淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2907200910093600
中文論文名稱 應用計算流體力學模擬之多目標最佳化觸媒設計
英文論文名稱 Computational fluid dynamics-based multiobjective optimal catalyst design simulation
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 趙永康
研究生英文姓名 Yung-Kang Chao
電子信箱 697400108@s97.tku.edu.tw
學號 697400108
學位類別 碩士
語文別 中文
口試日期 2009-07-27
論文頁數 105頁
口試委員 指導教授-張煖
委員-張煖
委員-何啟東
委員-陳錫仁
委員-王國彬
委員-程學恆
中文關鍵字 計算流體力學  填充床反應器  整合式多目標最佳化  二次重組反應器  基因演算法  多目標最佳化  蒸氣重組 
英文關鍵字 Computational fluid dynamics  Packed bed reactor  Integrated optimization system  Secondary reformer  Genetic algorithm  Multiobjective optimization  Steam reforming 
學科別分類
中文摘要 本論文使用計算流體力學(Computational Fluid Dynamics, CFD)軟體FLUENT,完成甲烷蒸氣重組製氫程序中二次重組反應器,管球直徑比(N)為4之模擬,包括球形與圓柱形觸媒。本論文並應用整合式多目標最佳化(Integrated Optimization System),包括實驗設計法(Design Of Experiment, DOE)、CFD模擬、反應表面法(Response Surface Method)以及基因演算法(Genetic Algorithm, GA),考慮單位長度觸媒床之壓損最小化與氫氣生成速率最大化之雙目標函數,完成二次重組反應器之觸媒設計最佳化設計。
球形與圓柱形觸媒最佳化設計結果均顯示,觸媒孔隙直徑對各目標函數之影響均很小,觸媒直徑之改變會產生兩個目標函數間之相互妥協現象。圓柱形觸媒最佳化設計結果顯示,最佳解使用大單孔觸媒或四孔觸媒之設計。使用大單孔觸媒之設計時,觸媒孔隙直徑應使用較大值,約1 μm,觸媒直徑則應介於0.01~0.013 m;使用四孔觸媒之設計時,觸媒孔隙直徑無特別重要性,觸媒直徑則應介於0.006~0.008 m。
英文摘要 In this thesis, the packed bed secondary reformer in the industrial hydrogen generation process is simulated using Computational Fluid Dynamics (CFD) for the reactor with tube-to-particle diameter ratio of 4 and both spherical and cylindrical shape of catalysts. An integrated optimization scheme, involving design of experiment, computational fluid dynamics simulation, response surface model, and genetic algorithm, is further appled for the mutiobjective optimization of catalyst design. The objective functions are pressure drop and hydrogen generation rate.
For both spherical and cylindrical catalysts, the objective functions are not sensitive to the catalyst pore diameter; however, the catalyst particle diameter shows trade-off relation on the two objective functions.
The optimization results reveal that the one-big-hole or the four-hole designs should be used for the cylindrical catalysts. For the one-big hole cylindrical catalyst, larger catalyst pore diameter, around 1 μm, and the catalyst particle diameter between 0.01 m and 0.013 m should be used. For the four hole cylindrical catalyst, the catalyst pore diameter is of no significance, but the catalyst particle diameter should be in the range of 0.006~0.008 m.
論文目次 中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 IX
第一章 前言 1
第二章 文獻回顧 3
2.1 填充床式反應器之計算流體力學模擬與觸媒設計 3
2.2 氫氣生成 6
2.3 整合式多目標最佳化 8
第三章 計算流體力學模式之建立 9
3.1 系統配置與網格建立 9
3.2 理論模式 14
3.2.1 基本統制方程式 14
3.2.2 混合物性模式 15
3.2.2.1 混合物黏度 15
3.2.2.2 混合物熱傳導係數 16
3.2.2.3 混合物質傳係數 17
3.2.3 化學反應和反應動力模式 18
3.2.4 紊流模式 21
3.2.5 紊流壁面處理 23
3.3 數值方法 25
3.3.1 離散方法 25
3.3.2 速度-壓力耦合方法 25
3.3.3 收斂準則與迭代參數 26
第四章 甲烷蒸氣重組反應器之計算流體力學模擬 27
4.1 甲烷蒸氣重組反應器 27
4.1.1 邊界條件設定 30
4.2 球型觸媒反應器模擬 31
4.2.1 網格無關化分析 31
4.2.2 邊界條件與其合理性 34
4.2.3 模擬結果 38
4.2.3.1 對稱性邊界條件之驗證 39
4.2.3.2 觸媒孔隙直徑對球形觸媒反應器之影響 42
4.2.3.3 觸媒直徑對球形觸媒反應器之影響 46
4.3 圓柱型觸媒反應器模擬 50
4.3.1 網格無關化分析 50
4.3.2 模擬結果 50
4.3.2.1 觸媒孔徑對圓柱形觸媒反應器之影響 52
4.3.2.1.1 實心圓柱與單孔圓柱之比較 52
4.3.2.1.2 小四孔圓柱與四孔圓柱之比較 54
4.3.2.2 觸媒直徑對圓柱形觸媒反應器之影響 56
4.3.2.2.1 實心圓柱與單孔圓柱之比較 56
4.3.2.3 單孔圓柱與大單孔圓柱之比較 58
第五章 甲烷蒸氣重組反應器觸媒設計最佳化 60
5.1 整合式多目標最佳化 60
5.1.1 實驗設計法 61
5.1.2 反應表面法 61
5.1.3 基因演算法 62
5.2 球形觸媒反應器 63
5.2.1 目標函數與決策變數 63
5.2.2 實驗設計法 64
5.2.3 反應表面法 66
5.2.4 基因演算法參數決定 70
5.2.5 基因演算法最佳化結果 72
5.3 圓柱形觸媒反應器 74
5.3.1 目標函數與決策變數 74
5.3.2 實驗設計法 75
5.3.3 反應表面法 77
5.3.4 基因演算法參數決定 84
5.3.5 基因演算法 86
第六章 結論 89
符號說明 91
參考文獻 96
附錄 101

圖2.1碳氫化合物製氫製程(Bartholomew與Farrauto, 2006) 7
圖3.1圓柱形觸媒孔洞分佈位置 11
圖3.2反應器網格圖 13
圖3.3反應器網格示意圖 13
圖3.4近壁面處流動結構圖(Fluent, 2005) 23
圖3.5壁面函數與近壁模型示意圖(Fluent, 2005) 24
圖4.1反應器截面 32
圖4.2球型觸媒反應器內部徑向截線速度分佈 33
圖4.3球型觸媒反應器徑向截線速度分佈-近壁處 33
圖4.4觸媒內部設定為固體與多孔性介質之速度分佈 36
圖4.5觸媒內部設定為固體與多孔性介質之壓力分佈 36
圖4.6觸媒內部設定為固體與多孔性介質之 分佈 37
圖4.7 Theta1與Tehta5之速度、溫度、氫氣質量分率圖 40
圖4.8 Theta2與Tehta4之速度、溫度、氫氣質量分率圖 41
圖4.9球形觸媒反應器觸媒孔隙直徑對速度之影響 43
圖4.10球形觸媒反應器觸媒孔隙直徑對溫度之影響 43
圖4.11球形觸媒反應器觸媒孔隙直徑對甲烷質量分率之影響 44
圖4.12球形觸媒反應器觸媒孔隙直徑對一氧化碳質量分率之影響 44
圖4.13球形觸媒反應器觸媒孔隙直徑對氫氣質量分率之影響 45
圖4.14球形觸媒反應器觸媒直徑對速度影響 47
圖4.15球形觸媒反應器觸媒直徑對溫度影響 47
圖4.16球形觸媒反應器觸媒直徑對甲烷質量分率影響 48
圖4.17球形觸媒反應器觸媒直徑對一氧化碳質量分率影響 48
圖4.18球形觸媒反應器觸媒直徑對氫氣質量分率影響 49
圖4.19圓柱形觸媒床之截面 50
圖4.20圓柱形觸媒反應器觸媒孔隙直徑與孔洞對速度影響 53
圖4.21圓柱形觸媒反應器觸媒孔隙直徑與孔洞對溫度影響 53
圖4.22圓柱形觸媒反應器觸媒孔隙直徑與孔洞對氫氣質量分率影響 53
圖4.23圓柱形觸媒反應器觸媒孔隙直徑與孔洞大小對速度影響 55
圖4.24圓柱形觸媒反應器觸媒孔隙直徑與孔洞大小對溫度影響 55
圖4.25圓柱形觸媒反應器觸媒孔隙直徑與孔洞大小對氫氣質量分率影響 55
圖4.26圓柱形觸媒反應器觸媒直徑與孔洞對速度影響 57
圖4.27圓柱形觸媒反應器觸媒直徑與孔洞對溫度影響 57
圖4.28圓柱形觸媒反應器觸媒直徑與孔洞對氫氣質量分率影響 57
圖4.29圓柱形觸媒反應器觸媒直徑與孔洞大小對速度影響 59
圖4.30圓柱形觸媒反應器觸媒直徑與孔洞大小對溫度影響 59
圖4.31圓柱形觸媒反應器觸媒直徑與孔洞大小對氫氣質量分率影響 59
圖5.1整合式最佳化系統 60
圖5.2 Pareto圖(OF1,OF2和OF3均求最小化) 62
圖5.3球形觸媒反應器實驗設計點空間分佈 65
圖5.4球形觸媒反應器目標函數之模擬值與迴歸結果比較 69
圖5.5球形觸媒反應器RSM圖 69
圖5.6改變基因演算法參數之最佳解分佈 71
圖5.7球形觸媒反應器之Pareto圖 72
圖5.8球形觸媒反應器最佳解之變數-目標函數分佈 73
圖5.9圓柱形觸媒反應器實驗設計點空間分佈 76
圖5.10圓柱形觸媒反應器目標函數之模擬值與迴歸結果比較 80
圖5.11 圓柱形觸媒目標函數OF1之RSM圖 81
圖5.12 圓柱形觸媒OF2之RSM圖 82
圖5.13 圓柱形觸媒OF3之RSM圖 83
圖5.14圓柱形觸媒改變基因演算法參數之最佳解分佈 85
圖5.15圓柱形觸媒反應器之Pareto圖 87
圖5.16圓柱形觸媒反應器最佳解之變數-目標函數分佈 88
圖A.1球形觸媒標號 101
圖A.2圓柱形觸媒標號 102

表3.1黏度參數 15
表3.2熱傳導係數參數 16
表3.3原子與官能基擴散體積增量表 17
表3.4甲烷製氫系統反應速率常數之參數值 20
表3.5甲烷製氫系統吸附係數之參數值 20
表3.6 離散方法與鬆弛因子設定 26
表3.7 收斂準則 26
表4.1反應器進料數據 28
表4.2 模擬個案 29
表4.3邊界條件 30
表4.4網格無關化個案網格條件 32
表4.5觸媒內部與觸媒表面為固體與壁個案之邊界條件 35
表4.6觸媒內部與觸媒表面設定為多孔性介質與內部面個案之邊界條件 35
表4.7球形觸媒反應器壓降與反應程度 38
表4.8圓柱形觸媒反應器之壓降與反應程度 51
表5.1球形觸媒反應器決策變數改變範圍 64
表5.2球形觸媒反應器實驗設計結果 65
表5.3球形觸媒模擬個案之目標函數值 67
表5.4目標函數之參考值與迴歸係數結果 67
表5.5球形觸媒反應器迴歸結果統計分析 68
表5.6 基因演算法參數值改變之影響 70
表5.7球形觸媒反應器之最佳化部分解 72
表5.8圓柱形觸媒反應器決策變數改變範圍 75
表5.9圓柱形觸媒反應器實驗設計結果 76
表5.10 圓柱形觸媒模擬個案之目標函數值 78
表5.11目標函數之參考值與迴歸係數結果 78
表5.12圓柱形觸媒反應器迴歸結果統計分析 78
表5.13基因演算法參數值改變之影響 84
表5.14圓柱形觸媒反應器部分解之變數內容 87
表A.1球型觸媒球心位置 101
表A.2圓柱形觸媒孔洞座標位置 102
表A.3圓柱形觸媒繪製方式 103
表A.4球形觸媒基因演算法結果 104
表A.5圓柱形觸媒基因演算法結果 105

參考文獻 Avinoam, N., & Leonid M, P. (1977). Simultaneous intraparticle forced convection, diffusion and reaction in a porous catalyst. Chemical Engineering Science, 32(1), 35-41.
Baiker, A., New, M., & Richarz, W. (1982). Determination of intraparticle diffusion coefficients in catalyst pellets-a comparative study of measuring methods. Chemical Engineering Science, 37(4), 643-656.
Bartholomew, C. H., & Farrauto, R. J. (2006). Fundamentals of industrial catalytic processes (2nd ed.). New York: Wiley.
Basile, A., Paturzo, L., & Lagan, F. (2001). The partial oxidation of methane to syngas in a palladium membrane reactor: Simulation and experimental studies. Catalysis Today, 67(1-3), 65-75.
Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2002). Transport phenomena (2nd ed.). New York: Wiley.
Box, G. E. P., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1), 1-45.
Calis, H. P. A., Nijenhuis, J., Paikert, B. C., Dautzenberg, F. M., & Van Den Bleek, C. M. (2001). CFD modeling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chemical Engineering Science, 56(4), 1713-1720.
Carpenter, W. C. (1993). Effect of design selection on response surface performance. NASA CR-4520.
Chang, H., & Chen, Y.-M. (2007). CFD simulation for catalytic reactors. Paper presented at the Proceedings of the 2007 CICHE Annual Meeting and Conference.
Cheng, S. H., Chen, H. J., Chang, H., Chang, C. K., & Chen, Y. M. (2008). Multi-objective optimization for two catalytic membrane reactors-Methanol synthesis and hydrogen production. Chemical Engineering Science, 63(6), 1428-1437.
Cussler, E. L. (1997). Mass transfer in fluid systems. Cambridge: Cambridge University Press.
De Groote, A. M., & Froment, G. F. (1996). Simulation of the catalytic partial oxidation of methane to synthesis gas. Applied Catalysis A: General, 138(2), 245-264.
De Smet, C. R. H., De Croon, M. H. J. M., Berger, R. J., Marin, G. B., & Schouten, J. C. (2001). Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells. Chemical Engineering Science, 56(16), 4849-4861.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
Dixon, A. G., Ertan Taskin, M., Hugh Stitt, E., & Nijemeisland, M. (2007). 3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients. Chemical Engineering Science, 62(18-20 SPEC. ISS.), 4963-4966.
Dixon, A. G., Ertan Taskin, M., Nijemeisland, M., & Stitt, E. H. (2008). Wall-to-particle heat transfer in steam reformer tubes: CFD comparison of catalyst particles. Chemical Engineering Science, 63(8), 2219-2224.
Dixon, A. G., & Nijemeisland, M. (2001). CFD as a design tool for fixed-bed reactors. Industrial and Engineering Chemistry Research, 40(23), 5246-5254.
Fluent. (2005a). UDF manual version 6.2. Lebanon, NH: Fluent, Inc.
Fluent. (2005b). User's guide version 6.2. Lebanon, NH: Fluent, Inc.
Freni, S., Calogero, G., & Cavallaro, S. (2000). Hydrogen production from methane through catalytic partial oxidation reactions. Journal of Power Sources, 87(1), 28-38.
Graaf, G. H., Scholtens, H., Stamhuis, E. J., & Beenackers, A. A. C. M. (1990). Intra-particle diffusion limitations in low-pressure methanol synthesis. Chemical Engineering Science, 45(4), 773-783.
Guardo, A., Coussirat, M., Larrayoz, M. A., Recasens, F., & Egusquiza, E. (2005). Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds. Chemical Engineering Science, 60(6), 1733-1742.
Gunjal, P. R., Ranade, V. V., & Chaudhari, R. V. (2005). Computational study of a single-phase flow in packed beds of spheres. AIChE Journal, 51(2), 365-378.
Haryanto, A., Fernando, S., Murali, N., & Adhikari, S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy and Fuels, 19(5), 2098-2106.
Iman, R. L., & Conover, W. J. (1980). Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Communications in Statistical Theory and Methods, A9(17), 1749-1842.
Ji, P., Feng, W., Van Der Kooi, H. J., & De Swaan Arons, J. (2004). Comparison of three integrated catalytic partial oxidation (CPO) processes producing H2 for fuel cell application. Industrial and Engineering Chemistry Research, 43(9), 2005-2016.
Ji, P., van der Kooi, H. J., & De Swaan Arons, J. (2003). Simulation and thermodynamic analysis of an integrated process with H2 membrane CPO reactor for pure H2 production. Chemical Engineering Science, 58(17), 3901-3911.
Jiang, P. X., Xu, R. N., & Gong, W. (2006). Particle-to-fluid heat transfer coefficients in miniporous media. Chemical Engineering Science, 61(22), 7213-7222.
Jin, W., Gu, X., Li, S., Huang, P., Xu, N., & Shi, J. (2000). Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas. Chemical Engineering Science, 55(14), 2617-2625.
Kaza, K. R., Villadsen, J., & Jackson, R. (1980). 3 intraparticle diffusion effects in the methanation reaction. Chemical Engineering Science, 35(1-2), 17-24.
Lian, Y., & Liou, M. S. (2005). Multiobjective optimization using coupled response surface model and evolutionary algorithm. AIAA Journal, 43(6), 1316-1325.
Logtenberg, S. A., Nijemeisland, M., & Dixon, A. G. (1999). Computational fluid dynamics simulations of fluid flow and heat transfer at the wall-particle contact points in a fixed-bed reactor. Chemical Engineering Science, 54(13-14), 2433-2439.
Lommerts, B. J., Graaf, G. H., & Beenackers, A. A. C. M. (2000). Mathematical modeling of internal mass transport limitations in methanol synthesis. Chemical Engineering Science, 55(23), 5589-5598.
Lopes, J. C. B., Dias, M. M., Mata, V. G., & Rodrigues, A. E. (1995). Flow field and non-isothermal effects on diffusion, convection, and reaction in permeable catalysts. Industrial and Engineering Chemistry Research, 34(1), 148-157.
Magnico, P. (2003). Hydrodynamic and transport properties of packed beds in small tube-to-sphere diameter ratio: Pore scale simulation using an Eulerian and a Lagrangian approach. Chemical Engineering Science, 58(22), 5005-5024.
Mason, E. A., & Saxena, S. C. (1958). Approximate formula for the thermal conductivity of gas mixtures. Physics of Fluids, 1(5), 361-369.
MATLAB. Statistics toolbox TM 7 user's guide: The MathWorks, Inc.
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239-245.
Nijemeisland, M., & Dixon, A. G. (2001). Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed. Chemical Engineering Journal, 82(1-3), 231-246.
Nijemeisland, M., & Dixon, A. G. (2004). CFD Study of fluid flow and wall heat transfer in a fixed bed of spheres. AIChE Journal, 50(5), 906-921.
Nijemeisland, M., Dixon, A. G., & Stitt, E. H. (2004). Catalyst design by CFD for heat transfer and reaction in steam reforming. Chemical Engineering Science, 59(22-23), 5185-5191.
Ostrowski, T., Giroir-Fendler, A., Mirodatos, C., & Mleczko, L. (1998). Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors Part I: A modeling approach. Catalysis Today, 40(2-3), 181-190.
Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Washington D.C.: Hemisphere.
Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1987). The properties of gases and liquids (4th ed.). New York: McGraw-Hill Book Company.
Rodrigues, A. E., Ahn, B. J., & Zoulalian, A. (1982). Intraparticle-forced convention effect in catalyst diffusivity measurements and reactor design. AIChE Journal, 28(4), 541-546.
Romkes, S. J. P., Dautzenberg, F. M., van den Bleek, C. M., & Calis, H. P. A. (2003). CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio. Chemical Engineering Journal, 96(1-3), 3-13.
Rosen, M. A. (1991). Thermodynamic investigation of hydrogen production by steam-methane reforming. International Journal of Hydrogen Energy, 16(3), 207-217.
Taskin, M. E., Dixon, A. G., Nijemeisland, M., & Hugh Stitt, E. (2008). CFD study of the influence of catalyst particle design on steam reforming reaction heat effects in narrow packed tubes. Industrial and Engineering Chemistry Research, 47(16), 5966-5975.
Taskin, M. E., Dixon, A. G., & Stitt, E. H. (2007). CFD study of fluid flow and heat transfer in a fixed bed of cylinders. Numerical Heat Transfer; Part A: Applications, 52(3), 203-218.
Twigg, M. (1997). Catalyst handbook (2nd ed.). London, UK: Wolfe Publishers.
Unal, R., Lepsch, R. A., & McMillin, M. L. (1998). Response surface model building and multidisciplinary optimization using D-optimal designs. AIAA paper, 98(4759).
Veldsink, J. W., van Damme, R. M. J., Versteeg, G. F., & van Swaaij, W. P. M. (1995). The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. The Chemical Engineering Journal and The Biochemical Engineering Journal, 57(2), 115-125.
Wassiljewa, A. (1904). Warmeleitung in gasgemischen. Physikalisches Zeitschrift, 5(22), 737-742.
Wilke, C. R. (1950). A viscosity equation for gas mixtures. The Journal of Chemical Physics, 18(4), 517-519.
Xu, J., & Froment, G. F. (1989). Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE Journal, 35(1), 88-96.
Yu, Y. H. (2002). Simulation of secondary reformer in industrial ammonia plant. Chemical Engineering and Technology, 25(3), 307-314.
陳逸明. (2007). 觸媒反應器之計算流體力學模擬. 淡江大學化學工程與材料工程學系碩士班, 台北.
涂芳平. (2008). 氫氣合成填充式反應器之計算流體力學研究. 淡江大學化學工程與材料工程學系碩士班, 台北.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信