerical hemolysis approximation. Artif Organs 2004; 28(11): 1016-1025.
46.	Ge L, Dasi LP, Sotiropoulos F, and Yoganathan AP. Characterization of hemodynamic forces induced by mechanical heart valves: Renolds vs. viscous stresses. Annals of Biomedical Engineering 2008; 36: 276-297. 
47.	Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 1990; 13:300–6.
48.	Goldsmith HL and Marlow J. Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc. R. Soc. Lond. B. Biol. Sci. 1972; 182:351-384.
49.	Goubergrits L and Affeld K. Numerical estimation of blood damage in artificial organs. Artif Organs 2004; 28(5):499-507.
50.	Goubergrits L, Osman J, Affeld K , and KertzscherU. First experience with an FDA critical path initiative: CFD and hemolysis. The International Journal of Artificial Organs 2009; 32(7):398.
51.	Gregoriades N, Clay J, Ma N, Koelling K, Chalmers JJ. Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol Bioeng. 2000; 69(2):171-182. 
52.	Grigioni M and D’Avenio G. Reply to the letter of Nathan J. Quinlan: Notes on Reynolds stresses and two-phase flows. Journal of Biomechanics. 2006; 39: 2542-2544.
53.	Grigioni M, Caprari P, Tarzia A, and D'Avenio G. Prosthetic heart valves' mechanical loading of red blood cells in patients with hereditary membrane defects. J. Biomech. 2005 38(8): 1557-1565. 
54.	Grigioni M, Daniele C, D'Avenio G, Barbaro V. A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J Biomech. 1999;32:1107-12.
55.	Grigioni M, Daniele C, Morbiducci U, D’Avenio G, Benedetto GD, and Barbaro V. The Power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs 2004; 28(5):467-475.
56.	Gu L and Smith WA. Evaluation of computational models for hemolysis estimation. ASAIO J. 2005; 202-207.
57.	Hanle DD, Harrison EC, Yoganathan AP, Corcoran WH. Turbulence downstream from the Ionescu-Shiley bioprosthesis in steady and pulsatile flow. Med. Biol. Eng. Comput. 1987; 25: 645-649.
58.	Hariharan P, Giarra M, Reddy V, et al. Multilaboratory particle image velocimetry analysis ofthe FDA benchmark nozzle model to support validation of computational fluid dynamicssimulations. ASME J. Biomech. Eng.2011; 133/ 041002-1-13.
59.	Hellums JD. Brown CH. Blood cell damage by mechanical forces. In: Hwang NHC, Normann NA, editors. Cardiovascular Flow Dynamics and Measurements. Baltimore: University Park Press; 1977. pp.799-823.
60.	Herbertson LH, Lu Q, Malinauskas A. A single-pass orifice system to assess red blood cell fragility. ASAIO J. 2010; 56(2):86.
61.	Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology 1980; 17:17–24.
62.	Hu W, Gladue R, Hansen J, Wojnar C, Chalmers JJ. The sensitivity of the DinoflagellateCrypthecodiniumcohnii to transient hydrodynamic forces. Biotechnol Progress 2007; 23:1355-1362.
63.	Indeglia RA, Shea MA, Bernstein EF. Studies of the Biologic Response to Prolonged Anesthesia and Immobilization. ASAIO J. 1967; 13(1):151-156.
64.	Jones, S. A.: A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage. Ann. Biomed. Eng. 1995; 23: 21-28.
65.	Kameneva MV, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. Am. Soc. Artif. Intern. Organs J. 2004; 50: 418-423.
66.	Kawahito K, Nose’ Y. Hemolysis in different centrifugal pumps. Artif. Organs 1997; 21:323-6.
67.	Kawase Y and Moo-Young M. Mathematical models for design of bioreactors:applications of Kolmogoroff’s theory of isotropic turbulence. The Chemical Engineering Journal 1990; 43:1319-1341.
68.	Keller SR and Skalak R. Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 1982; 120, 27-47.
69.	Keshaviah P. Hemolysis in the accelerated flow region of an abrupt contraction. Doctoral Dissertation, University of Minnesota, 1974.
70.	Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers, Doklady Akad. Nauk, USSR 1941; 30:301-305.
71.	Lee SS, Yim Y, Ahn KH, Lee SJ. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 2009; 11:1021-7.
72.	Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood cell damage by shear stress. Biophys J. 1972;12:257-73.
73.	Liu JS, Lu PC, Chu SH. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng. 2000; 122:118-24.
74.	Liu S, Menenveau C, Katz J. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulence jet. J. Fluid Mec. 1994; 275: 83-119
75.	Lu PC, Lai HC, Liu JS. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech. 2001;34:1361-4.
76.	Luckras H, Woods M, Large SR. And hemolysis goes on: ventricular assist device incombination with veno-venous hemofiltration. Ann. Thorac. Surg. 2002; 73:546-8.
77.	Ma N, Koelling K, Chalmers JJ. The fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol Bioeng. 2002; 80:428-437.
78.	Mazeron P, Muller S, Azouzi HE. On intensity reinforcements in small-angle light scattering patterns of erythrocytes under shear. Eur. Biophys. J. 1997; 26: 247-252
79.	McQueen A, Bailey JE. Influence of serum level, cell line, flow type, and viscosity on flow-induced lysis of suspended mammalian cells. Biotechnol Lett. 1989; 11:531-536.
80.	McQueen A, Melhoc E, Bailey JE. Flow effects on the viability and lysisof suspended mammalian cells. Biotechnol Lett. 1987; 9:831-836.
81.	Meyers J and Sagaut P. On the model coefficients for the standard and the variational multi-scale Smagorinsky model. J. Fluid Mech. 2006; 569: 287-319.
82.	Mitoh A, Yano T, Sekine K et al. Computational fluid dynamics analysis of an intra-cardiac axial flow pump. Artif Organs 2003; 27(1):34-40.
83.	Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ. Acute hydrodynamic forces and apoptosis: A complex question. Biotechnol Bioeng. 2007; 98(4):772-788.
84.	Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ. Computer simulations of the engergy dissipation rate in a fluorescence-activated cell sorter: Implications to cells. Biotechnol Bioeng. 2008; 100(2):260-272.
85.	Mollet M, Ma N, Zhao Y, Brodkey R, Taticek R, Chalmers J. Bioprocess equipment: Characterization of energy dissipation rate and its potential to damage cells. Biotechnol Progress 2004; 20:1437–1448. 
86.	Nevaril CG, Lynch EC, Alfrey CP, Hellums JD. Erythrocyte damage and destruction induced by shearing stress. J Lab Clin Med. 1968;71:784-90.
87.	Nygaard H, Giersiepen M, Hasenkam JM, Reul H, Paulsen PK, Rovsing PE, Westphal D. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro, J. Biomech. 1992; 25: 429-440.
88.	Peng Z, Asaro RJ, Zhu Q. Multiscale modeling of erythrocytes in Stokes flow. J. Fluid Mech. 2011; 686:1-39
89.	Polaschegg HD Red blood cell damage from extracorporeal circulation in hemodialysis. Semin. Dial. 2009; 22:524-31.
90.	Pope SB. Turbulent Flows. Cambridge University Press, Cambridge, UK. 2000.
91.	Pozrikidis C. The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow. J. Fluid Mech. 1990; 216:231-254.
92.	Quinlan NJ and Dooley PN. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 2007;35:1347-56.
93.	Quinlan NJ. Comment on Prosthetic heart valves’ mechanical loading of red blood cells in patients with hereditary membrane defects by Grigioni et al. J. Biomech. 2006; 39: 2542-2544.
94.	Raisky F, Gauthier C, Marchal A, Blum D. Haemolyzed sample responsibility of short catheters. Ann. Biol. Clin. Paris 1994; 52:523-527.
95.	Richardson LF. Weather Prediction by Numerical Process, Cambridge Univ. Press, Cambridge, UK, 1922.
96.	Rooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Science. 1970;169:869-71.
97.	Sallam AH, Hwang NHC. Human red blood cell hemolysis in turbulent shear flow: Contributions of Reynolds shear stresses. Biorheology. 1984;21:783-97.
98.	Sallam AM. An investigation of the effect of Reynolds shear stress on red blood cell hemolysis., PhD thesis, 1982.
99.	Schmid-Schoenbein H and Wells R. Fluid drop-like transition of erythrocytes under shear. Science 1969; 165(3890):288-91.
100.	Schoephoerster RT, Chandran KB. Velocity and turbulence measurements past mitral valve prostheses in a model left ventricle. J. Biomech. 1991; 24: 549-562.
101.	Sheng J, Meng H, Fox RO. A large eddy PIV method for turbulence dissipation rate estimation. Chemical Engineering Science 2000; 55(20): 4423-4434.
102.	Simms D, Schreck S,Hand M, and Fingersh LJ. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions fo Measurements. Technical Report, Golden, CO: National Renewable Energy Laboratory, 2001.
103.	Smagorinsky J. General circulation experiments with the primitive equation I the basic experiment, Monthly Weather Review 1963; 91: 99-164.
104.	Song X, Throckmorton AL, Wood HG et al. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 2003; 27(10):938-941.
105.	Stewart S, Day S, Burgreen GW et al. Preliminary results of FDA’s “critical path” project to validate computational fluid dynamic methods used in medical device evaluation. ASAIO J. 2009; 55(2): 173.
106.	Stewart S, Paterson EG, Burgreen GW et al., Assessment of CFD Performance in Simulations of an Idealized MedicalDevice: Results of FDA’s First Computational Interlaboratory Study, Cardiovascular Engineering and Technology. 2012; 3(2): 139-160.
107.	Stewart S, Paterson EG, Burgreen GW et al., Turblence modeling as a source of error in FDA’s “critical path”interlaboratory computational study of flow in a nozzle model, ASAIO J. 2010; 56(2): 82.
108.	Sui Y, Chew YT, Roy P, et al. Dynamic motion of red blood cells in simple shear flow. Phys. Fluids 2008; 20:112106-1-112106-10.
109.	Sutera SP, Croce PA, Mehrjardi MH. Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear flow. Trans Amer Soc Artif Int Organs. 1972;18:335-41.
110.	Sutera SP, Mehrjardi MH. Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys J. 1975;15:1-10.
111.	Taskin ME, Fraser KH, Zhang T, et al. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J. 2012; 58(4):363-72.
112.	Tennekes H and Lumley JL. A first course in turbulence, MIT Press, Cambridge, MA. 1972.
113.	Tran-Son-Tay R, Sutera SP, Rao PR. Determination of RBC membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J. 1984; 46:65-72.
114.	Tsuji A, Tanabe M, Onishi K, et al. Intravascular hemolysis in aortic stenosis. Intern. Med. 2004;43:935-8.
115.	Wang CH and Popel AS. Effect of red blood cell shape on oxygen transport in capillaries. Math. Biosci. 1993; 116(1):89-110.
116.	White FM. Viscous Fluid Flow. Third Edition. McGraw Hill. New York. 2006.
117.	Wilcox DC. Large eddy simulation, Turbulence modeling for CFD, DCW industries, Inc. 2000: 386-395.
118.	Williams AR, Hughes DE, Nyborg WL. Hemolysis near a transversely oscillating wire. Science. 1970;169:871-3.
119.	Wurzinger LJ, Opitz R, Eckstein H. Mechanical bloodtrauma. An overview. Angeiologie 1986; 38:81–97.
120.	Yano T, Sekine K, Mitoh A et al. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs 2003; 27(10): 920-925.
121.	Yule AJ. Large-scale structure in the mixing layer of a round jet. Journal of Fluid Mechanics 1978; 89:413-432.
122.	Zhang T, Taskin ME, Fang HB, et al. Study of flow –induced hemolysis using novel coutte-type blood shearing devices. Artif. Organs 2011; 35:1180-1186.
123.	Zhao R, Antaki JF, Naik T, Bachman TN, Kameneva MV, Wu ZJ. Microscopic investigation of erythrocyte deformation dynamics. Biorheology 2006; 43:747-65.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信