淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2907201312110900
中文論文名稱 高齡者機車駕駛者路段交通事故特性
英文論文名稱 Analysis of the Crash Characteristics of Senior motorcyclists in Straight Lanes
校院名稱 淡江大學
系所名稱(中) 運輸管理學系碩士班
系所名稱(英) Department of Transportation Management
學年度 101
學期 2
出版年 102
研究生中文姓名 陳品帆
研究生英文姓名 Pin-Fan Chen
學號 601660045
學位類別 碩士
語文別 中文
口試日期 2013-07-03
論文頁數 90頁
口試委員 指導教授-張勝雄
共同指導教授-陳菀蕙
委員-曾平毅
委員-吳繼虹
中文關鍵字 高齡駕駛者  事故碰撞特性  碰撞分析  分類樹 
英文關鍵字 crash characteristics  motorcycle  senior motorcyclists  Classification tree 
學科別分類
中文摘要 機車是台灣日常使用最為普遍的運具,雖然駕駛機車具危險性,由於機車的便利性,機車仍是很重要的交通工具。許多高齡者在日常活動中使用機車為運具,尤其是大眾運輸服務不足的地區。有許多嚴重的交通事故是發生在路段上,但很少研究探討路段事故發生原因,本研究利用內政部警政署民國95年至民國99年道路交通事故資料庫,分析高齡機車駕駛者路段事故,以了解高齡機車駕駛者路段事故的主要事故特性。高齡機車駕駛者路段交通事故共計22,861人次(32.3%),其中以雙車事故17,813人次(78%)比例最高。本研究進一步分析雙車事故之碰撞分析,分析結果發現路段上之主要三種事故類型為同向擦撞、側撞與追撞,另外並利用雙方當事者的車輛行動狀態(直行、橫越道路、迴轉)和車損位置,推估事故發生情況。此外,路段主要分隔型態共15類,本研究應用分類樹分析方法合併碰撞類型同質之分隔型態,分析結果顯示,高齡機車與小型車事故分隔型態歸為四類,機車與其他機車事故的分隔型態歸為三類。依據事故分析結果,本研究彙整高齡駕駛者在路段應特別注意的交通安全觀念,希望能提高他們的機車安全駕駛觀念,幫助他們避免交通事故的發生。
英文摘要 In Taiwan, motorcycles are a popular mode of transportation. Although motorcycles are a dangerous transportation mode, they still play an important role because they are a convenient means of transportation. Numerous seniors ride motorcycles for their daily activities, especially in rural areas where public transportation is infrequent or nonexistent. There have been numerous serious accidents involving senior motorcyclists occurring in straight lanes, but there are few studies investigating the causalities for this type of accident. This study aims to identify the accident characteristics for senior motorcyclists by analyzing crash data involving elderly motorcyclists from 2006 through 2010. In total, 22,861 (32.3 %) senior motorcyclists were involved in accidents occurring in straight lanes, and 17,813 (78%) of these were two-vehicle accidents. We investigate two-vehicle accidents to understand their accident characteristics, and our results show that the three major accident types in straight lanes are the following: the sideswipe accident not resulting from an improper turn, the sideswipe accident resulting from an improper turn and the rear-end accident. This study use the results of Classification tree to find out four major road configurations types of the accidents between older motorcyclists and small vehicles ,and also three major road configurations types of the accidents between motorcycles. Based on the analysis results, we provide a summary of safety concepts for senior motorcyclists to increase their safety awareness and help them avoid traffic accidents.
論文目次 目錄
摘要 Ⅰ
目錄 V
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究範圍 3
1.3 研究架構 3
第二章 文獻回顧 5
2.1 高齡者機車問題 5
2.2 肇事事故相關研究 6
2.3 高齡者生理特性 7
2.4 事故分析方法 10
2.5 小結 14
第三章 研究方法 15
3.1 事故資料分析程序 15
3.2 變數設定與分析方法 17
第四章 高齡者路段特性分析 21
4.1 名詞釋義 21
4.2 路段事故基本特性分析 23
4.3 路段事故類型與分隔型態分析 30
4.4 路段事故雙車碰撞分析 40
4.5 事故特性彙整與教育安全重點 52
第五章 應用分類樹探討雙車事故之分隔型態分群分析 56
第六章 結論與建議 65
附錄 68
參考文獻 83

圖目錄
圖1.2. 1研究流程圖 4
圖3.1. 1事故資料庫處理程序 15
圖3.1. 2事故資料分析程序 16
圖3.2. 1事故相關要素組合 17
圖4.2. 1高齡者路段事故時段趨勢 25
圖5.2. 1高齡者機車與小型車事故分類樹(第一層) 57
圖5.2. 2高齡者機車與小型車事故分類樹(第二層Ⅰ) 58
圖5.2. 3高齡者機車與其他小型車事故分類樹(第二層Ⅱ) 59
圖5.2. 4高齡者機車與其他小型車事故分類樹(第二層Ⅲ) 60
圖5.2. 5高齡者機車與其他機車事故分類樹(第一層) 61
圖5.2. 6高齡者機車與其他機車事故分類樹(第二層Ⅰ) 62
圖5.2. 7高齡者機車與其他機車事故分類樹(第二層Ⅱ) 63
附表 1分隔島-分道線-快慢線的縣市別與碰撞類型之事故次數 68
附表 2分隔島-分道線-無的縣市別與碰撞類型之事故次數 69
附表 3分隔島-分道線-其他的縣市別與碰撞類型之事故次數 70
附表 4分向限制線(雙黃線)-分道線-快慢線的縣市別與碰撞類型之事故次數 71
附表 5分向限制線(雙黃線)-分道線-無的縣市別與碰撞類型之事故次數 72
附表 6分向限制線(雙黃線)-無-快慢線的縣市別與碰撞類型之事故次數 73
附表 7分向限制線(雙黃線)-無-無的縣市別與碰撞類型之事故次數 74
附表 8分向限制線(雙黃線)-其他-其他的縣市別與碰撞類型之事故次數 75
附表 9分向線(黃虛線)-分道線-快慢線的縣市別與碰撞類型之事故次數 76
附表 10向線(黃虛線)-分道線-無的縣市別與碰撞類型之事故次數 77
附表 11分向線(黃虛線)-無-快慢線的縣市別與碰撞類型之事故次數 78
附表 12分向線(黃虛線)-無-無的縣市別與碰撞類型之事故次數 79
附表 13分向線(黃虛線)-其他-其他的縣市別與碰撞類型之事故次數 80
附表 14無分向-無-無的縣市別與碰撞類型之事故次數 81
附表 15無分向-其他-其他的縣市別與碰撞類型之事故次數 82

表目錄
表1.1. 1高齡者事故運具類別分析 1
表1.1. 2道路型態事故數 2
表2.3. 1高齡者生理與心理特性對交通安全的影響 9
表2.4. 1探討事故當事者受傷嚴重性影響因素之統計分析方法 11
表2.4. 2探討事故次數或事故率之統計分析方法 11
表2.4. 3事故影響變數彙整表 12
表4.1. 1內政部警政署事故資料變數定義 21
表4.1. 1內政部警政署事故資料變數定義(續) 21
表4.2. 1高齡者機車事故不同道路型態與號誌管制下死傷情形分析 23
表4.2. 2高齡者機車駕駛者路段事故年齡層與受傷情形分析 24
表4.2. 3路段事故涉入車輛數之死傷情形 26
表4.2. 4路段雙車事故之涉入車種 26
表4.2. 5機車路段事故之不同年齡層的個人肇因事故次數百分比 27
表4.2. 6高齡者機車路段單車自撞事故之個人肇因 28
表4.2. 7高齡者機車路段雙車事故之不同年齡層個人肇因 29
表4.2. 8高齡者雙車事故之當事者別之個人肇因分析 29
表4.3. 1單車自撞事故之事故類型與死傷情形分析 31
表4.3. 2單車自撞事故之分隔型態與死傷情形分析 33
表4.3. 3高齡者駕駛機車與小型車事故型態之死傷情形分析 35
表4.3. 4高齡者駕駛機車與其他機車碰撞型態之死傷情形分析 35
表4.3. 5高齡者機車雙車事故分隔型態之死傷情形 36
表4.3. 6高齡者機車雙事故分隔型態與碰撞型態分析 38
表4.3. 7高齡者機車雙事故之改善優先順序 39
表4.4. 1高齡者駕駛機車與小型車同向擦撞之雙車行進方向 41
表4.4. 2高齡者機車直行與小型車直行之車損分析(同向擦撞) 41
表4.4. 3高齡者機車直行與小型車超車之車損分析(同向擦撞) 42
表4.4. 4高齡者機車直行與小型車起步與靜止之車損分析(同向擦撞) 42
表4.4. 5高齡者與小型車側撞之雙車行進方向 43
表4.4. 6高齡者機車左轉/迴轉或橫越與小型車直行之車損分析(側撞) 44
表4.4. 7高齡者機車直行與小型車左轉與迴轉或橫越之車損分析(側撞) 44
表4.4. 8高齡者與小型車追撞之雙車行進方向 45
表4.4. 9高齡者機車直行與小型車直行之車損分析(追撞) 46
表4.4. 10高齡者與其他機車同向擦撞之雙車行進方向 47
表4.4. 11高齡者機車直行與其他機車直行之車損分析(同向擦撞) 48
表4.4. 12高齡者機車直行與其他機車超車之車損分析(同向擦撞) 48
表4.4. 13高齡者與其他機車同向擦撞之雙車行進方向 49
表4.4. 14高齡者機車左轉與迴轉或橫越與其他機車直行之車損分析(側撞) 50
表4.4. 15高齡者與其他機車追撞之雙車行進方向 51
表4.4. 16高齡者機車直行與其他機車直行之車損分析(追撞) 51
表4.5. 1側撞事故之高齡駕駛者危險行為與事故肇因彙整 53
表4.5. 2同向擦撞之高齡駕駛者危險行為與事故肇因彙整 55
表4.5. 3追撞之高齡駕駛者危險行為與事故肇因之彙整 55

參考文獻 1. 張勝雄、陳菀蕙等人(2011),道路交通事故特性與對策比較研究(1/2),交通部運輸研究所。
2. 張勝雄、陳菀蕙等人(2011),道路交通事故特性與對策比較研究(2/2),交通部運輸研究所。
3. 劉霈、葉名山、艾嘉銘、廖遠橋、李佳容、劉欣憲等人(2011),高齡者道路交通事故特性與道安防治措施研究計畫,交通部運輸研究所。
4. 郭乃鳳(2009) ,臺閩地區機車交通事故之研究, 國 立 中 央 大 學 統 計 研 究 所 碩 士 論 文
5. 葉南君(2010),路口機車事故頻率與傷亡程度之研究-以嘉義市為例,國立嘉義大學行銷與運籌研究所碩士論文
6. 吳宗修、曾建民(2001),從事故類型探討機車交通安全之改善策略,國際道路交通安全與執法研討會。
7. 陳玟潔(2011),高齡者對交通安全宣導影片屬性之偏好分析,淡江大學運輸管理學系運輸科學碩士班碩士論文運輸管理學系碩士論文。
8. 劉眉君(2006),「應用順序性統計分析方法於交通事故駕駛者受傷嚴重性之研究」,中華大學科技管理研究所碩士論文。
9. 王秀雯(2004),應用資料挖掘技術於交通事故傷亡嚴重程度之研究,國立嘉義大學運輸與物流工程研究所碩士論文,民國93年。
10. 陳文杰,機車事故之受傷部位及傷亡程度之研究,國立嘉義大學運輸與物流工程研究所碩士論文。
11. 林立(2007),應用資料挖掘技術於高速公路交通肇事次數之研究,國立嘉義大學運輸與物流工程研究所碩士論文,民國96年。
12. 林正常(1987),老人的運動,台北市:中華日報社。
13. 李伊婷(2008),台灣地區彎道單一車輛事故特性與傷亡程度之研究,國立嘉義大學運輸與物流工程研究所碩士論文。
14. 簡瑞增(2008),應用非參數型模式分析大卡車交通事故傷亡嚴重程度,國立嘉義大學運輸與物流工程研究所碩士論文。
15. 林成璇(2011),應用多層次模式探討機車事故嚴重程度-以北高為例,國立成功大學交通管理學系碩博士論文。
16. 陳政凡(2008),影響機車駕駛人兩段式左轉行為意向因素之研究,國立交通大學運輸科技與管理學系碩士論文。
17. 許銓倫(2000),高齡者交通特性與交通設施之檢討,國立交通大學交通運輸碩士論文。
18. 黃韻芝(2009), 臺閩地區道路交通事故之研究,國立中央大學統計研究所碩士論文。蕭力文,年輕機車族群高風險駕駛行為異質性研究,國立交通大學交通運輸研究所碩士論文。
19. 朱永裕(2001),我國大學生道路交通行為表現之調查研究,國立台灣師範大學工業教育學系碩士論文。
20. Rifaat SM, Tay R, de Barros A, 2012. Severity of motorcycle crashes in Calgary. Accident Analysis & Prevention .49 pp.44-49.
21. Khattak, A. J., Pawlovich, M. D., and Souleyrette, R. R.(2000), “Crash injury severity of older drivers in Iowa”, Mid-Continent Transportation Symposium 2000, pp 235-240.
22. Ryan, Anthony G., Matthew Legge and Diana Rosman(1998), “Age related changes in drivers’ crash risk and crash type”, Accident Analysis and Prevention, Vol. 30, No. 3, pp 379-387.
23. Preusser, D.F., Williams, A.F., Ulmer, R.G., 1995. Analysis of fatal motorcycle crashes: crash typing. Accident Analysis and Prevention 27, 845–851.
24. Williams, M.J., Hoffmann, E.R., 1979. Alcohol use and motorcycle accidents. Accid. Anal. Prevent. 11, 199–207.
25. Ouellet, J.V., Hurt Jr., H.H., Thom, D.R., 1987. Alcohol involvement in motorcycle accidents. In: Proceedings of the 1987 SAE International Conference and Exhibition, 121-129, Detroit, 1987, Society of Automotive Engineers, SAE paper #870602.
26. Peek-Asa, C., Kraus, J.F., 1996. Alcohol use, driver, and crash characteristics among injured motorcycle drivers. J. Trauma Injury Infect. Critic. Care 41, 989–993.
27. Haworth, N.L., Smith, R., Brumen, I., Pronk N., 1997. Case-Control Study of Motorcycle Crashes. Federal Office of Road Safety, Report CR 174, Canberra, Australia.
28. Turner, P.A., Georggi, N., 2001. The motorcycle-alcohol crash problem in Florida: identification of characteristics and countermeasures. In: Proceedings of the 2001 International Motorcycle Safety Conference, Motorcycle Safety Foundation (MSF), March 2001, Available only on compact disc from MSF, Irvine, California.
29. Kim, K., Boski, J., 2001. Motorcycling and impaired motorcycling in Hawaii: rider characteristics, environmental factors and spatial patterns. In: Proceedings of the 2001 International Motorcycle Safety Conference, Motorcycle Safety Foundation (MSF), Available only on compact disc from MSF, Irvine, alifornia, March.
30. Crundall, D., Humphrey, K., Clarke, D., 2008. Perception and appraisal of approaching motorcycles at junctions. Transportation Research Part F: Traffic Psychology and Behaviour 11(3), 159-167.
31. Daniello AL and Gabler HC, 2011, "Fatality Risk in Motorcycle Collisions with Roadside Objects in the United States", Accident Analysis and Prevention, v.43, pp. 1167–1170
32. Clarke, D.D., Ward, P., Bartle, C., Truman, W., 2007. The role of motorcyclist and other driver behaviour in two types of serious accident in the UK. Accident Analysis and Prevention 39, 974–981
33. Haque, M.M., Chin, H.C., Huang, H., 2010. Applying Bayesian hierarchical models to examine motorcycle crashes at signalized intersections. Accident Analysis and Prevention 42, 203–212.
34. Kasantikul, V., Quellet, J.V., Smith, T., Sirathranont, J., Panichabhongsw, V., 2005. The role of alcohol in Thailand motorcycle crashes. Accident Analysis and Prevention 37, 357–366.
35. Gabella, B., Reiner, K.L., Hoffman, R.E., Cook, M., Stallones, L., 1995. Relationship of helmet use and head injuries among motorcycle crash victims in El Paso County, Colorado, 1989–1990. Accident Analysis and Prevention 27 (3), 363–369.
36. Conrad, P., Bradshaw, Y.S., Lamsudin, R., Kasniyah, N., Costello, C., 1996. Helmets, injuries and cultural definitions: motorcycle injury in urban Indonesia. Accident Analysis and Prevention 28 (2), 193–200.
37. Branas, C.C., Knudson, M.M., 2001. Helmet laws and motorcycle rider death rates. Accident Analysis and Prevention 33 (6), 641–648.
38. Savolainen, P., Mannering, F., 2007. Probabilistic models of motorcyclists’ injury severities in single and multi-vehicle crashes. Accident Analysis and Prevention 39, 955–963.
39. Lapparent, M.D., 2006. Empirical Bayesian analysis of accident severity for motorcy- clists in large French urban areas. Accident Analysis and Prevention 38, 260–268.
40. Zambon, F., Hasselberg, M., 2006. Socioeconomic differences and motorcycle injuries: age at risk and injury severity among young drivers: a Swedish nation- wide cohort study. Accident Analysis and Prevention 38, 1183–1189.
41. Yannis, G., Golias, J., Papadimitriou, E., 2005. Driver age and vehicle engine size effects on fault and severity in young motorcyclists accidents. Accident Analysis and Prevention 37, 327–333.
42. Li, M.D., Doong, J.L., Huang, W.S., Lai, C.H., Jenga, M.C., 2009. Survival hazards of road environment factors between motor-vehicles and motorcycles. Accident Analysis and Prevention 41, 938–947.
43. Majdzadeh, R., Khalagi, K., Naraghi, K., Motevalian, A., Eshraghian, M.R., 2008. Deter- minants of traffic injuries in drivers and motorcyclists involved in an accident. Accident Analysis and Prevention 40, 17–23.
44. Quddus, M.A., Noland, R.B., Chin, H.C., 2002. An analysis of motorcycle injury and vehicle damage severity using ordered probit models. Journal of Safety Research 33, 445–462.
45. Clarke, D.D., Ward, P., Bartle, C., Truman, W., 2006. Young driver accidents in the UK: The influence of age,experience, and time of day. Accident Analysis & Prevention. 38, 871-878.
46. Clarke, D.D., Ward, P., Bartle, C., Truman, W., 2007. The Role of Motorcyclist and Other Driver Behaviour in Two Types of Serious Accident in the UK. Accident Analysis & Prevention. 39, 974-981.
47. Crundall D, Crundall E, Clarke D, Shahar A (2012) Why do car drivers violate the right-of-way of motorcycles at t-junctions? Accident Analysis & Prevention 44: 88-96.
48. Ulleberg, P.Rundmo,T. Personality, attitudes and risk perception as predictors of risky driving behaviour among young drivers.safety Science,vol.41 No.5,pp427-443.
49. Rome ,L. Senserrick ,T (2010).Factors associated with motorcycle crashes in new south wales Australia 2004-2008. Transportation Research Record, #11-3919
50. Lord, D., Mannering, F.L., 2010. The statistical analysis of crash-frequency data: areview and assessment of methodological alternatives. Transportation Research Part A 44 (5),pp. 291–305.
51. Jovanis, P., Chang, H., 1989. Disaggregate model of highway accident occurrence using survival theory. Accident Analysis and Prevention 21 (5), pp.445–458.
52. Jones, B., Janssen, L., Mannering, F.L., 1991. Analysis of the frequency and duration of freeway accidents in Seattle. Accident Analysis and Prevention 23 (2), pp.239–255.
53. Miaou, S.-P., 1994. The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions. Accident Analysis and Prevention 26 (4), pp. 471–482.
54. Shankar, V., Mannering, F.L., Barfield, W., 1995. Effect of roadway geometrics and environmental factors on rural accident frequencies. Accident Analysis and Prevention 27 (3), pp.371–389.
55. Poch, M., Mannering, F.L., 1996. Negative Binomial analysis of intersection-accident frequencies. Journal of Transportation Engineering 122 (2), pp.105–113.
56. El-Basyouny, K., Sayed, T., 2006. Comparison of two negative binomial regression techniques in developing accident prediction models. Transportation Research Record 1950, pp.9–16.
57. Lord, D., 2006. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Accident Analysis and Prevention 38 (4), pp.751–766.
58. Kim, D., Washington, S.P., 2006. The significance of endogeneity problems in crash models: an examination of left-turn lanes in intersection crash models. Accident Analysis and Prevention 38 (6), pp.1094–1100.
59. Malyshkina, N., Mannering, F.L., 2010a. Empirical assessment of the impact of highway design exceptions on the frequency and severity of vehicle accidents.Accident Analysis and Prevention 42 (1), pp.131–139.
60. Malyshkina, N., Mannering, F.L., 2010b. Zero-state Markov switching count-data models: an empirical assessment. Accident Analysis and Prevention 42 (1), pp.122–130.
61. Lord, D., Miranda-Moreno, L.F., 2008. Effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter of Poissongamma models for modeling motor vehicle crashes: a Bayesian perspective. Safety Science 46 (5), pp.751–770.
62. Lord, D., Miranda-Moreno, L.F., 2008. Effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter of Poissongamma models for modeling motor vehicle crashes: a Bayesian perspective. Safety Science 46 (5), pp.751–770.
63. Sellers, K.F., Shmueli, G., 2010. A flexible regression model for count data. Annals of Applied Statistics 4 (2), pp.943–961.
64. Oh, J., Washington, S.P., Nam, D., 2006. Accident prediction model for railway highway interfaces. Accident Analysis and Prevention 38 (2), pp.346–356.
65. Shankar, V., Milton, J., Mannering, F.L., 1997. Modeling accident frequencies as zero-altered probability processes: an empirical inquiry. Accident Analysis and Prevention 29 (6), pp.829–837.
66. Lee, J., Mannering, F.L., 2002. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis. Accident Analysis and Prevention 34 (2), pp.149–161.
67. Lord, D., Washington, S.P., Ivan, J.N., 2005. Poisson, Poisson-gamma and zero inflated regression models of motor vehicle crashes: balancing statistical fit and theory.Accident Analysis and Prevention 37 (1), pp.35–46.
68. Lord, D., Washington, S.P., Ivan, J.N., 2007. Further notes on the application of zero inflated models in highway safety. Accident Analysis and Prevention 39 (1), pp.53–57.
69. Daniels, S., Brijs, T., Nuyts, E., Wets, G., 2010. Explaining variation in safety performance of roundabouts. Accident Analysis and Prevention 42 (2), pp.393–402.
70. Wang, X., Abdel-Aty, M., 1996. Temporal and spatial analyses of rear-end crashes at signalized intersections. Accident Analysis and Prevention 38 (6), pp.1137–1150.
71. Lord, D., Mahlawat, M., 2009. Examining the application of aggregated and disaggregated Poisson-gamma models subjected to low sample mean bias. Transportation Research Record 2136, pp.1–10.
72. Xie, Y., Zhang, Y., 2008. Crash frequency analysis with generalized additive models. Transportation Research Record 2061, pp.39–45.
73. Li, X., Lord, D., Zhang, Y., 2011. Development of accident modification factors forrural frontage road segments in Texas using results from generalized additive models. Journal of Transportation Engineering 137 (1), pp.74–83.
74. Shankar, V., Albin, R., Milton, J., Mannering, F.L., 1998. Evaluating median crossover likelihoods with clustered accident counts: an empirical inquiry using the random effects negative binomial model. Transportation Research Record 1635, pp.44–48.
75. Quddus, M.A., 2008. Time series count data models: an empirical application to traffic accidents. Accident Analysis and Prevention 40 (5), pp.1732–1741.
76. Sittikariya, S., Shankar, V., 2009. Modeling Heterogeneity: Traffic Accidents. VDM- Verlag, pp. 80.
77. Guo, F., Wang, X., Abdel-Aty, M., 2010. Modeling signalized intersection safety with corridor spatial correlations. Accident Analysis and Prevention 42 (1), pp.84–92.
78. Ulfarsson, G., Shankar, V., 2003. An accident count model based on multi-year crosssectional roadway data with serial correlation. Transportation Research Record 1840, pp.193–197.
79. Caliendo, C., Guida, M., Parisi, A., 2007. A crash-prediction model for multilane roads. Accident Analysis and Prevention 39 (4), pp. 657–670.
80. Anastasopoulos, P.Ch., 2009. Infrastructure asset management: a case study on pavement rehabilitation. Ph.D. Dissertation, Purdue University, West Lafayette,Indiana.
81. El-Basyouny, K., Sayed, T., 2006. Comparison of two negative binomial regression techniques in developing accident prediction models. Transportation Research Record 1950, pp.9–16.
82. Malyshkina, N., Mannering, F.L., Tarko, A.P., 2009. Markov switching negative binomial models: an application to vehicle accident frequencies. Accident Analysis and Prevention 41 (2), pp.217–226.
83. Park, B.-J., Lord, D., 2009. Application of finite mixture models for vehicle crash data analysis. Accident Analysis and Prevention 41 (4), pp.683–691.
84. Park, B.J., Lord, D., Hart, J.D., 2010. Bias properties of Bayesian statistics in finite mixture of negative regression models for crash data analysis. Accident Analysis and Prevention .42 (2), pp. 741–749.
85. Panagiotis Ch. Anastasopoulos, Fred L. Mannering, Venky N. Shankar,2, John E. Haddock, 2012.A Study of factors affecting highway accident rates using the random-parameters tobit model. Accident Analysis and Prevention.45, pp.628-633.
86. Kelvin K.W. Yau,2004.Risk factors affecting the severity of single vehicle traffic accidents in Hong Kong. Accident Analysis and Prevention.36,pp.333-340.
87. Chao Wang , Mohammed A. Quddus, Stephen G. Ison,2011. Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model. Accident Analysis and Prevention.43,pp.1989-1990.
88. Yu-Chiun Chiou, Chiang Fu,(2013). Modeling crash frequency and severity using multinomial-generalized Poisson model with error components. Accident Analysis and Prevention.50,pp.73-82.
89. Rebecca C. Gray ,Mohammed A. Quddus, Andrew Evans,(2008).Injury severity analysis of accidents involving young male drivers in Great Britain.Journal of Safety Research.39,pp.483-495.
90. Feng Chen & Suren Chen,(2011). Injury severities of truck drivers in single- and multi-vehicle accidents on rural highways. Accident Analysis and Prevention.43,pp.1677-1688.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信