淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2907201014385300
中文論文名稱 多頻段離散時間不確定系統的強健濾波器與控制器設計
英文論文名稱 Robust Filter and Controller Design for Discrete-Time Uncertain Systems with Multi-Band Specifications
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 張雲綸
研究生英文姓名 Yun-Lun Chang
學號 697460011
學位類別 碩士
語文別 中文
口試日期 2010-07-14
論文頁數 88頁
口試委員 指導教授-周永山
委員-容志輝
委員-吳政郎
中文關鍵字 強健濾波器  強健控制器  有限頻段  多頻段  降階  GKYP引理  線性矩陣不等式 
英文關鍵字 Robust Filter  Robust Controller  Finite Frequency Domain  Multi-band  Reduced-Order  GKYP Lemma  LMI 
學科別分類 學科別應用科學電機及電子
中文摘要 H∞控制理論是近三十年來控制理論界的傑作,但當雜訊來自於特定頻段時,直接應用H∞控制理論有時效果不佳,所以後來發展迴路整形(loop shaping)技術,引入權重函數(weighting function)來輔助設計。但適合權重函數的選擇不易,並且會增加控制器階數,增添硬體實現上之複雜度。因此本論文針對此種H∞迴路整形技術進行改良,另外也應用Iwasaki等人提出的廣義KYP (Generalized Kalman–Yakubovic–Popov, GKYP)引理,推導控制閉回路系統指定頻段性能的直接設計方法。
本論文針對離散時間不確定系統研究指定頻段濾波器與控制器之設計問題。我們推導出符合有限頻段性能要求的LMI設計條件式,以達到單頻段與多頻段性能之控制目的。其中,綜合運用不同理論可推導出許多有趣的成果,例如,不管有無引入權重函數,濾波器或控制器階數可預先設定。另外,濾波器型態可為無限脈衝回應(Infinite Impulse Response, IIR)以及有限脈衝回應(Finite Impulse Response, FIR)兩種典型的形式。本論文針對單輸入單輸出(single-input single-output, SISO)單頻段以及多頻段濾波器設計情形進行詳細討論,並以一致的技巧推廣至多數入多輸出(multi-input multi-output, MIMO)情形與強健控制器設計。
英文摘要 The Robust H∞ control is a masterpiece control theory in the past three decades. However, when applied to band-limit noise attenuation, it sometimes does not lead to satisfactory performance. The so called loop shaping method was derived to assist the design via introducing weighting functions. Nevertheless, selection of an appropriate weighting function is hard. Furthermore, it increases the order of controllers, and thus increases the hardware implementation complexity. Therefore, this thesis gives new method which improves the H∞ loop shaping method in the controller order aspect. In addition, we provide a direct method to this sort of problems.
This thesis investigates the problems of filter and controller syntheses in finite frequency domain for uncertain discrete-time systems. We derive LMI conditions for the problems in both single-band and multi-band cases. The proposed methods offer flexibility in several aspects. For examples, the order of the filters and controllers can be assigned a priori; the type of filters can be either infinite impulse response (IIR) or finite impulse response (FIR). This thesis studies the single-input single-output (SISO) robust filter design in both single band and multiple bands in details. Then the results are extended to multi-input multi-output (MIMO) case and the case of robust controller design.
論文目次 目錄
中文摘要............................................................................................................I
英文摘要..........................................................................................................II
目錄.................................................................................................................III
圖目錄..............................................................................................................V
表目錄.............................................................................................................VI
第一章 緒論...................................................................................................1
1.1 文獻回顧與研究動機.......................................................................1
1.2 論文架構...........................................................................................3
第二章 背景知識...........................................................................................5
第三章 指定頻段強健濾波器設計.............................................................10
3.1 前言.................................................................................................10
3.2 單輸入單輸出、單頻段濾波器設計...............................................11
3.3 單輸入單輸出、多頻段濾波器設計...............................................23
3.4 多輸入多輸出濾波器設計.............................................................30
3.5 數值例子.........................................................................................33

第四章 指定頻段強健控制器設計.............................................................41
4.1 前言.................................................................................................41
4.2 單輸入單輸出控制器設計.............................................................42
4.3 多輸入多輸出控制器設計.............................................................56
4.4 數值例子.........................................................................................60
第五章 結論與未來研究方向.....................................................................69
附錄.................................................................................................................71
參考文獻.........................................................................................................86


圖目錄
圖3.1 濾波問題架構......................................................................................11
圖3.2 多目標控制架構I................................................................................14
圖3.3 多目標控制架構II..............................................................................20
圖3.4 多頻段權重函數..................................................................................24
圖3.5 低通權重函數......................................................................................25
圖3.6 帶通權重函數......................................................................................25
圖3.7高通權重函數......................................................................................25
圖3.8 濾波問題架構......................................................................................30
圖3.9 濾波器與系統匹配誤差的波德圖......................................................35
圖4.1 標準回授系統架構............................................................................. 42
圖4.2 靈敏度函數與互補式靈敏度函數多目標控制架構I........................47
圖4.3 靈敏度函數與互補式靈敏度函數多目標控制架構II......................52
圖4.4 標準回授系統架構..............................................................................57


表目錄
表3.1 降階模型階數與指定頻段內最大模型匹配誤差..............................36
表3.2 的階數與指定頻段內的最大模型匹配誤差..................................40
表4.1 各控制器的階數與各條件性能指標之比較......................................63
表4.2 各控制器的階數與各條件性能指標之比較......................................67

參考文獻 [1] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall, 1998. (Chapter 6)
[2] T. Iwasaki, G. Meinsma, and M. Fu, “Generalized S-procedure and finite frequency KYP Lemma,” Math. Prob. Eng., vol. 6, 2000, pp. 305-320.
[3] T. Iwasaki and S. Hara, “Generalized KYP lemma: unified frequency domain inequalities with design applications,” IEEE Trans. Automat. Contr., vol. 50, Jan. 2005, pp. 41-59.
[4] T. Iwasaki, S. Hara, and H. Yamauchi, “Dynamical system design from a control perspective: Finite frequency positive-realness approach,” IEEE Trans. Automat. Contr., vol. 48, Aug. 2003, pp. 1337-1354.
[5] T. Iwasaki and S. Hara, “Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma,” International Journal of Robust and Nonlinear Control, vol. 17, 2007, pp. 415-434.
[6] H. Wang and G.H. Yang, “H∞ Filter Design for Uncertain
Discrete-Time Systems in Finite Frequency Domain,” 16th IEEE
International Conference on Control Applications, 2007, pp.
1000-1005.
[7] D. Ding and G.H. Yang, “Finite frequency H∞ filtering for uncertain
discrete-time switched linear systems,” Progress in Natural Science,
vol. 19, no. 11, 2009, pp. 1625-1633.
[8] A. Karimi, H. Khatibi, and R. Longchamp, “Robust control of
polytopic systems by convex optimization,” Automatica, vol. 43, Aug.
2007, pp. 1395-1402.
[9] Y.S. Chou, C.C. Lin, and Y.L. Chang, “Robust digital filter design for
in-band quantization noise reduction in cascaded sigma-delta
modulators,” CACS International Automatic Control Conference, Nov.
2009, pp. 936-941.
[10] S. Hara, D. Shiokata, and T. Iwasaki, “Fixed order controller design via
GKYP,” in Proc. IEEE Int. Conf. Control Applications, vol. 2, 2004,
pp.1527-1532.
[11] T. Kiyama and E. Nishio, “Finite frequency property-based robust
analysis and synthesis,” Proceedings of the American Control
Conference, vol. 5, 2004, pp. 3962-3967.
[12] H.D. Tuan, P. Apkarian, and T.Q. Nguyen, “Robust and reduced-order
filtering: new LMI-based characterisations and methods,” IEEE Trans.
Signal Processing, vol. 49, 2001, pp. 2975 - 2984.
[13] B.M. Chen, “Direct computation of infimum in discrete-time
H∞-optimization using measurement feedback,” Systems and Control
Letters, vol. 35, Dec. 1998, pp. 269-278.
[14] G. Tao and P.A. Ioannou, “Necessary and sufficient conditions for
strictly positive real matrices,” IEE proceedings. Part G. Electronic
circuits and systems, vol. 137, 1990, pp. 360-366.
[15] M.C. de Oliveria, J. C. Geromel, and J. Bernussou, “Extended H2 and
H∞ norm characterizations and controller parameterizations for
discrete-time systems,” Int. J. Contr., vol. 75, 2002, pp. 666-679.
[16] M. Vidyasagar, Control system synthesis: a factorization approach,
MIT Press, 1985.
[17] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma,” Syst. Control
Lett., vol. 28, 1996, pp. 7-10.
[18] F. W. Yang and M. Gani, “An H-infinity approach for robust calibration
of cascaded sigma-delta modulators,” IEEE Trans. Circuits and
Systems I, vol. 55, 2008, pp. 625-634.
[19] X. Du and G.H. Yang, “H∞ model reduction of linear continuous-time
systems over finite-frequency interval,” IET Control Theory and
Applications, vol. 4, 2010, pp. 499-508.
[20] M.S. Takyar, A.N. Amini, and T.T. Georgiou, “Weight selection in
feedback design with degree constraints,” IEEE Trans. Autom. Control,
vol. 53, 2008, pp. 1951-1955.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信