淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2907201415285200
中文論文名稱 薄膜蒸餾用平板型聚偏二氟乙烯薄膜之製備
英文論文名稱 Preparation of Polyvinylidene fluoride flat-sheet membrane for membrane distillation
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 歐陽興
研究生英文姓名 Hsing Ou-Yang
學號 600400690
學位類別 碩士
語文別 中文
口試日期 2014-07-14
論文頁數 80頁
口試委員 指導教授-鄭東文
委員-黃國楨
委員-童國倫
中文關鍵字 直接接觸式薄膜蒸餾  真空式薄膜蒸餾  聚偏二氟乙烯  平板式薄膜 
英文關鍵字 Direct Contact Membrane Distillation  Vacuum Membrane Distillation  Poly(vinylidene fluoride) (PVDF)  Flat-sheet membrane 
學科別分類
中文摘要 本研究是利用實驗室合成的聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)平板式薄膜,來組裝模組進行直接接觸式薄膜蒸餾(Direct Contact Membrane Distillation, DCMD) 與真空式薄膜蒸餾(Vacuum Membrane Distillation, VMD)用於海水淡化之效能探討,進料之模擬海水為3.5 wt%的NaCl水溶液。合成薄膜的組成為PVDF、磷酸三乙酯(Triethyl phosphate, TEP)及Tween-20的混合溶液,將改變沉澱槽之組成成分以製備不同結構之薄膜,探討其薄膜結構對蒸餾操作之影響。
在實驗操作部分主要是探討不同的參數對薄膜蒸餾之滲透通量及鹽阻隔率之影響,DCMD中兩側流體流動是逆流方式,而在VMD操作中滲透側保持在5.33 kPa,其它參數包括在進料溫度(50~70 oC)、進料速度(0.3~0.7 L/min)與不同進料濃度(純水~15wt%NaCl溶液)。
在DCMD與VMD中其結果顯示隨著沉澱槽TEP wt%的比例增加,所製成的薄膜之通量皆會高於沒改質的薄膜,是由於隨著TEP在沉澱槽的比例增加薄膜表面皮層結構不易形成,且大孔洞數變多。且提高進料溫度能明顯增加滲透通量,但極化現象也較嚴重,而增加進料流率則對於滲透通量之提升較不顯著,但對於高溫進料操作之溫度極化現象具有較明顯改善效果。
英文摘要 The synthesized poly(vinylidene fluoride) (PVDF) flat-sheet membrane was used in the Direct Contact Membrane Distillation (DCMD) and Vacuum Membrane Distillation (VMD) for desalination, and the performances of the membrane distillation system were studied. The simulated seawater of 3.5 wt% NaCl solution was adepted as the feed. The dope solution of PVDF, Triethyl phosphate(TEP) and Tween-20, and the flat membranes were prepared by varying the concentration of TEP in the coagulation bath. The membrane structures were observed by the SEM analysis.
The performances of DCMD and VMD were measured under various operating parameters included feed temperature (50~70oC), feed flow rate (0.3~0.7 L/min) and feed concentration (0~15wt% NaCl).
In DCMD and VMD the experimental results showed the higher flux performance than original membranes which prepared by higher weigh percent of TEP solution, and membrane have large pore size in the top surface is increasing the weight percent of TEP in coagulant bath. And increasing the temperature of the feed can significantly increase the flux, but the polarization phenomena become more serious, increasing feed flow rate the effect is not obvious on the flux, but the temperature polarization phenomenon can be reduced by the feed flow rate as the high feed temperature.
論文目次 目錄
誌謝I
中文摘要II
英文摘要III
目錄IV
圖目錄VI
表目錄VIII
第一章緒論1
1.1前言1
1.2薄膜分離程序3
1.3薄膜蒸餾6
1.4研究目標8
第二章文獻回顧11
2.1薄膜應用研究11
2.2薄膜蒸餾法之種類13
2.2.1直接接觸式薄膜蒸餾13
2.2.2空氣間隙式薄膜蒸餾13
2.2.3空氣掃掠式薄膜蒸餾14
2.2.4真空式薄膜蒸餾14
2.3薄膜之性質15
2.4影響滲透通量的因素17
2.5薄膜製備之相轉換法19
2.6高分子成膜理論20
2.6.1熱力學之成膜理論20
2.6.2質傳動力學之成膜理論21
2.7膜組及操作程序的改良23
2.7.1膜組傾斜角度23
2.7.2進料增加擾動23
2.7.3減少結垢問題23
2.7.4改良膜組設計24
2.7.5薄膜不同製備及改質25
第三章實驗裝置與方法30
3.1實驗裝置30
3.2實驗設備31
3.3實驗與薄膜藥品32
3.3.1實驗藥品32
3.3.2薄膜藥品32
3.4薄膜製備33
3.5薄膜性質分析34
3.5.1薄膜型態和表面孔洞分析34
3.5.2薄膜膜厚及孔隙度測試34
3.5.3接觸角量測34
3.6實驗步驟35
3.6.1DCMD實驗步驟35
3.6.2VMD操作條件35
3.7操作條件37
3.7.1DCMD操作條件37
3.7.2VMD操作條件37
3.8流量計校正與雷諾數計算38
3.9分析方法39
3.9.1鹽類含量之分析方法與條件39
3.9.2鹽類阻隔率之計算39
第四章結果與討論49
4.1原型模組之滲透通量49
4.1.1薄膜SEM結構分析49
4.1.2薄膜之孔隙度50
4.1.3薄膜之接觸角50
4.2DCMD模組之滲透通量51
4.2.1不同薄膜對DCMD滲透通量之影響51
4.2.2進料流率與溫度對DCMD模組之滲透通量影響51
4.2.3改變進料濃度對DCMD模組滲之透通量影響52
4.3VMD模組之滲透通量53
4.3.1不同薄膜對VMD滲透通量之影響53
4.3.2改變進料流率與溫度對VMD模組之滲透通量影響53
4.3.3改變進料濃度對VMD模組之滲透通量影響54
4.4DCMD與VMD模組比較55
4.5阻隔鹽類之效能56
4.5.1DCMD與VMD系統之阻隔鹽類效能56
4.5.2長時間操作對DCMD系統之影響56
第五章結論72
符號說明75
參考文獻76
附錄A80
圖目錄
圖1.1薄膜分離程序之分類9
圖1.2薄膜蒸餾物流流動示意圖10
圖2.1DCMD 示意圖26
圖2.2AGMD 示意圖27
圖2.3SGMD 示意圖27
圖2.4VMD 示意圖28
圖2.5高分子(非結晶型)-溶劑-非溶劑成膜相圖[MARCEL MULDER, 1991] 28
圖2.6SCHEMATIC REPRESENTATION OF MASS TRANSFER OCCURRING AT THE MEMBRANE/COAGULANT SURFACE[MARCEL MULDER, 1991;LIN AND WANG 等人, 1996]29
圖2.7過濾與逆洗程序示意圖29
圖3.1DCMD 模組示意圖40
圖3.2DCMD與VMD 模組設計示意圖(進料側)41
圖3.3DCMD 模組設計示意圖(冷卻水側)42
圖3.4VMD 模組設計示意圖(真空側)43
圖3.5直接接觸薄膜蒸餾實驗裝置圖44
圖3.6真空式薄膜蒸餾實驗裝置圖45
圖3.7進料流體流量計校正曲線46
圖3.8冷卻水流體流量計校正曲線46
圖3.9進料、冷卻水流體流量與REYNOLD NUMBER之關係圖47
圖4.1PVDF平板薄膜之SEM截面結構圖58
圖4.2PVDF平板薄膜之SEM 5K倍率上表面結構圖59
圖4.3PVDF平板薄膜之SEM 30K倍率上表面結構圖60
圖4.4PVDF平板薄膜之SEM下表面結構圖61
圖4.5不同PVDF薄膜對DCMD滲透通量之影響62
圖4.6T40於DCMD之滲透通量62
圖4.7不同進料溫度對DCMD滲透通量之影響63
圖4.8不同進料流率對DCMD滲透通量之影響63
圖4.9T40於不同進料濃度對DCMD滲透通量之影響64
圖4.10不同PVDF薄膜對VMD滲透通量之影響64
圖4.11T40於VMD之滲透通量65
圖4.12不同進料溫度對VMD滲透通量之影響65
圖4.13不同進料流率對VMD滲透通量之影響66
圖4.14T40於不同進料濃度對VMD滲透通量之影響66
圖4.15T40於DCMD與VMD滲透通量之比較67
圖4.16T40於DCMD與其他論文滲透通量之比較67
圖4.17T40於VMD與其他論文滲透通量之比較68
圖4.18DCMD不同進料溫度改變進料流量之滲透液導電度68
圖4.19VMD不同進料溫度改變進料流量之滲透液導電度69
圖4.20T40於 VMD 15WT% NACL溶液高濃度進料之滲透液導電度69
圖4.21T10於DCMD長時間操作之影響70
圖ANACL檢量線80
表目錄
表1.1不同操作程序之驅動力分類[CHERYAN, 1998]9
表3.1製膜液組成與製備條件48
表4.1PVDF薄膜基本結構與物性分析71
參考文獻 Altena, F. W, Smolders, C. A., “Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of solvent and a nonsolvent”, Macromolecules, 15, 1491-1497, (1982).
Bonyadi, S.,Chung, T., “Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach”, Journal of Membrane Science, 331, 66-74, (2009).
Boom, R. M.,van den Boomgaard, T., Smolders, C. A., “Mass transfer and thermodynamics during immersion precipitation for two-polymer system: Evaluation with the system PES-PVP-NMP-water”, Journal of membrane science, 90, 231-249, (1994).
Cath, T. Y., Adams, V. D.,Childress, A. E., “Experimental study of desalination using direct contact membrane distillation: A new approach to flux enhancement”, Journal of Membrane Science, 228, 5-16, (2004).
Cerneaux, S., Strużyńska, I., Kujawski, W. M., Persin, M., Larbot, A., “Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes”, Journal of Membrane Science, 337, 55-60, (2009).
Chen, G., Yang, X., Wang, R., Fane, A. G., “Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation”, Desalination, 308, 47-55, (2013).
Cheng, T., Yeh, H., Wu, J., “Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module”, Journal of Membrane Science, 158, 223-234, (1999).
Cheryan, M., Ultrafiltration and Microfiltration Handbook, 2nd ed., Technomic Publishing Inc., Pennsylvania, (1998).
Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Separation Science and Technology, 20, 393-402, (1985).
Criscuoli, A., Carnevale, M. C., Drioli, E., “Evaluation of energy requirements in membrane distillation”, Chemical Engineering and Processing: Process Intensification, 47, 1098-1105, (2008).
De Souza, N. P., Basu, O. D., “Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment”, Journal of Membrane Science, 436, 28-35, (2013).
Devi, S., Ray, P., Singh, K., Singh, P. S., “Preparation and characterization of highly micro-porous PVDF membranes for desalination of saline water through vacuum membrane distillation”, Desalination, 346, 9-18, (2014).
Di Profio, G., Ji, X., Curcio, E., Drioli, E., “Submerged hollow fiber ultrafiltration as seawater pretreatment in the logic of integrated membrane desalination systems”, Desalination, 269, 128-135, (2011).
El-Abbassi, A., Hafidi, A., Khayet, M., Garcia-Payo, M. C., “Integrated direct contact membrane distillation for olive mill wastewater treatment”, Desalination, 323, 31-38, (2013).
Feng, C., Shi, B., Li, G., Wu, Y., “Preliminary research on microporous membrane from F2.4 for membrane distillation”, Separation and Purification Technology, 39, 221-228, (2004).
Findley, M. E., Tanna, V. V., Rao, Y. B. and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes”, AIChE Journal, 15, 483-489, (1969).
Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967).
Gryta, M., Tomaszewska, M., Grzechulska, J., Morawski, A. W., “Membrane distillation of NaCl solution containing natural organic matter”, Journal of Membrane Science, 181, 279-287, (2001).
Hausmann, A., Sanciolo, P., Vasiljevic, T., Weeks, M., Duke, M., “Integration of membrane distillation into heat paths of industrial processes”, Chemical Engineering Journal, 211–212, 378-387, (2012).
He, F., Sirkar, K. K., Gilron, J., “Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation”, Journal of Membrane Science, 345, 53-58, (2009).
He, K., Hwang, H. J., Woo, M. W., Moon, I. S., “Production of drinking water from saline water by direct contact membrane distillation (DCMD)”, Journal of Industrial and Engineering Chemistry, 17, 41-48, (2011).
Hou, D., Dai, G., Wang, J., Fan, H., Zhang, L., Luan, Z., “Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation”, Separation and Purification Technology, 101, 1-10, (2012).
Hsu, S. T., Cheng, K. T., Chiou, J. S., “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279-287, (2002).
Ji, Z., Wang, J., Hou, D., Yin, Z., Luan, Z., “Effect of microwave irradiation on vacuum membrane distillation”, Journal of Membrane Science, 429, 473-479, (2013).
Kamide, K., “ Thermodynamics of polymer solutions phase equilibria and critical phenomena”, Elsevier, (1990).
Krivorot, M., Kushmaro, A., Oren, Y., Gilron, J., “Factors affecting biofilm formation and biofouling in membrane distillation of seawater”, Journal of Membrane Science, 376, 15-24, (2011).
Lawson, K. W., Lloyd, D. R., “Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997).
Mercier-Bonin, M., Lagane, C., Fonade, C., “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: Case of a ceramic flat sheet membrane”, Journal of Membrane Science, 180, 93-102, (2000).
Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensification, 64, 31-35, (1968).
Phattaranawik, J., Jiraratananon, R., Fane, A. G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, Journal of Membrane Science, 215, 75-85, (2003).
Phattaranawik, J., Jiraratananon, R., Fane, A. G., “Heat transport and membrane distillation coefficients in direct contact membrane distillation”, Journal of Membrane Science, 212, 177-193, (2003).
Prince, J. A., Anbharasi, V., Shanmugasundaram, T. S., Singh, G., “Preparation and characterization of novel triple layer hydrophilic–hydrophobic composite membrane for desalination using air gap membrane distillation”, Separation and Purification Technology, 118, 598-603, (2013).
Prince, J. A., Singh, G., Rana, D., Matsuura, T., Anbharasi, V., Shanmugasundaram, T. S., “Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation”, Journal of Membrane Science, 397–398, 80-86, (2012).
Safavi, M., Mohammadi, T., “High-salinity water desalination using VMD”, Chemical Engineering Journal, 149, 191-195, (2009).
Schofield, R. W., Fane, A. G., Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, 33, 299-313, (1987).
Simone, S., Figoli, A., Criscuoli, A., Carnevale, M. C., Rosselli, A., Drioli, E., “Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD” Journal of Membrane Science, 364, 219-232, (2010).
Smolders, K., Franken, A. C. M., “Terminology for membrane distillation”, Desalination, 72, 249-262, (1989).
Tomaszewska, M., “Preparation and properties of flat-sheet membranes from poly(vinylidene fluoride) for membrane distillation”, Desalination, 104, 1-11, (1996).
Tomaszewska, M., Gryta, M., Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994).
Tompa, H., “Polymer solutions”, Butterworths, (1956).
Van der Waal, M. J., Racz, I. G., “Mass transfer in corrugated-plate membrane modules. I. hyperfiltration experiments”, Journal of Membrane Science, 40, 243-260, (1989).
Yang, X., Wang, R., Fane, A. G., “Novel designs for improving the performance of hollow fiber membrane distillation modules”, Journal of Membrane Science, 384, 52-62, (2011).
Zeman, L., Tkacik, G., “Thermodynamic analysis of a membrane-forming system water/n-methyl-2-pyrrolidone/polysulfone”, Journal of Membrane Science, 36, 119-140, (1988).
Zsirai, T., Aerts, P., Judd, S., “Reproducibility and applicability of the flux step test for a hollow fibre membrane bioreactor”, Separation and Purification Technology, 107, 144-149, (2013).
張旭賢, “多孔型聚偏二氟乙烯薄膜固定離胺酸與己二胺”, 淡江大學化學工程與材料工程研究所碩士論文, (2005).
陳勝昌, “以非溶劑誘導相轉移法製備多孔型薄膜”, 淡江大學化學工程與材料工程研究所碩士論文, (2013).
葉國麟, “中空式與直接接觸式薄膜蒸餾於海水淡化之比較”, 淡江大學化學工程與材料工程研究所碩士論文, (2012).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信