淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2907200913115100
中文論文名稱 雙軸性液晶、超分子液晶材料及掌性盤狀液晶之研究
英文論文名稱 Studies of Biaxial Nematic, Supramolecular, and Chiral Discotic Liquid Crystals
校院名稱 淡江大學
系所名稱(中) 化學學系博士班
系所名稱(英) Department of Chemistry
學年度 97
學期 2
出版年 98
研究生中文姓名 陳秀慧
研究生英文姓名 Hsiu-Hui Chen
學號 894170025
學位類別 博士
語文別 中文
口試日期 2009-06-16
論文頁數 227頁
口試委員 指導教授-徐秀福
委員-陳建成
委員-陳竹亭
委員-蔡易州
委員-梁文傑
委員-施增廉
中文關鍵字 液晶  雙軸  板形  盤形  筒型  螺旋 
英文關鍵字 liquid crystals  boardlike  biaxial  discotic  hydeogen-bonded  helical columnar 
學科別分類
中文摘要 本論文主要內容分為四個部分,分別是光學雙軸向列型板形液晶材料、氫鍵盤形超分子材料、掌性筒型液晶材料、具螺旋結構的筒型液晶材料之開發及研究。這四個主題除了板形材料外,其餘均以盤形分子為設計主軸,利用其多共軛系統輔助分子進行高秩序性堆疊。
首先在光學雙軸向列型液晶材料的開發,利用分子幾何形狀設計介於皆為單軸之桿形與盤形分子間,合成出以苯環為中心外接四個炔基聯苯的罕見板形結構一系列化合物,除了利用偏光顯微鏡(optical microscope)證實均具有向列型液晶相外,並利用錐光偏振鏡檢法(conoscopy observation)、自由立膜法(free standing film)以及在外加磁場配向下之粉末X光繞射實驗確認其光學雙軸性。
氫鍵盤形超分子材料是將氫鍵的概念引入盤形液晶分子的設計中,以快速且有效達到核面積擴大的效果,也就是材料均一性的概念。本論文是以六炔苯基苯為氫鍵單體的主結構,分別以羧酸根及吡啶當作氫給體及氫受體形成氫鍵超分子結構,利用紅外線光譜儀確認氫鍵的存在外,也探討氫鍵對盤形液晶之性質影響。
最後兩個主題均是將結構螺旋的概念引入分子的設計上,並藉以引導螺旋分子堆疊,以進一步增加筒型分子堆疊之有序性。一個是以六炔苯基苯為出發點,利用引入具掌性側鏈,使無序偏轉之外環傾向特定螺旋偏轉之分子結構;另一個則是於合成過程中加入立體效應概念製備具螺旋構形之并合共軛環。此二分子螺旋構形設計對於引導分子間堆疊之影響,已利用圓二色光譜儀證實其分子螺旋確實可以轉映至分子間螺旋堆疊。
英文摘要 In this thesis, four liquid crystalline systems are explored, i.e. biaxial board-like nematic, hydrogen-bonded discotic supramolecular, chiral columnar, and helical columnar liquid crystals. The synthesis and properties of these four systems are described in details. Except the biaxial liquid crystals, all other systems are discotic mesogens.
For the exploration of biaxial nematic liquid crystalline materials, the molecular shape was designed to be between calamitic and discotic by replacing the peripheral phenyls in reported board-like 1,2,4,5-tetrakis(phenylethynyl)benzene with biphenyls. These materials exhibited nematic phases by polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The optical biaxiality of these nematic phases were detected by conoscopic studies as well as by their optical textures of free-standing films. Moreover, biaxiality of these nematic phases were confirmed by powder X-ray diffraction (PXRD) studies under magnetic field.
Based on the reported discotic nematogen, hexakis(alkoxyphenylethynyl)- benzene, replacing one of the alkoxyphenyl with a pyridine and with a benzoic acid afforded two new compounds, a hydrogen bonding acceptor and a hydrogen donor respectively. Mixing the two afforded a new disc dimer by generating hydrogen bonding interaction between the pyridine and carboxylic acid. The hydrogen bonding interactions were identified by infrared spectroscopy and differential scanning calorimeter. The liquid crystalline temperature range of the dimer was significantly widened to be ca. two fold of that of the pyridyl disc monomer.
In the third system, chiral chains were introduced onto columnar hexakis(dialkoxyphenylethynyl)benzene. Studies by circular dichroism and scanning tunneling microscopy (STM) confirmed intramolecular and intermolecuar chiral inductions Intramolecularly, the chiral chains have induced helical conformation of other sidearms within the molecule by STM studies. On the other hand, intermolecular chiral induction was detected by CD signal amplification when a chiral discogen was doped into a non-chiral discogen.
The last system utilized steric hindrance for the design of a new helicene based on hexabenzocoronene (HBC). Incorporation of the helical conformation onto the HBC has imposed more ordered intracolumnar molecular packing evidenced by PXRD studies than the reported planar HBC analogues that slippage of discs within columns are very likely to occur.
論文目次 目錄
中文摘要-------------------------------------------------------- I
英文摘要-------------------------------------------------------- II
目錄------------------------------------------------------------ III
圖表目錄-------------------------------------------------------- V
附圖目錄-------------------------------------------------------- VII
第一章 緒論 1
1.1 液晶簡介-------------------------------------------------- 1
1.2 液晶分類-------------------------------------------------- 3
1.2.1 桿形液晶--------------------------------------------- 4
1.2.2 盤形液晶--------------------------------------------- 6
1.3 液晶性質的鑑定-------------------------------------------- 12
1.4 液晶材料之向異性------------------------------------------ 12
1.4.2 介電係數--------------------------------------------- 12
1.4.3 折射係數--------------------------------------------- 12
1.4.4 分子排列規則參數------------------------------------- 14
1.5 盤形液晶材料的應用---------------------------------------- 16
1.5.1 光補償膜的應用--------------------------------------- 16
1.5.2 雙軸性材料的應用------------------------------------- 18
1.5.3 光電元件的應用--------------------------------------- 18
1.6 超分子化學------------------------------------------------ 20
1.6.1 氫鍵化合物的簡介------------------------------------- 22
1.6.2 氫鍵在超分子化合物的應用----------------------------- 23
第二章 具雙軸性板形向列型液晶材料 27
2.1 研究動機-------------------------------------------------- 27
2.2 結果與討論------------------------------------------------ 32
2.2.1 板形結構分子的合成----------------------------------- 32
2.2.2 化合物4的液晶性質討論------------------------------- 33
2.3 結論------------------------------------------------------ 54
第三章 氫鍵型盤形液晶超分子材料 55
3.1 研究動機-------------------------------------------------- 55
3.2 結果與討論------------------------------------------------ 63
3.2.1 氫鍵超分子化合物性質之鑑定--------------------------- 72
3.3 結論------------------------------------------------------ 63
第四章 掌性筒型液晶材料 93
4.1 簡介------------------------------------------------------ 93
4.1.1 盤形概念的引入--------------------------------------- 93
4.1.2 液晶中的掌性----------------------------------------- 96
4.2 結果與討論----------------------------------------------- 107
4.2.1 合成------------------------------------------------- 107
4.2.2 液晶中間態性質--------------------------------------- 112
4.3 結論----------------------------------------------------- 131
第五章 具螺旋的高秩序筒型液晶材料 132
5.1 研究動機------------------------------------------------- 132
5.2 合成討論------------------------------------------------- 141
5.3 結果與討論----------------------------------------------- 155
5.4 結論----------------------------------------------------- 157
附錄一、實驗前處理及實驗藥品------------------------------------ 158
附錄二、實驗部分其光譜資訊--------------------------------------- 161
附錄三、儀器型號及使用原理--------------------------------------- 190
附圖------------------------------------------------------------ 195

























圖表目錄
圖1、液晶的雙熔點特性-------------------------------------------- 1

圖2、液晶分子基本組成的示意圖----------------------------------- 3

圖3、液晶分類的示意圖------------------------------------------- 4

圖4、向列型液晶相在空間中分子排列狀況以及液晶紋理圖------------- 4

圖5、層列型液晶相分子排列示意圖及SmC液晶紋理圖----------------- 5

圖6、膽固醇型液晶相分子排列示意圖及液晶紋理圖------------------- 6

圖7、最早發現的盤形液晶分子------------------------------------- 7

圖8、一般常見盤形液晶分子的排列方式----------------------------- 7

圖9、文獻中常見到具盤形向列相的分子----------------------------- 8

圖10、筒型結構的組成及電荷傳遞的方向----------------------------- 9

圖11、筒型液晶相之分子堆疊方式示意圖----------------------------- 10

圖12、筒型液晶相的紋理圖---------------------------------------- 10

圖13、液晶在空間中排列的示意圖---------------------------------- 11

圖14、液晶分子光學向異性---------------------------------------- 14

圖15、分子於基板的垂直配向與水平配向 ----------------------------
15

圖16、液晶補償概念---------------------------------------------- 17

圖17、液晶顯示器補償膜原理--------------------------------------- 18

圖18、DNA的雙螺旋結構----------------------------------------- 22

圖19、氫鍵作用力形成的示意圖------------------------------------- 22

圖20、有規律加成的拉鍊氫鍵化合物-------------------------------- 24

圖21、鍵結常數與濃度對分子自組裝所造成影響的示意圖-------------- 25
圖22、自組裝熱力學示意圖----------------------------------------- 25

圖23、Hunter所報導的拉鍊氫鍵錯合物------------------------------ 26

圖24、具單軸性及雙軸性的向列型液晶於空間上排列的示意圖---------- 27

圖25、雙軸性分子在電場下可能發生的扭轉狀況---------------------- 28

圖26、具單光軸、雙光軸之向列相液晶相的分子排列示意圖------------- 30

圖27、1,2,4,5-四炔苯基苯板狀液晶分子結構------------------------- 30

圖28、1,2,4,5-四取代苯衍生物------------------------------------- 31

圖29、具烷鏈之1,2,4,5-四取代之苯衍生物-------------------------- 31

圖30、具單軸、雙軸性向列型液晶的conoscopic繞射圖------------------ 31

圖31、化合物4d在偏光顯微鏡下升溫的過程中150 oC所觀察的向列相液晶紋(X100)------------------------------------------------------ 36

圖32、化合物4d在偏光顯微鏡下回溫的過程中180 oC所觀察的向列相液晶紋(X100)------------------------------------------------------ 36

圖33、化合物4e在偏光顯微鏡下回溫的過程中170 oC所觀察的向列相液晶紋(X100)------------------------------------------------------ 37

圖34、化合物4e在偏光顯微鏡下回溫的過程中150 oC所觀察的向列相液晶紋(X100)------------------------------------------------------ 37

圖35、板形分子在空間可能出現的重複距離-------------------------- 38

圖36、盤形分子與板形分子的長寬比--------------------------------- 39

圖37、用Spartan中AM1方法模擬出化合物4a-4e結構的最佳化-------- 39

圖38、化合物4d-4e所測得XRD結果------------------------------- 41

圖39、化合物4a的單晶構形--------------------------------------- 42

圖40、化合物4a於單晶中的單層分子堆疊圖------------------------- 43

圖41、利用錐光偏振鏡檢法所測得的干涉圖形------------------------ 45

圖42、利用顯微鏡觀察干涉圖紋的裝置示意圖------------------------- 46

圖43、化合物4c利用錐光偏振鏡檢法所觀察到的干涉圖紋-------------- 46

圖44、將波片從0轉換至λ所觀察到干涉圖形------------------------- 48

圖45、為化合物4d利用自由立膜法所觀察的線結紋理圖---------------- 49

圖46、為化合物4d在不同溫度受磁場影響,所呈現繞射全圖----------- 51

圖47、化合物4d在150 oC外加磁場下所呈現的繞射圖----------------- 52

圖48、為化合物4d於未加磁場及加磁場所得XRD繞射圖--------------- 53

圖49、為化合物4e於未加磁場及加磁場所得XRD繞射圖-------------- 53

圖50、羧基自身超分子氫鍵液晶------------------------------------ 57

圖51、羧基及吡啶基形成的超分子氫鍵液晶--------------------------- 58

圖52、主鏈型氫鍵液晶高分子--------------------------------------- 58

圖53、為主鏈型氫鍵液晶高分子------------------------------------- 59

圖54、本章節所使用的氫給體以及氫受體----------------------------- 61

圖55、單一氫鍵的超分子化合物------------------------------------- 61

圖56、雙氫鍵的超分子化合物-------------------------------------- 62

圖57、三氫鍵的超分子化合物-------------------------------------- 62

圖58、本章用於形成氫鍵型化合物的氫受體-------------------------- 63

圖59、本章用於形成氫鍵型化合物的氫給體-------------------------- 63

圖60、Williamson ether synthesis------------------------------------- 68

圖61、Sonogashira reaction------------------------------------------ 69

圖62、自身偶合反應---------------------------------------------- 69

圖63、利用KOH進行去保護基的反應機制--------------------------- 70

圖64、1-Bromo-2,3,4,5,6-pentaiodobenzene的合成步驟------------------ 70

圖65、碘化的反應機制--------------------------------------------- 70

圖66、酯化聚合反應----------------------------------------------- 71

圖67、酯化聚合反應的反應機制------------------------------------- 71

圖68、本章所用來討論氫鍵型液晶超分子結構與代號------------------- 72

圖69、為p-NHOOC的DSC圖--------------------------------------- 74

圖70、型態相似的p-COOEt和p-pyridine----------------------------- 75

圖71、將p-OH和p-COOH利用酯化聚合所產生的共價鍵化合物---------- 76

圖72、p-COOH雙聚物分子結構的示意圖----------------------------- 77

圖73、化合物19於偏光顯微鏡下所觀察到的筒型液晶紋理圖------------ 79

圖74、化合物19於偏光顯微鏡下所觀察到的向列型液晶紋理圖--------- 79

圖75、化合物8a於偏光顯微鏡下所觀察到的向列型液晶紋理圖--------- 80

圖76、化合物23於偏光顯微鏡下所觀察到的向列型液晶紋理圖--------- 80

圖77、p-COOH、p-pyridine、p-NHOOC液晶紋理比較圖--------------- 81

圖78、p-COOH、p-pyridine、p-NHOOC所測的IR光譜----------------- 83

圖79、為化合物p-COOH的變溫IR光譜------------------------------ 84

圖80、p-COOH、p-COOEt的IR光譜-------------------------------- 85

圖81、p-NHOOC、o-NHOOC、m-NHOOC的IR光譜-------------------- 86

圖82、為化合物p-NHOOH的變溫IR光譜----------------------------- 87

圖83、分別p-NHOOC的圖形最佳化--------------------------------- 87

圖84、為化合物m-NHOOH的變溫IR光譜---------------------------- 88

圖85、分別m-NHOOC的圖形最佳化--------------------------------- 89

圖86、為化合物o-NHOOH的變溫IR光譜---------------------------- 90

圖87、分別o-NHOOC的圖形最佳化--------------------------------- 90

圖88、桿狀與盤形液晶--------------------------------------------- 95

圖89、盤形液晶分子常使用的中心核-------------------------------- 96

圖90、本章節所使用的盤形分子核心-------------------------------- 96

圖91、結構螺旋的旋光性------------------------------------------- 98

圖92、掌性訊號的放大--------------------------------------------- 98

圖93、Destrade的團隊所提出的膽固醇液晶相------------------------- 100

圖94、掌性與非掌性分子互混時所需結構型態的相容性----------------- 103

圖95、Sergeants-and-Soldier理論------------------------------------- 104

圖96、Majority規則----------------------------------------------- 105

圖97、本章所討論的掌性分子結構----------------------------------- 106

圖98、本章所討論非掌性分子結構----------------------------------- 106

圖99、化合物10c於偏光顯微鏡下所觀察到的筒型液晶紋理圖----------- 115

圖100、化合物14於偏光顯微鏡下所觀察到的筒型液晶紋理圖----------- 115

圖101、化合物17a於偏光顯微鏡下所觀察到的筒型液晶紋理圖---------- 116

圖102、化合物17b於偏光顯微鏡下所觀察到的筒型液晶紋理圖---------- 116

圖103、化合物19於偏光顯微鏡下所觀察到的筒型液晶紋理圖---------- 117

圖104、化合物10a粉末X光繞射圖---------------------------------- 118

圖105、化合物17a粉末X光繞射圖---------------------------------- 119

圖106、四方筒型液晶相中晶格常數所代表意義------------------------ 119

圖107、利用理論計算所模擬出五炔苯基苯於空間中的最佳狀態--------- 120

圖108、五炔苯基苯於第六個位置延伸出的烷氧鏈,模擬於空間中的示意圖--------- 121

圖109、五炔苯基苯化合物15於空間中可能存在的構形----------------- 123

圖110、為五炔苯基苯化合物於第六個位置外接不同官能基------------- 124

圖111、為五炔苯基苯化合物15 H1-NMR訊號在不同溫度結果比較-------- 125

圖112、為六炔苯基苯化合物於石墨上的排列情況---------------------- 126

圖113、為化合物17a液晶態的UV-vis和CD光譜---------------------- 127

圖114、為化合物17a、17b液晶態的CD光譜------------------------- 128

圖115、為化合物19液晶態的CD光譜------------------------------- 128

圖116、不同比例液晶材料於偏光顯微鏡下所觀察到的液晶紋理圖-------- 130

圖118、六苯并寇衍生物的筒型堆疊示意圖---------------------------- 135

圖119、文獻報導同時具有分子間π-π作用力與氫鍵作用力於六苯并寇--- 136

圖120、文獻報導不同大小的多環芳香族碳氫化合物結構--------------- 137

圖121、文獻報導螺旋分子[6]helicenebisquinones的三中可能分子堆疊模式------------------------------------------------------------------ 139

圖122、文獻報導[11]thiaheterohelicene--------------------------------- 139

圖123、本章節所設計的螺旋六苯并寇衍生物-------------------------- 140

圖124、本章節所設計的螺旋六苯并寇衍生物於空間中可能的堆疊模式----- 140

圖125、本章節所提出的不對稱六苯并寇衍生物------------------------- 141

圖126、文獻報導平面六苯并寇化合物與化合物14a液晶溫度-------------- 156

表1、Mesogenic behaviour of boardlike compound (4a-4b)---------------- 34

表2、X-ray diffraction data of board-like compounds (4a-4e)--------------- 40

表3、氫鍵作用力與共價鍵結對於液晶性質的影響--------------------- 55

表4、Mesogenic behaviours of H-donor and H-acceptor compounds--------- 75

表5、Mesogenic behaviours of compounds 19, 22, 23--------------------- 76

表6、Mesogenic behaviours of compounds 8a, 19 and 24------------------ 77

表7、Mesogenic behaviours of compounds 19, 23 and 24------------------ 77

表8、curve-fitting results of the carbonyl peak of p-NHOOC in phases-------- 88

表9、curve-fitting results of the carbonyl peak of m-NHOOC in phases------- 89

表10、curve-fitting results of the carbonyl peak of o-NHOOC in phases------- 91

表11、Mesogenic behaviours of chiral compounds------------------------ 113

表12、X-ray diffraction data of compounds (17a-17b)-------------------- 120

表12、本章節討論之化合物X光繞射光譜資料表(*: 降溫時測得)--------- 79















附圖目錄


附圖1、化合物6之1H NMR光譜 (CDCl3, 300 MHz)--------------------- 195
附圖2、化合物6之13C NMR光譜 (CDCl3, 75 MHz)-------------------- 196
附圖3、化合物12之1H NMR光譜 (CDCl3, 300 MHz)------------------- 197
附圖4、化合物12之13C NMR光譜 (CDCl3, 75 MHz)------ -------------- 198
附圖5、化合物13之1H NMR光譜 (DMSO, 300 MHz)------------------- 199
附圖6、化合物13之13C NMR光譜 (DMSO, 75 MHz)---------- ---------- 200
附圖7、化合物14之1H NMR光譜 (CDCl3, 300 MHz)------------------- 201
附圖8、化合物14之13C NMR光譜 (CDCl3, 75 MHz)--------- ------------ 202
附圖9、化合物16之1H NMR光譜 (CDCl3, 300MHz)-------- ------------- 203
附圖10、化合物16之13C NMR光譜 (CDCl3, 75MHz)--------- ----------- 204
附圖11、化合物22之1H NMR光譜 (CDCl3, 300MHz)----------- --------- 205
附圖12、化合物22之13C NMR光譜 (CDCl3, 75MHz)---------- ---------- 206
附圖13、化合物23之1H NMR光譜 (CDCl3, 300MHz)------------- ------- 207
附圖14、化合物23之13C NMR光譜 (CDCl3, 75MHz)-------- ----------- 208
附圖15、化合物23之1H-13C HMQC in CDCl3-------------------------- 209
附圖16、化合物23之1H-13C HMBC in CDCl3-------------------------- 210
附圖17、化合物10a之1H NMR光譜 (CDCl3, 300MHz)---------- --------- 212
附圖18、化合物10a之13C NMR光譜 (CDCl3, 75MHz)---------- -------- 213
附圖19、化合物10a之1H-13C HMQC in CDCl3-------------------------- 214
附圖20、化合物10a之1H-13C HMBC in CDCl3-------------------------- 215
附圖21、化合物10b之1H NMR光譜 (CDCl3, 300MHz)---------- --------- 216
附圖22、化合物10c之13C NMR光譜 (CDCl3, 75MHz)---------- -------- 217
附圖23、化合物10c之13C NMR光譜 (CDCl3, 75MHz)--------- --------- 218
附圖24、化合物14之1H NMR光譜 (CDCl3, 300MHz)---------- -------- 219
附圖25、化合物14c之13C NMR光譜 (CDCl3, 75MHz)--------- --------- 220
附圖26、化合物15之1H NMR光譜 (CDCl3, 300MHz)---------- -------- 221
附圖27、化合物15之13C NMR光譜 (CDCl3, 75MHz)--------- --------- 222
附圖28、化合物17a之1H NMR光譜 (CDCl3, 300MHz)---------- -------- 223
附圖29、化合物17a之13C NMR光譜 (CDCl3, 75MHz)--------- --------- 224
附圖30、化合物17a之1H NMR光譜 (CDCl3, 300MHz)---------- -------- 226
附圖31、化合物17a之13C NMR光譜 (CDCl3, 75MHz)--------- --------- 227

參考文獻 1 Reinitzer, F. Monatsh. Chem. 1888, 9, 421-441.
2 Lehmann, O. Z. Phys. Chem. 1889, 4, 462-472.
3 松本證一、角田市良著;劉瑞祥譯;液晶的基礎與應用,1996,國立編譯館。
4 Chandrasekhar, B. K.; Sadashiva, K. A. S. Pramana 1977, 9, 471-477.
5 Thinh, N. H.; Bemaud, M. C.; Sigaud, G.; Destrade, C. Mol. Cryst. Liq.Cryst. 1986, 65, 307-307.
6 Kouwer, P. H. J.; Jager, W. F.; Mijs, W. J.; Picken, S. J. Macromolecules 2000, 33, 4336-4342.
7 Destrade, C.; Tinh Huu, N.; Gasparoux, H.; Malthete, J.; Levelut, A.M. Mol. Crtst. Liq. Cryst., 1981 71, 111.
8 Kumar, S.; Varshney, K. Angew. Chem. Int. Ed. 2000, 39, 3140.
9. Marguet, S.; Markovits, D.; Goldmann, D.; Janietz, D.; Praefcke, K.; Singer, D. J. Chem. Soc. Faraday Trans. 1997, 93, 147.
10. Kumar, S. Chem. Soc. Rev. 2006, 35, 83-109.
11.Kouwer, P. H. J.; Jager, W. F.; Mijs, W. J.; Picken, S. J. Macromolecules 2000, 33, 4336-4342
12.(a) Ribeiro, A. C.; Heinrich, B.; Cruz, C.; Nguyen, H. T.; Diele, S.; SchrRder, M. W.; Guillon, D. Eur. Phys. J. 2003, 20, 143-151. (b) Takada, A.; Fukuda, T.; Miyamoto, T.; Yakoh, Y.; Watanabe, J. Liq. Cryst. 1992, 12, 337-345. (c) Zeng, H.; Lai, C. K.; Swager, T. M. Chem. Mater. 1995, 7, 2067-2077.
13 Gray, G. W.; Kelly, S. M. J. Mater. Chem. 1999, 9, 2037-2050.
14 Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H.-W. Spiess.; Vill, V. Hand Book of Liquid Crystals, Wiley-VCH, Weinheim, 1998, 2, 137.
15. Toko, Y.; Sugiyama, T.; Katoh, K.; Iimura, Y.; Kobayashi, S. J. Appl. Phys. 1993, 74, 2071-2075.
16. Kumar, S.; Varshney, K. Angew. Chem. Int. Ed. 2000, 39, 3140-3142.
17. Marguet, S.; Markovits, D.; Goldmann, D.; Janietz, D.; Praefcke, K.; Singer, D. J. Chem. Soc. Faraday Trans. 1997, 93, 147-155.
18. Mori, H. Journal of Display technology 2005, 1, 179-186.
19. Tugiyama, T.; Hashimoto, T.; Katoh, K.; Iimura, Y.; Kobayashi, S. Jpn. J. Appl. Phys. 1995, 34, 2396-2403.
20. Mori. H. Jpn. J. Appl. Phys. 1997, 36, 1068-1072.
21. Yang, K. H. Two-domain twisted nematic and tilted homeotropic liquid crystal display for active matrix application, in IDRC’91, 1997, 68.
22. 液晶螢幕技術發展趨勢 李鴻鈞
23. Oshovsky, G. V.; Reinhout, D. N.; Verboom, W. Angew. Chem. Int. Ed. 2007, 14, 2366-2393.
24. Lehn, J. M. Science 1985, 227, 849-856.
25. Kato, T.; Machida, S.; Urano, T.-I.; Sano, K.; Fréchet, J. M. J. Langmuir 1997, 13, 576.
26. Krische, M. J.; Lehn, J.-M. Struct. Bonding (Berlin) 2000, 96, 3-29.
27. Sijbesma, R. P.; Meijer, E. W. Curr. Opin. Colloid Interface Sci 1999, 4, 24-32.
28. Fredericks, J. R.; Hamilton, A. D. Comprehensive Supramolecular Chemistry; Lehn, J.-M., Ed.; Pergamon: New York, 1996; Chapter 16
29.Cram, D. J.; Cram, J. M. Science 1974, 183, 803-809.
30. Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017-7036.
31. Pedersen, C. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1053-1059.
32. Lehn, J.-M. Makromol. Chem. Macromol. Symp. 1993, 69, 1-18.
33. Cates, M. E. Macromolecules 1987, 20, 2289-2296.
34. Cates, M. E. J. Phys. Chem. 1990, 94, 371-411.
35. Granek, R.; Cates, M. E. J. Chem. Phys. 1992, 96, 4758-4768.
36. 台大梁文傑老師,化學,2004,眾志成城的氫鍵 化學鍵中的小矮人
37. (a) Bisson, A. P.; Carver, F. J.; Huntwe, C. A.; Waltho, J. P. J. Am. Chem. Soc. 1994, 116, 10292-10293. (b) Sessler, J. L.; Wang, R. Angew. Chem. Int. Ed. 1998, 37, 1726-1729. (c) Sakai, N.; Majumdar, N.; Matile, S. J. Am. Chem. Soc. 1999, 121, 4394-4401. (d) Folmer, B. J. B.; Sijbesma, R. P.; Kooijman, H.; Mejer, E. W. J. Am. Chem. Soc. 1999, 121, 9001-9007. (f) Bisson, A. P.; Hunter, C. A.; Livingstone, D. L.; Mccabe, J. F.; Rotger, C.; Rowan, A. E. J. Am. Chem. Soc. 2000, 122, 8856-8868. (g) Archer, E. A.; Goldberg, N. T.; Lynch, V.; Krische, M. J. J. Am. Chem. Soc. 2000, 122, 5006. (h) Archer, E. A.; Sochia, A. E.; Krische, M. J. Chem. Eur. J. 2001, 7, 2049-2051.
38. a). Freiser, M. J. Phys. Rev. Lett. 1970, 24, 1041-1043. (b)Boccara, N.; Mejdani, R.; De Seze, L. J. Phys. 1977, 38, 149-151.
39. (a) Hughes, J. R.; Kothe, G.; Luckhurst, G. R.; Malthete, J.; Neubert, M. E.; Shenouda, I.; Timimi, B. A.; Tittlebach, M. J. Phys. Chem. 1998, 102, 7132-7134. (b) Shih, C. S.; Alben, R. J. Chem. Phys. 1972, 57, 3055-3057. (c) Alben, R. Phys. Rev. Lett. 1973, 30, 778-781. (d) Straley, J. P. Phys. Rev. A 1974, 10, 1881-1887.
40. Saupe, A.; Boonbrahm, P.; Yu, L. J. J. Chem. Phys. 1980, 80, 7-9.
41. Alben, R. J. Chem. Phys. 1973, 59, 4299-4305.
42. Chandrasekhar, S.; Raja, V. N.; Sadashiva, B. K.; Mol. Cryst. Liq. Lett. Sect. 1990, 7, 65-67. (b) Malthele, J.; Galerne, Y. C. R. Acad. Sc.Parsi 1986, 303, 1073-1086.
43. Galeren, Y. Mol. Cryst., Liq. Cryst. 1998, 323, 211-229.
44. Hunt, J. J.; Date, R. W.; Timimi, B. A.; Luckhurst, G. R.; Bruce, D. W. J. Am. Chem. Soc. 2001, 123, 10115-10116.
45. Taylor, T. R.; Fergson, J. L.; Arora, Phys. Rev. Lett. 1970, 24, 359-362.
46. de Gennes, P. G. The physics of liquid crystals, Clarendon, Oxford 1974.
47. Chandrasekhar, S. Liquid Crystals, 2nd ed., Cambridge Unversity Press, Cambridge 1992.
48. Berard, R.; Muccioli, L.; Zannoni, C. J. Chem. Phys. 2008, 128, 024905.
49. Yu, L. J.; Saupe, A. Phys. Rev. Lett. 1980, 45, 1000-1003.
50. Madsen, L. A.; Dingemans, T. J.; Nakata, M.; Samulski, E. T. Phys.Rev. Lett. 2004, 92, 145505-145509.
51. (a) Straley, J. P. Phys. Rev. A 1974, 10, 1881-1887. (b) Boccara, N.;Mejdani, R.; Deseze, L. J. Phys. 1977, 38, 149-151.
52. Vanakaras, A. G.; Mcgrother, S. J.; Jackson, G.; Photinos, D. J. Mol. Cryst. Liq. Cryst. 1998, 323, 199.
53. Norbert, W. D. J. A.; Goodby, J. W.; Hird, M.; Toyne, K. J. Liq. Cryst. 1997, 22, 631-642.
54. Sadashiva, B. K.; Reddy, R. A.; Pratibha, R.; Madhusudana, N. V. J. Mater. Chem. 2002, 12, 943-950.
55. Deacon, G. B.; Farguharson, G. J. Aust. J. Chem. 1977, 30, 1701-1713.
56. Luchurst, G. R. Thin Solid Flims 2001, 393, 40-52.
57. Luckhurst, G. R. Thin. Solid. Films 2001, 393, 40-52.
58. (a) Praefcke, K.; Kohn, B.; Gundogan, B.; Singer, D.; Demus, D.; Diele, S.; Peizl, G.; Bakowsky, U. Mol. Cryst. Liq. Cryst. 1991, 198, 393-405. (b) Sharma, S. R.; Palff-Muhoray, P.; Bergersen, B.; Dunmur, D. A. Phys. Rev. A. 1985, 32, 3752-3755. (c) Vanakaras, A. G.; McGrother, S. J.; Jackson, G.; Photins, D. J. Mol. Cryst. Liq. Cryst. 1998, 323, 199-209.
59. (a) Grignard, V. Compt. Rend. 1900, 130, 1322-1325. (b) Shirley, D. A. Org. React. 1954, 8, 28-58.
60. 液晶形成溫度指的是液晶材料從固相轉變為液晶相的溫度點稱之為熔點(mp);液晶溫度範圍則是將液晶相轉變為液相的溫度點,稱之為澄清點(cp)與熔點所得到的結果。
61. (a) Foster, E. J.; Lavigueur, C.; Ke, Y. C.; Williams, V. E. J. Mater. Chem. 2005, 15, 4062-4068. (b) Lavigueur, C.; Foster, E. J.; Williams, V. E. Liq. Cryst. 2007, 34, 833-840. (c) Cammidge, A. N.; Bushby, R. J. In Handbook of Liquid Crystals; Demus, D., Goodby, J., Gray, G. W., Spiess, H.-W., Vill, V., Eds.; Wiley-VCH: Weinheim, Germany, 1998, Vol. 2B, p693-748.
62. Kléman, M. Rep. Prog. Phys. 1989, 52, 555-654
63. Nematics between untreated glass plates often orient with their director parallel to the substrates. If this orientation is not homogeneous, but varies slowly in the plane of the substrate, so called Schlieren textures: (a) Friedel, G. Ann. Phys. (Fr.) 1922, 18, 273-474. (b) Nehring, J.; Saupe, A. J. Chem. Soc., Faraday Trans. II 1972, 68, 1-3. (c) Saupe, A. Mol. Cryst. Liq. Cryst. 1973, 21, 211-.215.
64. (a) Lehmann, M.; Kang, S.-W.; Köhn, C.; Haseloh, S.; Kolb, U.; Schollmeyer, D.; Wang, Q.; Kumar, S. J. Mater. Chem. 2006, 16, 4326-4334.
65. (a) Kléman, M. Points, Lines and Walls, John Wiley & Sons, Chichester, 1983. (b) Bouligand, Y. J. Phys. (Fr.) 1972, 33, 525-.
66. 如果為層列型A所具有的扇型紋理圖為完整的。
67. (a) Kouwer, P. H. J.; Picken, S. J.; Mehl, G. H. J. Mater. Chem. 2007, 17, 4196-4203. (b) Kouwer, P. H. J.; Mehl, G. H. J. Mater. Chem. 2009, 19, 1564-1575.
68. (a) Acharya, B. R. ; Primak, A. ; Dingemans, T. J. ; Samulski, E. T.; Kumar, S. Pramana 2003, 61, 231-238. (b) Acharya, B. R. ; Primak, A. ; Kumar, S. Phys. Rev. Lett. 2004, 92, 145506. (c) Madsen, L. A. ; Dingemans, T. J. ; Nakata, M. ; Samulski, E. T. Phys. Rev. Lett. 2004, 92, 145505.
69. (a) De Melo Filho, A. A. ; Jr, A. L. ; Fujiwara, F. Y. Langmuir 2003, 19, 1127-1132. (b)Luckhurst, G. R. ; Sugimura, A. ; Timim, B. A. ; Zimmermann, H. Liq. Cryst. 2005, 32, 1389-1396.
70. Southern, C. D.; Brimicombe, P. D.; Siemianowski, S. D.; Jaradat, S.; Roberts, N.; Görtz, V.; Goodby, J. W.; Gleeson, H. F. Europhys. Lett. 2008, 82, 56001.
71. (a) Praefcke, K.; Kohne, B.; Singer, D. Liq. Cryst. 1990, 7, 589-594. (b) Reddy, R. A.; Sadashiva, B. K. J. Mater. Chem. 2004, 14, 310-319. (c) Sadashiva, B. K.; Reddy, R. A.; Pratibha, R.; Madhusudana, N. V. J. Mater. Chem. 2002, 12, 943-950.
72. Chandrasekhar, S.; Nair, G. G.; Rao, D. S. S.; Prasad, S. K. Liq. Cryst. 1998, 24, 67-70.
73. (a) Jeong, K.-U. ; Jing, A. J. ; Monsdorf, B. ; Graham, M. J. ; Harris, F. W. ; Cheng, S. Z. D. J. Phys. Chem. B. 2007, 111, 767-777.
74. Yelmggd, V.; Shashikala, I. S.; Rao, D. S. S.; Nair, G. G.; Prasad, S. K J. Mater. Chem. 2006, 16, 4099-4102.
75. Yelamaggad, C. V.; Shashikala, I. S.; Shankar Rao, D. S.; Nair, G. G.; Prasad, S. K. J. Mater. Chem. 2006, 16, 4099.
76.光學常數是用來表徵固態宏觀光學性質物理量,折射率n和散射係數ĸ是兩個基本的光學常數,二者分別構成複數折射率n的實部與虛部。
77. 垂直配向就是在偏光顯微鏡下(上、下偏光呈現90度),所觀察的狀態為全暗的狀態,越暗表示分子排列的越好。
78.. Acharya, B. R.; Primak. A.; Kumar, S. Phys. Rev. Lett. 2004, 92, 145506
79.Vanakaras, A. G.; Mcgrother, S. J.; Jackson, G.; Photinos, D. J. Mol. Crst. Liq. Cryst. 1998, 323, 199-.
80. (a) Kleman, M. Points, Lines and Walls, In Liquid Crystals, Magnetic Systems, and Various Ordered Media (Wiley, New York, 1982). (b) Defects in Liquid Crystals: Computer Simulations, Theory and Experiments, edited by O.D. Lavrentovich, P. Pasini, Zannoni, C.; Žumer, S. (Kluwer, Dordrecht, 2001). (c) Chiccoli, C.; Feruli, I.; Lavrentovich, O. D.; Pasini, P.; Shiyanovskii, S. V.; Zannoni, C. Phy. Rev. 2002, 66, 030701-1-03701-4.
81. Ebert, M.; Schonherr, O. H.; Wendorff, J. H.; Ringsdorf, H.; Tschirner, P. Makromol. Chem. Rapid Commun. 1988, 9, 445.
82. Chandrasehar, S. Raja, V. N.; Sadashiva, B. K. Mol. Cryst. Liq. Cryst. Lett. 1990, 7, 65.
83. Prasad, V.; Kang, S.-W.; Suresh, K. A.; Joshi, L.; Wang, Q.; Kumar, S. J. Am. Soc. Chem. 2005, 127, 17224.
84. K = crystalline phase; N = nematic phase; I = isotropic phase
85.K = crystalline phase; SmC = smectic phase; N = nematic phase; I = isotropic phase; number = phase transition temperatute.
86. “A hydrogen bond is like the attration of a hummingbird to a flower….strong and directional, and also, lovely” by Etter, M. C. in Etter, M. C., Chem. Mater. 1994, 6, cover page.
87. Bikadi, Z.; Demko, L.; Hazai, E.” functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot” Arch Biochem Biophys 2007, 461, 225-234.
88. (a) Etter, M. C. Acc. Chem. Res. 1990, 23, 120-126. (b) Etter, M. C. J. Phys. Chem. 1991, 95, 4601-4610. (c) Jeffrey, G. A. An introduction to hydrogen bonding, oxford university press, New York, 1997.
89. Cates, M. E. Macromolecules 1987, 20, 2289-2296.
90. Paleous, C. M.; Tsiourvas, D. Liq. Cryst. 2001, 28, 1127-1137.
91. (a) Kato, T.; Fréchet, J. M. J. Am. Chem. Soc. 1989, 111, 8533-8534. (b) Price, D. J.; Willis, K.; Richardson, T.; Ungar, G.; Bruce, D. W. J. Mater. Chem. 1997, 7, 883-891. (c) Price, D. J.; Sdams, H.; Bruce, D. W. Mol. Cryst. Liq. Cryst. 1999, 289, 127-134. (d)Sideratou, Z.; Tsiourvas, D.; Paleos, C. M.; Skoulios, A. Liq. Cryst. 1997, 22, 51. (e) Wallage, M. J.; Imire, C. T. J. Mater. Chem. 1997, 7, 1163-1167. (f) Kato, T.; Fréchet, J. M. J.; Wilson, P. G.; Saito, T.; Uryu, T.; Fujishima, A.; Jin, C.; Kaneuchi, F. Chem. Mater. 1993, 5, 1094-1100.
92. (a) Brienne, M. J.; Gabard, J.; Lehn, J. M.; Stibor, J. J. Chem. Soc., Chem. Comm. 1989, 1868-1870. (b) Kleppinger, R.; Lillya, C. P.; Yang, C. Angew. Chem., Int., Ed. Engl. 1995, 34, 1637-1638. (c) Kleppinger, R.; Lillya, C. P.; Yang, C. J. Am. Chem. Soc. 1997, 119, 4097-4102. (d) Suarez, M.; Lehn, J. M.; Zimmermann, S. C.; Skoulios, A.; Heinrich, B. J. Am. Chem. Soc. 1998, 120, 9526-9532. (e) Goldmann, D.; Janietz, R. D.; Festag, R. H.; Schmidt, C.; Wendorff, J. H. Liq. Cryst. 1996, 21, 619. (f) Kraft, A.; Reichert, A.; Kleppinger, R. Chem. Comm. 2000, 1015-1016. (g) Lee, C. J.; Lee, S. J.; Chang, J. Y. Tetrahedron Lett. 2002, 43, 3863-3866. (h) Lee, H. K.; Lee, H.; Ko, Y. H.; Chang, Y. J.; Oh, N. K.; Zin, W. C.; Kim, K. Angew. Chem. 2001, 113, 2741-2745.
93. (a) Walba, D. M.; KPrblova, E.; Shao, R.; Maclennan, J. E.; Link, D. R.; Glasser, M. A.; Clark, N. A. Science 2000, 288, 2181-2184. (b) Coleman, D. A.; Ferns;er, J.; Chattham, N.; Nakata, M.; Takanishi, Y.; KPrblova, E.; Link, D. R.; Shao, R. F.; Jang, W. G..; Maclennan, J. E.; Mondainn-Monval, O.; Boyer, C.; Weissflog, W.; Pelz, G.; Chien, L. C.; Zasadzinski, J.; Watarabe, J.; Walba, D. M..; Takezoe, N.; Clark, N. A. Science 2003, 301, 1204-1211. (c) Jrkli, A.; Krserke, D.; Nair, G. G. Phys. Rev. E. 2003, 67, 051702.
94. Mesogen is the fundamental unit of a liquid crystal that induces structural order in the crystals. Typically, a liquid-crystalline molecules consists of a rigid moiety and one or more flexible parts. The rigid part aligns molecules in one direction, whereas the flexible parts induce fluidity in the liquid crystal. This rigid part is referred to as mesogen, and it plays a crucial role in the molecule. The optimum balance of these two parts is essential to form liquid-crystalline materials.
95. (a) Kato, T.; Fukumasa, M.; Fréchet, J. M. J. Chem. Mater. 1995, 7, 368-372. (b) Kato, T.; Fukumasa, T. Uryu, J. M. J. Fréchet. Chem. Lett. 1993, 65-68
96. (a) Kihara, H.; Kato, T.; Uryu, T.; Fréchet, J. M. J. Chem. Mater. 1996, 8, 961-968. (b) Kihara, H.; Kato, T.; Uryu, T.; Fréchet, J. M. J. Liq. Cryst. 1998, 24, 413-418. (c) Wilson, L. M. Liq. Cryst. 1995, 18, 381-383. (d) Malthete, J.; Levelut, A. M.; Liebert, L. Adv. Mater. 1992, 4, 37.
97. 所謂的形狀空間,形狀空間的基本概念是由英國劍橋大學的統計學教授肯德(David G. Kendall)研究並發表有關形狀的分布空間理論。簡單地說,地標點的形態資料中,每一個形狀是一組座標值,如果我們要比較這些形狀,就必須找出可用單一點代表一個形狀的分布空間;這個可以容納所有形狀且將這些座標值標點出來的空間,就是所謂的「形狀空間」(Shape space),或稱為肯德氏空間(Kendall's space)。
98. (a) Reddy, R. A.; Tschierske, C. J. Mater. Chem. 2006, 16, 907-961. (b) Ros. M. B.; Serrano, J. L.; de la Fuente, M. R.; Folcia, C. L.; J. Mater. Chem. 2005, 15, 5093-5098. (c) Takezoe, H.; Takanishi, Y. Jpn. J. Appl. Phys., Part 1 2006, 45, 597-625.
99. (a) Gharbia, M.; Gharbi, A.; Nguyen, H. T.; Malthête, J.; Curr. Opin, Colloid Interface Sci. 2002, 7, 312-. (b) Nguyen, H. T.; Destrade, C.; Malthête, J. In Handbook of Liquid Crystals; Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H.-W.; Vill, V., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol. 2B, p865.
100. Tschierske, C. J. Mater. Chem. 1998, 8, 1485-1508.
101. (a) Tschierske, C. Annu. Rep. Prog. Chem. Sect. C. 2001, 97, 191-267. (b) Abis, L.; Arrighi, V.; Cometti, G.; Dalcanale, E.; Du Vosel, A. Liq. Cryst. 1991, 9, 277-284. (c) Cometti, G.; Dalcanale, E.; Du Vosel, A.; Levelut, A. M. J. Chem. Soc., Chem. Commun. 1990, 163-164.
102. (a) Donnio, B.; Buathong, S.; Bury, I.; Guillon, D. Chem. Soc. Rev. 2007, 36, 1495-1513. (b) Marcos, M.; Martín-Rapún, R.; Omenat, A.; Serrano, J. L. Chem. Soc. Rev. 2007, 36, 1889-1901. (c) Ponomarenko, S. A.; Rebrov, E. A.; Bobrovsky, A. Yu.; Boiko, N. I.; Muzafarov, A. M.; Shibaev, V. P. Liq. Cryst. 2006, 33, 1497-1501.
103. (a) Bae, W.-S.; Lee, J.-W.; Jin, J.-I.; Liq. Cryst 2001, 28, 59-67. (b) Zuev, V. V. Russ. J. Gen. Chem. 2007, 77, 1266-1272.
104. (a) Mindyuk, O. Y.; Stetzer, M. R.; Heiney, P. A.; Nelson, J. C.; Moore, J. S. Adv. Mater. 1998, 10, 1363-1366. (b) Höger, S.; Enkelmann, V.; Bonard, K.; Tschierske, C. Angew. Chem. Int. Ed. Engl. 2000, 39, 2268-2270.
105. For recent reviews of hydrogen bonding, see: (a) Kato, T.; Mizoshita, N.; Kanie, K. Macromol. Rapid Commun., 2001, 22, 797-814. (b) Paleos, C. M.; Tsiourvas, D. Liq. Cryst. 2001, 28, 1127-1161.
106. Kato, T.; Fréchet, J. M. J. J. Am. Chem. Soc. 1989, 111, 8533-8534.
107. 所謂的異位雙氫鍵液晶指的是氫受體或氫給體,其中有一個分子具有雙官能基,此雙官能基分子可同時提供兩個氫受體或兩個氫給體。
108. Alexander, C.; Jariwala, C. P.; Lee, C. M.; Griffin, A. C. Macromol. Symp. 1994, 77, 283-294.
109. Bladon, P.; Griffin, A. C. Macromolecules 1993, 26, 6604-6610.
109. (a) Kato, T.; Fréchet, J. M. J. Macromol. Symp. 1995, 98, 311-326.; (a) Kato, T.; Fréchet, J. M. J. Macromolecules 1989, 22, 3818-3819. (c) Kato, T.; Mizoshita, N.; Kanie, K. Macromol. Rapid Commun. 2001, 22, 797-814. (d) Kim, K.-S.; Kato, T.; Uryu, T. Liquid crystalline polyacrylates and non-liquid crystalline polypyrroles 2000, 3879-3887.
110. (a) Gray, G. W.; Jones, B. J. Chem. Soc. 1953, 4179-4182. (b) Gray, G. W.; Jones, B. J. Chem. Soc. 1954, 683-686. (c) Goodby, J. W. Mol. Cryst. Liq Cryst. 1984, 110, 205-219. (d) Kato, T.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1989, 111, 8533-8534. (e) Kato, T.; Fujishima, A.; Fre´chet, J. M. J. Chem. Lett. 1990, 919-920. (f) Paleos, C. M.; Tsionvas, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1696-1711.
111. (a) Goldmann, D.; JanIETZ, d.; Schmidt, C.; Wendorff, J. H. J. Mater. Chem. 2004, 14, 1521-1525. (b) Suarez, M.; Lehn, J.-M.; Zimmerman, S. C.; Skoulios, A.; Heinrich, B. 112.J. Am. Chem. Soc. 1998, 120, 9526-9532. (c) Kanie, K.; Nishii, M.; Yasuda, T.; Taki, T.; Ujiie, S.; Kato, T. J. Mater. Chem. 2001, 11, 2875-2886. (d) Lee, H. K.; Lee, H.; Young, H. K.; Chang, Y. J.; Oh, N.-K.; Zin, W.-C.; Kim, K. Angew, Chem. Int. Ed. 2001, 40, 3669-3670. (e) Gearba, R. I.; Lehmann, M.; Levin, J. Ivanov, D. A.; Koch, M. H. J.; Barbera, J.; Debije, M. G.; Piris, J.; Geerts, Y. H. Adv. Mater. 2003, 15, 1614-1618.
113. Kleppinger, R.; Lillya, C. P.; Yang, C. J. Am. Chem. Soc. 1997, 119, 4097-4102.
114. For recent reviews of discotic mesogens, see: (a) Boden, N.; Movaghar, B. Handbook of Liquid Crystals, ed. Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H.-W.; Vill, V. Wiley-VCH: New York, 1998, vol 2B, P781. (b) Bushby, R. J..; Lozman, O. R. Curr. Opin. Colloid Interface Sci., 2002, 7, 343-354. (b) Freudenmann, R. F.; Behnisch, B.; Hanack, M. J. Mater. Chem. 2001, 11, 1618-1624.
115. Schmidt-Mende, L.; Fechtenkotter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119-1122.
116. (a) Leehouts, F. Jpn. J. Appl. Phys. Part 2-Lett. 2000, 39, L741-L747. (b) Okazaki, M.; Kawata, K.; Nishikawa, H.; Negoro, M. Polym. Adv. Technol. 2000, 11, 398-403.
117. Cammidge, A. N.; Bushby, R. J. In Handbook of Liquid Crystals; Demus, D., Goodby, J. W., Gray, G. W., Spiess, H.-W., Vill, V., Eds.; Wiley-VCH: New York, 1998; Vol.2B, Chapter VII
118. (a) Kleppinger, R.; Lillya, C. P.; Yang, C. J. Am. Chem. Soc. 1997, 119, 4097–4102. (b) Sua’rez, M.; Lehn, J.-M.; Zimmerman, S. C.; Skoulios, A.; Heinrich, B. J. Am. Chem. Soc. 1998, 120, 9526–9532. (c) Kanie, K.; Nishii, M.; Yasuda, T.; Taki, T.; Ujiie, S.; Kato, T. J. Mater. Chem. 2001, 11, 2875–2886. (d) Goldmann, D.; Dietel, R.; Janietz, D.; Schmidt, C.; Wendorff, J. H. Liq. Cryst. 1998, 24, 407–411. (e) Kraft, A.; Reichert, A.; Kleppinger, R. Chem. Commun. 2000, 1015–1016. (f) Lee, H.-K.; Lee, H.; Ko, Y. H.; Chang, Y. J.; Oh, N.-K.; Zin, W.-C.; Kim, K. Angew. Chem., Int. Ed. 2001, 40, 2669–2671.
119. Bunning, J. D.; Goodby, J. W.; Gray, G. W.; Lydon, J. E. In Liquid Crystals of One- and Two-Dimensional Order, Helfrich, W., Heppke, G., Eds.; Springer-Verlag: Berlin, 1980; p 397.
120. (a) Lattermann, G. Liq. Cryst. 1987, 2, 723-728. (b) Lattermann, G.; Staufer, G. Liq. Cryst. 1989, 4, 347-355. (c) Ebert, M.; Kleppinger, R.; Soliman, M.; Wolf, M.; Wendorff, J. H.; Lattermann, G.; Staufer, G. Liq. Cryst. 1990, 7, 553-570.
121. Praefcke, K.; Marquardt, P.; Kohne, B.; Stephan, W.; Levelut, A.-M.; Wachtel, E. Mol. Cryst. Liq. Cryst. 1991, 203, 149-152.
122. For examples of macrodiscotic mesogens, see: (a) van de Craats, A. M.; Warman, J. M.; Müllen, K.; Geerts, Y.; Brand, J. D. Adv. Mater. 1998, 10, 36-38. (b) Müller, G. R. J.; Meiners, C.; Enklmann, V.; Geerts, Y.; Müllen, K. J. Mater. Chem. 1998, 8, 61-64. (c) Msayib, K.; Mahkseed, S.; McKeown, N. B. J. Mater. Chem. 2001, 11, 2784-2789. (d) Herwig, P.; Kayser, C. W.; Müllen, K.; Spiess, H.-W. Adv. Mater. 1996, 8, 510-513. (e) Liu, C.-Y.; Fechtenkoetter, A.; Watson, M. D.; Müllen, K.; Bard, A. J. Chem. Mater. 2003, 15, 124-130. (f) Yatabe, T.; Harbison, M. A.; Brand, J. D.; Wagner, M.; Müllen, K.; Samori, P.; Rabe, J. J. Mater. Chem. 2000, 10, 1519-1525. (g) Cammidge, A. N.;Gopee, H. Chem. Commun. 2002, 966-967. (h) Boden, N.; Bushby, R. J.; Headdock, G.; Lozman, O. R.; Wood, A. Liq. Cryst. 2001, 28, 139-142. (i) Sakajiri, K.; Sugisaki, T.; Moriya, K. Chem. Commun. 2008, 3447-3449.
123. 該部分為實驗室其他成員所合成
124. (a) Massah, A. R.; Mosharafian, M.; Momeni, A. R.; Aliyan, H.; Naghash, H. J. Synthetic Communications 2007, 37, 1807-1815. (b) More, S. V.; Ardhapure, S. S.; Naik, N. H.; Bhusare, S. R.; Jadhav, W. N.; Pawar, R. P. Synthetic Communications 2005, 35, 3113-3118. (c) Williamson, A. W. J. Chem. Soc. 1852, 4, 229-239. (d) Dermer, O .C. Chem. Rev. 1934, 14, 385-430.
125. (a) Theil, F. Angew. Chem. Int. Ed. 1999, 38, 2345-2347. (b) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467-4470. (b) Sonogashira, K.; Trost, B. M. Comprehensive Organic Synthesis Vol 3. Pergamon Press, Oxford 1999, p521.
126. (a) Bakherad, M.; Keivanloo, A.; Bahramian, .B.; Hashemi, M. Tetrahedron Lett. 2009, 14, 1557-1559. (b) Bolliger, J. L.; Frech, C. M. Advanced Synthesis and catalysis 2009, 351, 891-902. (c) Gu, S.; Chen, W. Organometallics 2009, 28, 909-914.
127. (a) Bandini, M.; Luque, R.; Budarin, V.; Macqarrie, D. J. Tetrahedron 2005, 61, 9860-9868. (b) Li, J.-H.; Liang, Y.; Xie, Y.-X. J. Org. Chem. 2005, 70, 4393-4396.
128.Kato, T.; Fréchet, J. M. J. J. Am. Chem. Soc. 1989, 111, 8533-8534.
129. (a) Ksto, T,; Uryu, T.; Kaneuchi, F.; Jin, C.; Fréchet, J. M. J. Liquid. Crystals 2006, 33, 1434-1437. (b) Azima, A.; Brown, C. W.; Mitra, S. S. Spectrochim. Acta. 1975, 31A, 1475-1479. (c) Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds, 6th edn 1998, pp 95-99.
130. (a) Johnson, S. L.; Rumon, K. A. J. Phys. Chem. 1965, 69, 74-86. (b) Odinokoy, S. E.; Mashkovsky, A. A.; Glazunov, V. P.; Iogansen, A. V.; Rassdin, B. V. Spectrochim. Acta. 1976, 32A, 1355-. (c) Lee, J. Y.; Painter, P. C.; Coleman, M. M. Macromolecules 1988, 21, 954-. (d) Kato, T.; Fréchet, J. M. J.; Wilson, P. G.; Saito, T.; Uryu, T.; Fujishima, A.; Jin, C.; Kaneuchi, F. Chem. Mater. 1993, 5, 1094-1100.
131. 於第一章節已詳細說明過液晶材料的異向性:就是包括電性、光學、磁性及力學等方面,會因為液晶分子排列方向不同而有所差異。
132. (a) Reinitzer, F. Monatsh. Chem. 1888, 9, 421. (b) Kelker, H.; Hatz, R.; Handbook of Liquid Crystals; Verlag Chemie: Deerfield, FL, 1980. (c) Toyne, A. J. In Thermotropic Liquid Crystals, Gray, G. W., Ed.; John Wiley & Sons: New York, 1987; p 28.
133. Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A. 134.Pranama 1977, 9, 471.
135. (a) Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H. W.; Vill, V (Eds). Handbook of Liquid Crystals, Vol. 2B. Wiley-VCH, Weinheim, 1998. (b) Chandrasekhar, C. Liquid Crystals; 2nd ed.; Cambridge University: Cambridge, 1992. (c) Chandrasekhar, S.; Prasad, S. K. Contemop. Phys. 1999, 40, 237-245.
136. (a) Adam, D.; Closs, F.; Frey, T.; Funhoff, D.; Harrer, D.; Ringsdorf, H.; Schuhmacher, P.; Siemensmeyer, K. Phys. Rev. Lett. 1993, 70, 457-460. (b) Adam, D.; Schuhmacher, P.; Simmerer, J.; Haüssling, L.; Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141-143.
137. Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Adv. Mater. 1997, 9, 42-44.
138. Christ, T.; Glüsen, B.; Greiner, A.; Kettner, A.; Sander, R.; Stümpflen. V.; Tsukruk, V.; Wendorff, J. H. Adv. Mater. 1997, 9, 48-51. (a) Xiao, S.; Myer, M.; Miao, O.; Sanaur, S.; Pang, K.; Steigerwals, M. L.; Nuckolls, C. Angew. Chem. 2005, 117, 7556-7560.; Angew. Chem. Int. Ed. 2005, 44, 7390-7394. (b) Mende-Schmidt, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.;
Friend, R. H.; Mackenzie, J. D. Science 2001, 293, 1119-1122. (c) Nelson, J. Science 2001, 293, 1059-1060.
139. (a) Kumar, S. Chem. Soc. Rev. 2006, 35, 83-109. (b) Boden, N.; Bushby, R. J.; Lozman, O. R. Mol. Cryst. Liq. Cryst. 2003, 400, 105-113. (c) Kumar, S. Pramana 2003, 61, 199-203. (d) Praefcke, K.; Eckert, A. Mol. Cryst. Liq. Cryst. 2003, 396, 265-299. (e) Guillon, D.; Donnio, B.; Bruce, W.; Cukiernik, F. D.; Rusjan, M. Mol. Cryst. Liq. Cryst. 2003, 396, 141-154. (f) Bushby, R. J.; Lozman, O. R. Curr. Opin. Colloid Interface Sci. 2002, 7, 343-354. (g) Demus, D. Mol. Cryst. Liq. Cryst. 2001, 364, 25-91. (h) Teschierske, C. J. Mater. Chem. 2001, 11, 2647-2671. (i) Tschierske, C. Annu. Rep. Pro. Chem. Sect. C. 2001, 97, 191-267. (j) Bock, H. in Chirality in Liquid Crystals (Eds.: Kitzerow, H.-S.; Bahr, C), Springer, New York, 2001, pp. 355-374. (k) Kopitzke, J.; Wendorff, J. H. Chem. Unserer Zeit 2000, 34, 4-16. (l) Chandrasekhar, S.; Prasad, S. K. Contemp. Phys. 1999, 40, 237-245. (m) Cammidge, A. N.; Bushby, R. J. in Handbook of Liquid Crystals, Vol. 2B (Eds.: Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H.-W. Vill, V), Wiely-VCH, Weinheim, 1998, pp. 693-798. (n) Chandrasekhar, S. Proceedings of the Indian National Science Academy, Pro. Indian Acad. Sci. Sect. A 1993, 59, 1-15. (o) Chandrasekhar, S. Liq. Cryst. 1993, 14, 3-14. (p) Goodby, J. W.; Mehl, G. H.; Saez, I. M.; Tuffin, R. P.; Mackenzie, G.; Auzély-Velty, R.; Benvegnu, T.; Plusquellec, D. Chem. Commun. 1998, 2057-2070.
140. (a) Cammidge, A. N.; Busby, R. J. In Handbook of Liquid Crystals; Demus, D.; Goodby, J. W.; Gray, G. W.; Spies, H. W.; Vill, V., Eds.; Wiley-VCH: Weinheim, 1998. (b) van Nostrum, C. F.; Bosman, A. W.; Gelinck, G. H.; Schouten, P.G.; Warman, J. M.; Kentgens, A. P. M.; Devillers, M. A. C.; Nolte, R. J. M. Chem. Eur. J. 1995, 1, 171-182.
141. (a) Eichhom, H. J. Porphyr. Phthalocya 2000, 4, 88-102. (b) Frampton, C. S.; MacNicol, D. D.; Rowan, S. J. J. Mol. Struct. 1997, 405, 169-178. (c) Henderson, P.; Ringsdorf, H.; Schuhmacher, P. Liq. Cryst. 1995, 18, 191-195. (d) Musgrave, O. C.; Webster, C. J. J. Chem. Soc. C. 1971, 1397-1401. (e) Yatabe, T.; Harbison, M.; Brand, J. D.; Wanger, M.; Müllen, K.; Samori, P.; Rabe, J. P. J. Mater. Chem. 2000, 10, 1519-1525.
142. (a) Bock, H.; Helfrich, W. Liq. Cryst. 1995, 18, 387-399. (b) Uznanski, P.; Marguet, S.; Markovitsi, D.; Schumacher, P.; Ringsdor, H. Mol. Cryst. Liq. Cryst. 1997, 293, 123-133.
143. (a) Müllen, G. R. J.; Meiners, C.; Enkelmann, V.; Geerts, Y.; Müllen, K. J. Mater. Chem. 1998, 8, 61-64. (b) van de Craffts, A. M.; Warman, J. M.; Schlichting, P.; Rohr, U.; Geerts, Y.; Müllen, K. Synth. Met. 1999, 102, 1550-1551.
144. (a) Stabel, A.; Herwig, P.; Müllen, K.; Rabe, J. P. Angew. Chem. 1995, 107, 1768-1770. (b) Herwig, P.; Kayser, C. W.; Müllen, K.; Spiess, H. W. Adv. Mater. 1996, 8, 510-513. (c) Ito, S.; Wehmeier, M.; Brand, J. D.; Kübel, C.; Epsch, R.; Rabe, J. D.; Harbison, M. A.; Müllen, K. Adv. Mater. 1999, 11, 1469-1472. (d) Herwig, P. T.; Enkelmann, V.; Schmelz, O.; Müllen, K. Chem. Eur. J. 2000, 6, 1834-1839. (e) Thünemann, A. F.; Ruppelt, D.; Ito, S.; Müllen, K. J. Mater. Chem. 1999, 9, 1834-1839. (f) Brown, S. P.; Schnell, I.; Brand, J. D.; Müllen, K.; Spiess, H. W. J. Am. Chem. Soc. 1999, 121, 6712-6718. (g) van de Craats, A. M.; Warman, J. M.; Müllen, K.; Geerts, Y.; Brand. J. D. Adv. Mater. 1998, 10, 36-38. (h) Fechtenkötter, A.; Saalwächter, K.; Harbison, M. A.; Müllen, K.; Spiess, H. W. Angew. Chem., Int. Ed. Engl. 1999, 38, 3039-3042.
145. Billard, J.; Dubois, J.; Tinh, N. H.; Zann, A. Nouv. J. Chim. 1978, 2, 535.
146. Destrade, C.; Mondon, M. C.; Malthete, J. J. Phys. 1979, 3, 17.
147. (a) Kumar, S.; Varshney, K. Angew. Chem. Int. 2000, 39, 3140-3142. (b) Chandrasekhar, S.; Kirshna, P. S.; Nair, G. G.; Shankar Rao, D. S.; Kumar, S.; Manickam, m. in EuroDisplay’99, The 19th International Display Resarch Conference Late-News Papers, Berlin 1999, p.9. (c) Kumar, S.; Varshney, S. K.; Chauhan, D. Mol. Cryst. Liq. Cryst. 2003, 396, 241-250. (d) Kawata, K. Chem. Rev. 2002, 2, 59
148. Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Siemensemeyer, K.; Etzbach, K. H. Ringsdorf, H.; Harrer, D. Nature 1994, 371, 141-149.
149. (a) Cupere, V. De.; Tant, J.; Viville, P.; Lazzaroni, R.; Osikowicz, W.; Salaneck, W. R.; Geerts, Y. H. Langmuir 2006, 22, 7798-7806. b) Meier, H.; Lehmann, M.; Holst, H. C.; Schwöppe, D. Tetrahedron 2004, 60, 6881-6888. c) Hindmarsh, P.; Watson, M. J.; Hird, M.; Goody, J. W. J. Mater. Chem. 1995, 5, 2111-2123. d) Farve-Nicolin, C. D.; Lub, J.; van der Sluis, P. adv. Mater. 1996, 8, 1005-1007. (e) Chien, S.-C.; Chen, H.-H.; Chen, H.-C.; Yang, Y.-L.; Hsu, H.F.; Shih, T.-L.; Lee, J.-J. Adv. Funct. Mater. 2007, 17, 1896-1902.
150.(a) Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hägele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int. Ed. 2007, 46, 4832-4887. (b) Vera, F.; Serrano, J. L.; Sierra, T. Chem. Soc. Rev 2009, 38, 781-796.
151. Barberá, J.; Puig, L.; Romero, P.; Serrano, J. L.; Sierra, T. J. Am. Chem. Soc. 2006, 128, 4487-4492.
152. (a) Feringa, B. L.; van Delden, R. A. Angew. Chem. Int. Ed. 1999, 38, 3418-3438. (b) Palmans, A. R. A.; Meijer, E. W. Angew. Chem. Int. Ed. 2007, 48, 8948-8968.
153. Brunsveld, L.; Lohmeijer, B. G. G.; Vekemans, Jef A. J. M.; Mwijer, E. W. Chem. Commun. 2000, 2305-2306.
154. Tinh, N. H.; Destrade, C.; Gasparoux, H. Phys. Lett. 1979, 72A, 251.
155. Levelut, A. M.; Hardouin, F.; Gasparoux, H.; Destrade, C.; Tinh, N. H. J. Phys. 1981, 42, 147-152.
156. Reinitzer, F. Monath. Chem. 1888, 9, 421.
157. Destrade, C.; Tinh, N. H.; Malthete, J.; Jacques, J. Phys. Lett. 1980, 79A, 189-192.
158. Levelut, A. M. J. Phys. Lett. 1979, 40, L81-L84.
159. Malthéte, J.; Jacques, J.; Nguyen, H.-T.; Desstrade, C. Nature 1982, 298, 46-48.
160. . 何謂物質的鐵電性(Ferroelectricity)?在固態物理中,鐵電性是因為在晶體結構中,在正電荷中心與負電荷中心產生偏離,意即晶體在呈現鐵電性的狀態時,分子會具有永久的偶矩(permanent dipole)。再規則的排列且同時不外加電場的狀態下,這些微觀的電偶矩將會形成巨觀的自發極化值,如果此一極化方向可以經由一個外加電場而有所改變,當除去外加電場,依舊保有一個淨極化值,便可以稱此物質具有鐵電性。此鐵電性質原本存在於無機陶瓷與金屬氧化物中,原因是晶格中原子的不對稱排列而產生了無法抵消的淨偶極。因此所謂的鐵電式液晶,具有自發極化(spontaneous polarization)且由於外部電場之外加,自發分極的指向會反轉者,則稱之為。
161. . 何為焦電性(pyroelectricity):某些礦物之晶體當溫度改變時,會在極軸之兩端造成正、負電荷同時發展之現象。例如:電氣石(族)礦物之晶體在溫度增加時,會在極軸(c軸)之兩端造成正、負電荷同時發展之現象。
162. Malthete, J.; Destrade, C.; Tinh, N. H.; Jacques, J. Mol. Crystallogr. Liq. Crystallogr. Lett. 1981, 64, 233-238.
163. Langner, M.; Prarfcke, K.; Krüerke, D.; Heppke, G. J. Mater. Chem. 1995, 5, 693-698.
164. Booth, C. J.; Krüerke, D.; Heppke, G. J. Mater. Chem. 1996, 6, 927-935.
165. Frackowiak, E.; Scherowsky, G. Z. Naturforsch 1997, 52b, 1539-1543.
166. (a) Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.; O’Leary, D. J.; Willson, G.. J. Am. Chem. Soc. 1989, 111, 6452-6454. (b) Green, M. M.; Garetz, B. A.; Munoz, B.; Change, H.; Hoke, S.; Cooks, R. G. J. Am. Chem. Soc. 1995, 117, 4181-4182. (c) Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Lifson, S. Science 1995, 268, 1860-1866. (d) Green, M. M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. Angew. Chem. 1999, 111, 3329-3345.; Angew. Chem. Int. Ed. 1999, 38, 3138-3154. (e) Green, M. M. Circular Dichroism, Principles an Application 2nd edition (Eds: Berova, N.; Nakanishi, K.; Woody, R. W.), Wiely, New York, 2000, pp. 491-520. (f) Li, J.; Schuster, G. B.; Cheon, K.-S.; Green, M. M.; Selinger, J. V. J. Am. Chem. Soc. 2000, 122, 2603-2612.
167. (a) Prince, R. B.; Moore, J. S.; Bunsveld, L.; Meijer, E. W. Chem. Eur. J. 2001, 7, 4150-4154. (b) Smulders, M. M. J.; Schenning, Albertus P. H. J.; Meijer, E. W. J. Am. Chem .Soc. 2008, 130, 606-611.
(a) Green, M. M.; Park, J. –W.; Sato, T.; Termoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J.V. Angew. Chem. Int. Ed. 1999, 38, 3138-3154. (b) Yashima, E.; Maeda, K.; Nishimura, T. Chem. –Eur. J. 2004, 10, 42-51. (c) Wilson, A. J.; Gestel, J. van.; Sijbesma, R. P.; Meijer, E. W. Chem. Commun. 2006, 4404-4406. (d) Ajayaghosh, A.; Varghese, R.; George, S. J.; Vijayakumar, C. Angew. Chem Int. Ed. 2006, 45, 1141-1144. (e) Ajayaghosh, A.; Varghese, R.; Mahesh, S.; Praveen, V. K. Angew. Chem. Int. Ed. 2006, 45, 7729-7732. (f) Ishi-I, T.; Kuwahara, R.; Takata, A.; Jeong, Y.; Sakurai, K.; Mataka, S. Chem. –Eur. J. 2006, 12, 763-776. (g) Hirschberg, J. H. K. K.; Koevoets, R. A.; Sijbesma, R. P.; Meijer, E. W. Chem. –Eur. J. 2003, 9, 4222-4231. (h) Palmans, A. R. A.; Vekemans, J. A. J.; Havinga, E. E.; Meijer, E.W. Angew. Chem. Int. Ed. Engl. 1997, 36, 2648-2651. (i) Prins, L. J.; Timmerman, P.; Reinhoudt, D. N. J. Am. Chem. Soc. 2001, 123, 10153-10163. (j) Mateos-Timoneda, M. A.; Crego-Calama, M.; Reinhoudt, D. N. Chem. –Eur. 2006, 12, 2630-2638.

168. (a) Green, M. M.; Garetz, B. A.; Munoz, B.; Chang, H.; Hoke, S.; Cooks, R. G. J. Am. Chem. Soc. 1995, 117, 4181-4182. (b) Gesstel, J. Van.; Palmans, A. R. A.; Titulaer, B.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 5490-5494. (c) Jin, W.; Fukushima, T.; Niki, M.; Kosaka, A.; Isgii, N.; Aida, T. Pro. Natl. Acad. Sci. U. S. A. 2005, 102, 10801-10808.
170.(a) Green, M. M.; Garetz, B. A.; Munoz, B.; Chang, H.; Hoke, S.; Cooks, R. G. J. Am. Chem. Soc. 1995, 117, 4181-4182. (b) Gesstel, J. Van.; Palmans, A. R. A.; Titulaer, B.; Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 5490-5494. (c) Jin, W.; Fukushima, T.; Niki, M.; Kosaka, A.; Isgii, N.; Aida, T. Pro. Natl. Acad. Sci. U. S. A. 2005, 102, 10801-10808
171. Gestel, J. van.; Palmans, A. R. A.; Titulaer, B.; Vekemans, Jef A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 5490-5494.
172. Chien, S.-C.; Chen, H.-H.; Chen, H.-C.; Yang, Y.-L.; Hsu, H.-F.; Shih, T.-L.; Lee, J.-J. Adv. Funct. Mater. 2007, 17, 1896-1902.
173. 林宜慧同學,K = crystalline phase; Col = columnar phase; I = isotropic phase;數字表示轉換溫度點
174. (a) Kastler, M.; Pisula, W.; Wasserfallen, D.; Pakula, T.; Müllen, K. J. Am. Chem. Soc. 2005, 127, 4286-. (b) Pisula, W.; Kastler, M.; Wasserfallen, D.; Mondeshki, M.; Piris, J.; Schnell, I.; Müllen, K. Chem. Mater, 2006, 18, 3634-3640
175.(a) Leadbetter, A. J. The Molecular Physics of Liquid Crystals, ed. Luckurst, G. R.; Gray, G. W. Academic Press, London 1979, p. 285.; (b) Leadbetter, A. J.; Richardson, R. M. The Molecular Physics of Liquid Crystals, ed. Luckhurst, G. R.; Gray, G. W. Academic Press, London, 1979, p. 451; (c) Davidson, P.; Petermann, D.; Levelut, A. M. J. Phys. II, 1995, 5, 113-131. (d) Ungar, G. Liquid Crystal Nematics, ed. Dunmur, D. A.; Fukuda, A.; Luckhurst, G. R. Inspec, London, 2001, pp 177.
176. 該部分由台大陳俊顯老師實驗室成員所完成
177. 2000 Nobel Prize in chemistry lectures and (a) Shirakawa, H. Angew. Chem. 2001, 113, 2642-2648.; Angew. Chem., Int. Ed. 2001, 40, 2574-2580. (b) MacDiarmid, A. G. Angew. Chem. 2001, 113, 2649-2659.; Angew. Chem. Int. Ed. 2001, 40, 2581-2590. (c) Heeger, A. J. Angew. Chem. 2001, 113, 2660-2682; Angew. Chem., Int. Ed. 2001, 40, 2591-2611.
178.Lin, Y. Y.; Gundlach, D. J.; Jackson, T. N. 54th Annual Device Resarch Conference Digest, 80 (1996).
178. Dimitrakopoulos, C. D.; Furman, B. K.; Graharm, T.; Hegde, S.; Purushothaman, S. Synth. Met. 1998, 92, 47-52.
179. Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741-1744.
180. (a) Wang, Z. H.; Li, C.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. Lett. 1991, 66, 1745-1748. (b) Aleshin, A.; Kiebooms, R.; Menon, R.; Wudl, F.; Heeger, A. J. Phys. Rev. B. 1997, 56, 3659-3668. (c) Heeger, A. J. J. Phys. Chem. B. 2001, 105, 8475-8491. (d) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685-688.
181. Sirringhaus, H. Adv. Mater. 2005, 17, 2411-2425.
182. Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350-1377.
183. (a) Sage, I. C. In Handbook of Liquid Crystals; Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H. W.; Vill, V. Eds. Wiley-VCH: Weinheim, 1998, Vol. 1, p731. (b) Watson, M. D.; Fechtenkötter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267-1300. (c) Simpson, C. D.; Wu, J.; Watson, M. D.; Müllen, K. J. Mater. Chem. 2004, 14, 494-504. (d) Bushby, R. J.; Lozman, O. R. Curr. Opin. Solid State Mater. Sci. 2002, 6, 569-578.
184. O’Neill, M.; Kelly, S. M. Adv. Mater. 2003, 15, 1135-1146.
185. Lemaur, V.; da Silva Filho, D. A.; Coropceanu, V.; Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M. G.; van de Craats, A. M.; Senthilkumar, K.; Siebbeles, L. D. A.; Warman, J. M.; Brédas, J.-L.; Comil, J. J. Am. Chem. Soc. 2004, 126, 3271-3279.
186. Lemaur, V.; da Silva Filho, D. A.; Coropceanu, V.; Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M. G.; van de Craats, A. M.; Senthilkumar, K.; Siebbeles, L. D. A.; Warman, J. M.; Brédas, J.-L.; Comil, J. J. Am. Chem. Soc. 2004, 126, 3271-3279.
187. (a) Clar, E. Polycyclic Hydrocarbons; Academic Press: New York, 1964, Vol. I/II. (b) Clar. E. The Aromatic Sextet; Wiley-VCH: London, 1972. (c) Scholl, R.; Seer, C.; Weitzenbök, R. Chem. Ber. 1910, 43, 2202-2209. (d) Scholl, R.; Seer, C. Liebigs Ann. Chem. 1912, 394, 111-123. (e) Scholl, R.; Seer, C. Chem. Ber. 1922, 55, 330-341. (f) Clar, E.; Stewart, D. G. J. Am. Chem. Soc. 1953, 75, 2667-2672. (g) Clar, E.; Schmidt, W. Tetrahedron 1979, 35, 2573-2576.
188. (a) Harver, R. G. Polycyclic Aromatic Hydrocarbons; Wiley-VCH: New YORK, 1997. (b) Carbon Rich Compounds I/II; Topics in Current Chemistry; Springer: Berlin, 1998, Vol. 196; 1999, Vol. 201.
189. (a) Handbook of conducting Polymers, 2nd ed.; Skotheim, T. A., Elsenbaumer, R. L., Reynold, J. R., Eds; Marcel Dekker, Inc.: New York, 1998. (b) Semiconducting Polymer: Chemistry, Physics, and Engineering; Hadziioannou, G., van Hutten, P. F., Eds,; Wiley-VCH: Weinheim, 2000,
190. (a) Wang, Z. H.; Li, C.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. Lett. 1991, 66, 1745-1748. (b) Aleshin, A.; Kiebooms, R.; Menon, R.; Wudl, F.; Heeger, A. J. Phys. Rev. B 1997, 56, 3659-3668. (c) Heeger, A. J. J. Phys. Chem. B 2001, 105, 8475-8491. (d) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685-688.
191. (a)van de Craats, A. M.; Waarman, J. M.; De Hass, M. P.; Adam, D.; Simmerer, J.; Haarer, D.; Schuhmacher, P. Adv. Mater. 1996, 8, 823-826. (b) van de Craats, A. M.; Warman, J. M.; Fechtenkötter, A.; Brand, J. D.; Harbison, M. A.; Müllen, K. Adv. Mater. 1999, 11, 1469-1471. (c) van de Craats, A. M.; Warman, J. M.; Müllen, K.; Greerts, Y.; Brand, J. D. Adv. Mater. 1998, 10, 36-38.
192. About review of HBCs: (a) Berresheim, A.; Mller, M.; Müllen, K. Chem. Rev. 1999, 99, 1747-1786. (b) Watson, M.; Fechtenkötter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267-1300. (c) Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971-5003. (d) Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718-747.
193. Cioslowski, J.; O’Connor, P. B.; Fleischmann, E. D. 1991, J. Am. Cehm. Soc. 1991, 113, 1086-1089.
194. Pisula, W.; Tomović, Ž.; Simpson, C. D.; Kastler, M.; Pakula, T.; Müllen, K. Chem. Mater. 2005, 17, 4296-4303
195. (a) Sinnokrot, M. O.; Sherrill, C. D. J. Am. Chem. Soc. 2004, 126, 7690-7697. (b) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525-5534.
196. a) Tour, J. M. Chem. Rev. 1996, 96, 537-554. (b) Müllen, K.; KüBEL, C.; Müllen, M. Chem. Eur. J. 1998, 4, 2099-2109.
197. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiely, Chichester, 2000, pp. 22-28.
198. (a) Wasserfallen, D.; Fishbach, I.; Chebotareva, N.; Kastler, M.; Pisula, W.; Jäckel, F.; Watson, M. D.; Schnell, I.; Rabe, J. P.; Spiess, H. W.; Müllen, K. Adv. Funct. Mater. 2005, 15, 1585-1594. (b) Dou, X.; Pisula, W.; Wu, J.; Bodwell, G. J.; Müllen, K. Chem. Eur. J. 2008, 14, 240-249.
199.(a) Adam, D.; Schuhmacher, P.; Simmerer, J.; Hausslin, L.; Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141-143. (b) Boden, N.; Bushby, R. J.; Clements, J.; Jesudason, M. V.; Knowles, P. F.; William, G. Chem. Phys. Lett. 1988, 152, 94-98. (c) Boden, N.; Bushby, R. J.; Clements, J.; Movaghar, B.; Donovan, K. J.; Kreouzis, T. Phys. Rev. B. 1995, 52, 13274-13280. (d) van de Craats, A. M.; Warman, J. M. Adv. Mater. 2001, 13, 130-133. (e) Debije, M. G.; Piris, J.; de Haas, M. P.; Warman, J. M.; Tomvic, Z.; Simpson, C. D.; Watson.; M. D.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 4641-4645.
200. (a) Simpson, C. D.; Mattersteig, G.; Martin, K.; Gherghel, L.; Bauer, R. E.; Räder, H. J.; Müllen, K. J. Am. Chem. Soc. 2004, 3139-3147. (b) Simpson, C. D.; Brand, J. D.; Berresheim, A. J.; Przybilla, L.; Räder, H. J.; Müllen, K. Chem. –Eur. J. 2002, 8,
201. 1424-1429. (c) Herwig. P.; Kayser, C. W.; Müllen, K.; Spiess, H. W. Adv. Mater. 1996, 8, 510-513. (d) Schmit-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend. R. H.; MacKenzie, J. D. Science 2001, 293, 1119-1123.
Pisula, W.; Tomović, Ž.; Simpson, C.; Kastler, M. Chem. Mater. 2005, 17, 4296-4303.

202. Kraft, A.; Grimsdale. A. C.; Holmes, A. B. Angew. Chem. 1998, 110, 416-443; Angew. Chem., Int. Ed. Engl. 1998, 27, 402-428.
203. Chirality is in the side chain: (a)Nuckolls, C.; Katz, T. J. J. Am. Cehm. Soc. 1998, 120, 9541-9544.
204. There are a few chiral discotics whose cores are saccharides, inositols, or cyclotriveratrylene. Footnotes 2-4 in ref 19 refers to them. There are some that have helically twisted aromatic cores, but they are racemic. Footnotes 5 in ref 19 refers to them.
205.Helical discotic liquid crystals: (a) Nuckolls, C.; Katz, T. J.; Katz, G.; Collings, P. J.; Castellanos, L. J. Am. Chem. Soc. 1999,121, 79-88. (b) Lovinger, A. J.; Nuckolls, C.; Katz, T. J. Am. Chem. Soc. 1998, 120, 264-268. (c) Nuckolls, C.; Katz, T. J.; Verbiest, T.; Van Elshocht, S.; Kauranen, M.; Kuball, H.-G.; Kiesewalter, S.; Lovinger, A. J.; Persoons, A. J. Am. Chem. Soc. 1998, 120, 8656-8660. (d) Nuckolls, C.; Katz, T. J.; Castellanos, L. J. Am. Chem. Soc. 1996, 118, 3767-3768.
206. [6]helicenebisquinones: [6] refer to six alkoxy side chain with five benzene ring and connect a quinine structure. (a) Vyklicky, L.; Eichhorn, S. H.; Katz, T. J. Chem. Mater. 2003, 15, 3594-3601.
207.Glüsen, B.; Kettner, A.; Wwndorff, J. H. Mol. Cryst. Liq. Cryst. 1997, 303, 115-120.
208. a) Glüsen, B.; Kettner, A.; Wendroff, J. H. Liq. Cryst. 1996, 20, 627-633. (c) Simmerer, J.; Glüsen, B.; Paulus, W.; Kettner, A.; Schuhmacher, P.; Adam, D.; Etzbach, K.-H.; Siemensmeyer, K.; Wendroff, J. H.; Ringsdrof, H.; Haarer, D. Adv. Mater. 1996, 8, 815-819.
209. (a) Ernst, K.-H.; Kuster, Y.; Fasel, R.; McFadden, C. F.; Ellerbeck, U. Surface Science 2003, 530, 195-202. (b) Taniguchi, M.; Nakagawa, H.; Yamagishi, A.; Yamada, K. Surface Science 2000, 454-456, 1005-1009.
210. Debije, M. G.; Piris, J.; de Haas, M. P.; Warman, J. M.; Tomovic, Z.; Simpson, C. D.; Watson, M. D.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 4641-4645.
211. (a) Clar, E. Polycyclic Hydrocarbons; Academic Press: New York, 1964; Vol. I/II. (b) Clar, E. The Aromatic Sextet; Wiley-VCH: London, 1972. (c) Scholl, R.; Seer, C.; Weitzenbök, R. Chem. Ber. 1910, 43, 2202-2209. (d) Scholl, R.; Seer, C. Liebigs Ann.Chem. 1912, 394, 111-123. (e) Scholl, R.; Seer, C. Chem. Ber. 1922, 55, 330-341. (f) Clar, E.; Stewart, D. G. J. Am. Chem. Soc. 1953, 75, 2667-2672. (g) Clar. E.; Schmidt, W. Tetrahedron 1979, 35, 2673-2680.
212. Balaban, A. T.; Nenitzescu C. D. In Friedel-Crafts and Related Reactions; Olah G. A., Ed; Interscience: New York, 1964; Vol. 2, Part 2, p 979.
213. Kovacic, P.; Jones, M. B. Chem. Rev. 1987, 87, 357-358.
214. Halleux, A.; Martin, R. H.; King, G. S. D. Helv. Chim. Acta 1958, 129, 1177-1183.
215. Hendel, W.; Khan, Z. H.; Schmidt, W. Tetrahedron 1986, 42, 1127-1134.
216.(a) Stabel, A.; Herwig, P.; Müllen, K.; Rabe, J. P. Angew. Chem. 1995, 107, 1768-1770.; Angew. Chem., Int. Ed. Engl. 1995, 34, 1609-1611. (b) Hyatt, J. A. Org. Prep. Proced. Int. 1991, 23, 460-463. (c) Kübel, C.; Eckhardt, K.; Enkelmann, V.; Wegner, G.; Müllen, K. J. Mater. Chem. 2000, 10, 879-886. (d) Herwig, P.; Kayser, C. W.; Müllen, K.; Spiess, H .W. Adv. Mater. 1996, 8, 510-513. (e) Fechtenkötter, A.; Saalwächter, K.; Harbison, M. A.; Müllen, K.; Spiess, H. W. Angew. Chem. 1999, 111, 3224-3228.; Angew. Chem., Int. Ed. 1999, 38, 3039-3042.
217.Fechtenkötter, A.; Tchebotareva, N.; Watson, M.; Müllen, K. Tetrahedron 2001, 57, 3769-3783.
218.DCC = N,N-二環己基碳二亞胺;N,N-dicyclohexylcarbodimide
219. DMAP = 4-二甲基胺基吡啶;4-dimethylaminopyridine
220.TBAF = 四丁基氟化胺;tetrabutylammonium fluoride
221. Taskahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627-630.
222. Yusubov, M. S.; Filimonov, V. D. Synthesis 1991, 131-132.
223.Barber, H. I.; Slack, R. J. Chem. Soc. 1944, 612-615.
224. (a) Ito, S.; Wehmeier, M.; Brand, J. D.; Kübel, C.; Epscb, R.; Rabe, J. P.; Müllen, K. Chem. Eur. J. 2000, 6, 4327-4342. (b) Lau, Stephen Y. W.; Hughes, G.; O’Shea, P. D.; Davies, I. W. Org. Lett. 2007, 9, 2239-2242. (c) Yoshikai, N.; Mashima, H.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 17978-17979. (d) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222-4223.
225. (a) Fechtenkötter, A.; Saalwächter, K.; Harbison, M. A.; Müllen, K.; Spiess, H. W. Angew. Chem., Int. Ed. Engl. 1999, 38, 3039-3042. (b) Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Hiquchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158.
226. 4-bromo-alkylbenzene was easily available by a Friedel-Crafts acylation of alkyl chloride and bromobenzene, follow by a Wolff-Kishner reduction of the resulting Ketone.(a) Friedel, C.; Crafts, J. M. Conpt. Rend. 1877, 84, 1392-1450. (b) Groves, J. K. “ The FriedelpCrafts acylation of alkenes”. Chem. Soc. Rev. 1972, 73-97.
227. Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. Org. Lett. 2002, 4, 3199-3202.
228. (a) Juergen, F.; Maas, G.; Regitz, M. J. Org. Chem. 1985, 50, 3839-3834. (b) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007-1019. (b) Shifirina, Z. B.; Averina, M. S.; Rusanov, A. L.; Wagner, M.; Müllen, K. Macromolecules 2000, 33, 3525-3529. (c) Morgenroth, F.; Müllen, K. Tetrahedron 1997, 53, 15349-15366. (d) Herwig, P.; Kayser, C. W.; Müllen, K.; Spiess, H. W. Adv. Mater. 1996, 8, 510-513. (e) Fechtenkötter, A. Saalwächter, K.; Harbison, M. A.; Müllen, K.; Spiess, H. W. Angew. Chem. 1999, 111, 3224-3228; Angew. Chem., Int. Ed. Engl. 1999, 38, 3039-3042. (f) Brand, J. D.; Kübel, C.; Ito, S.; Müllen, K. Chem. Mater. 2000, 12, 1638-1647.
229.Nagarajan, S.; Barthes, c.; Gourdon, A. Tetrahedron 2009, 65, 3767-3772.
230. Wehmeier, M.; Wangner, M.; Müllen, K. Chem. Eur. J. 2001, 7, 2197-2205.
231. (a) Balaban, A. T.; Nenitzescu, C. D. Dehydrogrnation Condensation of Aromatics (Scholl and Related Reactions). In Friedel-Crafts and Related Reactions; Olah, G.., Ed.; Wiley: New York, 1964; Vol. 2, pp 979-1047. (b) Baradley, W.; Sutcliffe, F. K. J. Chem. Soc. 1952, 1247-1251. (c) Pummerer, R.; Prell, E.; Rieche, A. Ber. Dtsch. Chem. Ges. 1926, 59, 2159-2161. (d) Mallory, F. B.; Wood, C. S.; Gordon, J. T.; Lindquist, L. C.; Savitz, M. L. J. Am. Chem. Soc. 1962, 84, 4361-4362. (f) Clar, E.; Ironside, C.; Zander, M. J. Chem. Soc. 1959, 142-148. (g) Cope;and, P. G.; Dean, R. E.; Mcneil, D. J. Chem. Soc. 1960, 1687-1689. (h) Hansch, C.; Geiger, C. F. J. Org. Chem. 1958, 23, 477-478.
232. Scoll, R.; Mansfeld, J. Ber. Stsch. Chem. Ges. 1910, 43, 1734-1746.
233. Oxidative cyclodehydrogenation paper review of HBCs : (a) Kübel, C.; Eckhardt, K.; Enkelmann, V.; Wegner, G.; Müllen, K. J. Mater. Chem. 2000, 10, 879-883. (b) Rempala, P.; Kroulik, J.; King, B. T. J. Am. Chem. Soc. 2004, 126, 1500-15003. (c) Stefano, M. D.; Negri, F.; Carbone, P.; Müllen, K. Chem. Phys. 2005, 314, 85-99. (d) Feng, X.; Wu, J.; Enklmann, V.; Müllen, K. Org. Lett. 2006, 8, 1145-1148. (e) Ito, S.; Wehmeier, M.; Brand, J. D.; Kübel, C.; Epsch, R.; Rabe, J. P.; Müllen, K. Chem. Eur. J. 2000, 6, 4327-4343.
234.a) Rempala, P.; Kroulik, J.; King, B. T. J. Org. Chem. 2006, 71, 5067-5081. (b) Rempala, P.; Kroulik, J.; King, B. T. J. Am. Chem. Soc. 2004, 126, 15002-15003.
235. Feng, X.; Wu, J.; Enkelmann, V.; Müllen, K. Org. Lett. 2006, 8, 1145-1148.
236. (a) Wadumethrige, S. H.; Rathore, R. Org. Lett. 2008, 10, 5139-5142. (b) Dou, X.; Yang, X.; Bodwell, G. J.; Wanger, M.; Enkelmann, V.; Müllen, K. Org. Lett. 2007, 9, 2485-2488.
237. Mohr, B.; Enkelmann, V.; Wegner, G.. J. Org. Chem. 1994, 5
238. Ito, S.; Wehmeier, M.; Brand Diehrich, J.; Kübel, C.; Epsch, R.; Rabe, J. P.; Müllen, K. Chem. Eur. J. 2000, 23, 4327-4342.




















論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-08-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-08-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信