淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2907201414315800
中文論文名稱 二手產品品質策略之研究
英文論文名稱 A Study of Quality Policies of Second-Hand Products
校院名稱 淡江大學
系所名稱(中) 管理科學學系博士班
系所名稱(英) Doctoral Program, Department of Management Sciences
學年度 102
學期 2
出版年 103
研究生中文姓名 余若芸
研究生英文姓名 Rouh-Yun Yu
學號 895620242
學位類別 博士
語文別 英文
口試日期 2014-06-13
論文頁數 64頁
口試委員 指導教授-羅惠瓊
委員-葉瑞徽
委員-吳坤山
委員-張東生
委員-吳政鴻
中文關鍵字 產品回收  二手產品  保固  預防性保養  升級門檻數值 
英文關鍵字 Product recovery  Second-hand product  Warranty  Preventive maintenance  Upgrade threshold value 
學科別分類
中文摘要 地球的永續經營是二十一世紀最重要的議題之一,無論是企業或個人在原料及能源的消費上都必須多加考慮,因此舊產品在廢棄前的價值萃取是勢在必行的。在所有舊產品的回收方法中,成為二手產品直接再使用,是對環境最有利的策略。另一方面,目前高科技創新產品的生命週期明顯縮短,新產品的購買往往與舊產品的折價貼換相連,造就了市場上許多狀況仍相當良好的舊產品。但二手產品的品質無法由外觀得知,消費者對二手產品品質的疑慮阻礙了二手產品市場的發展。因此本研究主要是針對二手產品,分別站在製造商與個別消費者的立場,提出品質策略。所謂品質可以劃分成消費者趨動品質及工程品質兩類,本研究採用保固及產品品質升級(或預防保養)分別做為改善兩種品質的方法。對依照法律規定負責所有舊產品回收的製造商,本研究提出利潤模式,將銷售二手產品的收入及成本(包括購買舊產品、產品品質升級、表面磨光、保固期間產品失效時的修理、不堪用產品的廢棄處理等相關費用)加入模式,同時決定出最佳的保固期間及產品品質升級的年齡門檻數值,以獲得所有回收產品的期望利潤最高為目的。對二手產品的單一消費者,為降低失效次數,本研究發展出兩個週期性預防保養模式,以供消費者根據執行的困難度做選擇。目的在決定最佳預防保養次數及保養程度,以在預定的產品使用期間內,相關的預防保養及產品失效時修理的總費用最低為目標。無論是生產者的利潤模式或消費者的費用模式,本研究皆以數學分析探討模式結構;對特殊例題證明最佳解的存在,並列出尋求最佳解的演算法。 更以實際應用例題說明各模式的可行性及優勢;對重要參數的敏感度分析亦藉由許多數值例題來展現。
英文摘要 For the sustainability of this globe we all live in, effective end-of-life value realization is essential. Reuse is considered the most environmentally beneficial way of product recovery. On the other hand, the rapidly changing technologies and fierce competition characters of modern manufacturing results in the market with a lot of younger and better used products. However, the concerns over the quality of the second-hand products hinder the development of second-hand product market. Quality can be classified into two types: customer-driven quality and engineered quality. This study uses warranty and upgrade action (or preventive maintenance) as the way to improve customer-driven and engineered quality respectively. For the manufacturers, considering the age at the end of first life as stochastic, this study develops a profit model. Relevant costs like purchase of the used item, surface polish, upgrade and the minimal repair during the warranty period are included. Optimal upgrade threshold value and warranty length are jointly derived so that the expected profit per recovered item can be maximized. For individual consumer, this research develops two periodical age reduction preventive maintenance cost models for practitioners to choose based on the easiness of the implementation. The objective is to determine the optimal number and degree of preventive maintenance, so that the expected cost (including preventive maintenance and minimal repair) for a pre-determined usage period can be minimized. Structural properties are investigated for both manufacturer’s and individual consumer’s models; algorithms are provided to search for the optimal solutions of some special cases. To demonstrate the feasibility and the advantages of the proposed approach, practical application is illustrated. Sensitivity analyses regarding the important parameters are also conducted through various numerical examples.
論文目次 Content I
List of figures III
List of tables IV
Chapter 1 Introduction 1
1.1 BACKGROUND AND MOTIVATION 1
1.2 RESEARCH PROBLEM AND OBJECTIVES 4
1.3 RESEARCH SCOPE AND LIMITATION 4
Chapter 2 Literature review 7
2.1 PRODUCT RECOVERY 7
2.2 WARRANTY 8
2.3 MAINTENANCE 12
2.4 WARRANTY AND MAINTENANCE FOR SECOND-HAND PRODUCT 15
Chapter 3 Quality policy from Manufacturer’s point of view 20
3.1 NOTATIONS FOR MANUFACTURER’S PROFIT MODEL 22
3.2 MATHEMATICAL FORMULATION FOR MANUFACTURER’S PROFIT MODEL 23
3.3 ANALYSIS OPTIMIZATION FOR MANUFACTURER’S PROFIT MODEL 26
3.3.1 General Case 26
3.3.2 Optimization for a special case 27
3.4 NUMERICAL EXAMPLES FOR MANUFACTURER’S PROFIT MODEL 32
3.4.1 Practical Application 32
3.4.2 Sensitivity analysis 33
3.5 CONCLUSIONS FOR MANUFACTURER’S PROFIT MODEL 38
Chapter 4 Maintenance policies from consumer’s point of view 39
4.1 NOTATIONS FOR THE INDIVIDUAL CONSUMER’S COST MODEL 41
4.2 MATHEMATICAL FORMULATION FOR INDIVIDUAL CONSUMER’S COST MODEL 41
4.3 OPTIMAL PM POLICY FOR INDIVIDUAL CONSUMER’S COST MODEL 44
4.3.1 General case 44
4.3.2 Special case for Weibull failure rate and linear maintenance cost 47
4.4 NUMERICAL EXAMPLES FOR INDIVIDUAL CONSUMER’S COST MODEL 52
4.4.1 Practical applications 52
4.4.2 Sensitivity analysis 53
4.4.3 Comparisons of two models 55
4.5 CONCLUSIONS FOR INDIVIDUAL CONSUMER’S COST MODEL 56
Chapter 5 Conclusions and suggestions 57
5.1 CONCLUSIONS 57
5.2 SUGGESTIONS FOR FUTURE RESEARCH 58
References 60

List of figures
Fig. 1.1 Research scheme........6
Fig. 3.1 Optimal value of upgrade threshold value for different values of k2 and cm ..37
Fig. 3.2 Optimal length of the warranty period for different values of k2 and cm . ..37
Fig. 4.1 The periodical PM scheme with fixed age reduction y . .................................42
Fig. 4.2 The periodical PM scheme with an age threshold value theta . ............................43
Fig. 4.3 The reduction of total expected cost under fixed age reduction.....................55
Fig. 4.4 The optimal number of PM actions under fixed age reduction ......................56

List of tables
Table 3.1 Optimal upgrade threshold value and warranty length for the special case.34
Table 3.2 Optimal upgrade threshold value and warranty length for general cases ....36
Table 3.3 Optimal upgrade threshold value and warranty length for different (the age dependent factor) ..37
Table 4.1 Numerical results for model I and model II ...54
參考文獻 [1] Anityasari, M., Kasebernick, H., and Kara, S. (2007). The role of warranty in the reuse strategy. 14th CIRP Conference on Life Cycle Engineering, 335-340.
[2] Banjevic, D. (2009). Remaining useful life in theory and practice. Metrika, 69, 337-349.
[3] Barlow, R. E. and Hunter, L. C. (1960). Optimum preventive maintenance policies. Operations Research, 90-100.
[4] Barlow, R. E. and Proshan, F. (1965). Mathematical Theory of Reliability. Wiley, New York.
[5] Blischke, W. R., Karim, M. R., and Murthy, D. M. P. (2011). Warranty Data Collection and Analysis. Springer.
[6] Blischke, W. R. and Murthy, D. N. P. (1991). Product warranty management – I, a taxonomy for warranty policies. European Journal of Operational Research, 62, 127-148.
[7] Blischke, W. R. and Murthy, D. N. P. (1994). Warranty Cost Analysis. Marcel Dekker, New York.
[8] Boulding, W. and Kirmani, A. (1993). A consumer-side experimental examination of signaling theory: Do consumers perceive warranties as signals of quality. Journal of Consumer Research, 20, 111-123.
[9] Chattopadhyay, G. and Murthy, D. N. P. (2000). Warranty Cost Analysis for Second-Hand Products. Mathematical and Computer Modeling, 31, 81-88.
[10] Chattopadhyay, G. and Murthy, D. N. P. (2001). Cost Sharing Policies for second-hand products. International Transactions in Operational Research, 8, 47-60.
[11] Chattopadhyay, G. and Murthy, D. N. P. (2004). Optimal Reliability improvement for used items sold with warranty. International Journal of Reliability and Applications, 5, 47-57.
[12] Chattopadhyay, G., Saidi-Mehrabad, M., and Shafiee, M. (2009). Determination of the price for free repair warranty policy for a second-hand product with considering the buyer’s risk attitude. 22nd International Congress, COMADEM, 547-551.
[13] Chen T, Jin, P., and Cai, G. (2013). Reusable rocket engine preventive maintenance scheduling using genetic algorithm. Reliability engineering and System Safety, 114, 52-60.
[14] Chukova, S. and Shafiee, M. (2013). One-dimensional warranty cost analysis for second-hand items: an overview. International Journal of Quality & Reliability management, 30(3), 239-255.
[15] Chun, Y. H. (1992). Optimal number of periodic preventive maintenance operations under warranty. Reliability Engineering and System Safety, 37(3), 223-225.
[16] CIRP, II. (2007). The anatomy and physiology of the used car business: a global analysis with particular reference to four key markets: US, Canada, France, German”. Car Internet Research Program II, available at: www.at.capgemini.com (accessed 11 May, 2013).
[17] Dagpunar, J. S. and Jack, N. (1994). Preventive maintenance strategy for equipment under warranty. Microelectronics and Reliability, 34 (6), 1089-1093.
[18] Dekker, R., Moritz, F., Inderfurth, M., Luk, N., and Wassenhove, V. (2004). Reverse Logistics. Springer.
[19] Dhillion, B. S. (2002). Engineering Maintenance: A Modern Approach. CRC Press, Boca Raton, FL.
[20] Diaz, V. G., Campos, M. L., Fernandez, J. F., and Marquez, J. A. (2010). Warranty cost models state-of-art: A practical review to the framework of warranty cost management. Reliability, Risk and Theory: Theory and application.
[21] Finkelstein, M. S. (2007). On statistical and informational-based virtual age of degrading systems. Reliability Engineering and System Safety, 92(5), 676-681.
[22] Gardent, P. and Nonant, L. (1963). Entretien et renouvellement d’un parc de machines. Revue Franc, aise de Recherche Operationelle, 7, 5-19.
[23] Garg, A. and Deshmukh, S. G. (2006). Maintenance management: literature review and directions. Journal of Quality in Maintenance Engineering, 12(3), 205-238.
[24] Guiot, D. and Roux, D. (2010). A second-hand shoppers’ motivation scale: antecedents, consequences, and implication for retailers. Journal of Retailing, 86(4), 355-371.
[25] Guo, R., Ascher, H., and Love, C. E. (2001). Towards practical and Synthetical Modelling of Repairable Systems. Economic Quality Control, 16(2), 147-182.
[26] Huang, H. Z., Liu, Z. J., and Murthy, D. N. P. (2007) Optimal reliability, warranty and price for new products. IIE Transactions, 39(8), 819-827.
[27] Jack, N. and Dagpunar, J. S. (1994). An optimal imperfect maintenance policy over a warranty period. Microelectronics and reliability, 34(3), 529-534.
[28] Jack, N. and Murthy, D.N.P. (2004) Warranty servicing strategies to improve customer satisfaction. IMA Journal of Management Mathematics, 15(2), 111-124.
[29] Karim, M. R. and Suzuki, K. (2005). Analysis of warranty claim data: a literature review. International Journal of Quality and Reliability Management, 22, 667-686.
[30] Kijima, M. and Nakagawa, T. (1992). Replacement policies of a shock model with imperfect preventive maintenance. European Journal of Operations Research, 57, 100-110.
[31] Kijima, M., Morimura, H., and Sujuki, Y. (1988). Periodical Replacement Problem Without Assuming Minimal Repair. European Journal of Operational Research, 37, 194-203.
[32] Lie, C. H. and Chun, Y. H. (1986). An algorithm for preventive maintenance policy. IEEE Transactions Reliability R, 35(1), 71-75.
[33] Manna, D. K., Pal, S., and Sinha, S. (2007). A use-rate based failure model for two-dimensional warranty. Computers and Industrial Engineering, 52, 229-240.
[34] McGuire. (1980). Industrial Product Warranties: Policies and Practices. The Conference Board Inc., New York.
[35] Murthy, D. N. P. (2006), Product warranty and reliability. Annals of Operations Research, 143(1), 133-146.
[36] Murthy, D. N. P. and Djamaludin, I. (2002). New product warranty: a literature review. International Journal of Production Economics, 79, 231-260.
[37] Murthy, D. N. P., Solem, O., and Roren, T. (2004). Product warranty logistics: Issues and challenges. European Journal of Operational Research, 156, 110-126.
[38] Naini, S. G. J. and Shafiee, M. (2011). Joint determination of price and upgrade level for a warranted second-hand product. International Journal of Advanced Manufacturing Technology, 54(9-12), 1187-1198.
[39] Nakagawa, T. and Osaki, S. (1974). The optimum repair limit replacement policies. Operational Research Quarterly, 25, 311-317.
[40] Nakagawa, Y. (1981). A summary of periodic replacement with minimal repair at failure. Journal of the Operations Research Society of Japan, 24, 213-227.
[41] Pham, H. and Wang, H. (1996). Imperfect maintenance. European Journal of Operational Research, 94, 425–438.
[42] Pongpech, J., Murthy, D. N. P., and Boondiskulchock, R. (2006). Maintenance Strategies for used equipment under lease. Journal of Quality in Maintenance Engineering, 12, 52-67.
[43] Priest, G. L. (1981). A theory of the consumer product warranty. The Yale Law Journal, 90(6), 1297-1307.
[44] Rahimifard, R., Coates, C., Edwards, C., and Abu-Baker M. Berries (2009). Drives and challenges for sustainable product recovery and recycling. International Journal of Sustainable Engineering, 2, 80-90.
[45] Reason, J. (2000). Cognitive Engineering in Aviation Domain. Lawrence Erlbaum Associates, Nahwah, NJ.
[46] Saidi-Mehrabad, M., Noorossana, R., and Safiee, M. (2010). Modelling and analysis of effective ways for improving the reliability of second-hand products sold with warranty. International Journal of Manufacturing Technology, 46, 253-265.
[47] Sarada, Y. and Mubashirunnissa, M. (2011). Warranty cost analysis for decond-hand products using bivariate approach. International Journal Operational Research, 12(1), 34-55.
[48] Seitz, M. A. (2007) A critical assessment of motives for product recovery: the case of engine remanufacturing. Journal of Cleaner Production, 15(11), 1147-1157.
[49] Shafiee, M., Finkelstein, M., and Chukova, S. (2011). On optimal upgrade level for used products under given cost structure. Reliability Engineering and System Safety, 96, 286-291.
[50] Shafiee, M. and Chukova, S. (2013). Maintenance models in warranty: A literature review. European Journal of Operational Research, 229, 561-572.
[51] Sharma, A., Yadava, G. S., and Deshmukh, S. G. (2011). A literature review and future perspectives on maintenance optimization, Journal of Quality in Maintenance Engineering, 17(1), 5-25.
[52] Shiu, M. L., Jiang, J. C., and Tu, M. H. (2013). Quality Strategy for Research and Development. Wiley, New Jersey.
[53] Taguchi, G., Chowdhury, S., and Taughi, S. (2000), Robust Engineering: Learn How to Boost Quality While Reducing Costs & Time to Market, McGraw-Hill.
[54] Tan, C. M. and Raghavan, N. (2008). A framework to practical predictive maintenance modeling for multi-state system. Reliability Engineering & System Safety, 93(8), 1138-1150.
[55] Van Der Duyn Schouten, F. (1996). Maintenance policies for multicomponent systems. In: Ozekici, S. (Ed.), Reliability and maintenance of complex systems. NATO ASI series, vol. 154, Springer, Berlin. Proceedings of the NATO Advanced Study Institute on Current Issues and Challenges in the Reliability and Maintenance of Complex Systems, Kemer-Antalya, Turkey, June 12-22, 1995, 117-136.
[56] Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European Journal of Operational Research, 139, 469-489.
[57] Wang, H. and Pham, H. (1999). Some maintenance models and availability with imperfect maintenance in production systems. Annals of Operations Research, 91, 305-318.
[58] Wu, C. C., Chou C. Y., and Huang C. (2009). Optimal price, warranty length and production rate for free replacement policy in the static demand market. Omega, 37(1), 29-39.
[59] Yeh, R. H. and Chen, C. K. (2006). Periodical Preventive-Maintenance Contract for a Leased Facility with Weibull Life-Time. Quality &Quantity, 40, 303-313.
[60] Yeh, R. H. and Chang W. L. (2007). Optimal threshold value of failure-rate for leased products with preventive maintenance actions. Mathematical and Computer Modeling, 46, 730-737.
[61] Yeh, R. H., Chang, W. L., and Lo, H. C. (2010). Optimal threshold values of age and two-phase maintenance policy for leased equipments using age reduction method. Annals of Operations Research, 181(1), 171-183.
[62] Yeh, R. H. and Lo, H. C. (2001). Optimal preventive-maintenance warranty policy for repairable products. European Journal of Operational Research, 134, 59-69.
[63] Yeh, R. H., Kao, K. C., and Chang, W. L. (2009). Optimal preventive-maintenance policy for leased equipment using failure rate reduction. Computers & Industrial Engineering, 57, 304-309.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信