淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2907200901465900
中文論文名稱 Chryseobacterium taeanense TKU001發酵綠豆所生產澱粉酶及其生物活性物質之研究
英文論文名稱 Studies on Purification of Amylases and Bioactive Materials from Mung Bean Fermented by Chryseobacterium taeanense TKU001
校院名稱 淡江大學
系所名稱(中) 生命科學研究所碩士班
系所名稱(英) Graduate Institute of Life Sciences
學年度 97
學期 2
出版年 98
研究生中文姓名 梁逸辰
研究生英文姓名 Yen-Chen Liang
學號 694290346
學位類別 碩士
語文別 中文
口試日期 2009-07-14
論文頁數 69頁
口試委員 指導教授-王三郎
委員-顏裕鴻
委員-王全祿
中文關鍵字 Chryseobacterium taeanense  綠豆  澱粉酶  抗氧化 
英文關鍵字 Chryseobacterium taeanense  mung bean  amylase  antioxidant 
學科別分類 學科別醫學與生命科學生物學
中文摘要 Chryseobacterium 又稱Flavobacterium,為非發酵、無運動性之菌株,係屬革蘭氏陰性桿菌。C. taeanense TKU001 以綠豆為主要碳氮源,經發酵後可生產澱粉酶,並進一步探討其酵素純化及定性。澱粉酶之較適培養條件為1.5%綠豆粉(mung bean powder;MBP)、0.1% K2HPO4 及0.05% MgSO4.7H2O 之100 mL 液態培養基(pH 9),於30℃振盪(150 rpm)培養5 天後可得較佳澱粉酶活性。
將發酵上清液經由冷凍乾燥(或減壓濃縮)、DEAE Sepharose CL-6B、Phenyl Sepharose 6 Fast Flow 等一系列管柱層析後進行生化性質分析。最適反應溫度與熱安定性分別為50℃與<60℃,最適反應pH 與pH 安定性分別為pH 9 與pH 7-11。在化學試劑穩定性測試中,Ca2+與Tween 40 可明顯提升酵素活性,但Fe2+、Cu2+及Mn2+則會完全抑制其活性。
抗氧化分析方面,以DPPH 自由基清除力、亞鐵離子螯合力、及還原力三種方式檢測,並測定其總酚含量。自由基清除試驗可達79%以上之有效清除率(1st 天),亞鐵離子螯合力則為0.34 mg/mL EDTA equivalents (6th 天),其總酚含量達0.38 mg/mL (7th 天),其還原力相當於0.36 mg/mL cysteine equivalents (7th 天)。
英文摘要 Chryseobacterium, formerly known as Flavobacterium, is a nonfermenting, nonmotile, gram-negative aerobic rod. An amylase was produced from the culture supernatant of C. taeanense TKU001 with mung bean powder as the main nutirion source. The optimized conditions for amylase production was found when the culture was shaken at 30℃ for five day (150 rpm) in 100mL of medium containing 1.5% mung bean powder, 0.1% K2HPO4, 0.05% MgSO4.7H2O (pH 9).
The amylase was purified from culture by lyophilization (or evaporation), DEAE sepharose CL-6B, and Phenyl Sepharose 6 Fast Flow column chromatography. The optimal temperature and thermal stability of this enzyme were 50℃ and <60℃. The optimal pH and pH stability of this enzyme were pH 9 and pH 7-11. This amylase was activated by Ca2+ ions and Tween 40, but completely inactivated by Fe2+, Cu2+, and Mn2+ ions.
The antioxidative evaluations were analyzed by free radical-scavenging activity, metal-chelating ability, reducing power, and total phenolic contents. The DPPH scavenging rate, Fe2+- chelating activity, reducing power, and total phenolics of TKU001 culture supernatant were revealed 56% (1st day), 0.34 mg/mL EDTA equivalents (6th day), 0.38 mg/mL (7th day), and 0.36 mg/mL cysteine equivalents (7th day), respectively.
論文目次 封面內頁
授權書
簽名頁
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 IX
第一章 緒論 1
第二章 文獻回顧 2
2.1 Chryseobacterium taeanense TKU001之簡介 2
2.2澱粉之分布及組成 2
2.3綠豆之組成及功用 3
2.4澱粉酶 4
2.5澱粉酶之分類 7
2.5.1 α澱粉酶 7
2.5.2 β澱粉酶 8
2.5.3 γ澱粉酶 8
2.6抗氧化 9
2.6.1自由基終止劑 9
2.6.2還原劑或氧清除劑 9
2.6.3金屬螯合劑 10
第三章 材料與方法 11
3.1實驗菌株 11
3.2實驗材料 11
3.3實驗儀器 12
3.4實驗方法 13
3.4.1澱粉酶活性分析 13
3.4.2酵素較適生產條件探討 14
3.4.2.1碳氮源種類之選擇 14
3.4.2.2培養溫度 15
3.4.2.3碳氮源濃度之影響 15
3.4.2.4培養基酸鹼值 15
3.4.2.5培養體積 15
3.4.2.6較適培養時間 16
3.4.3酵素之純化分離 16
3.4.3.1粗酵素液之製備 16
3.4.3.2陰離子交換樹脂層析 17
3.4.3.3疏水性層析 17
3.4.3.4蛋白質電泳 17
3.4.4酵素生化特性分析 18
3.4.4.1最適反應溫度 18
3.4.4.2熱安定 18
3.4.4.3最適反應pH 18
3.4.4.4 pH安定性 19
3.4.4.5金屬離子與抑制劑對酵素之影響 19
3.4.4.6界面活性劑對酵素之影響 19
3.4.5澱粉酶類型判定 20
3.4.5.1 α澱粉酶活性分析 20
3.4.5.2 β澱粉酶活性分析 20
3.4.6抗氧化分析 21
3.4.6.1 DPPH自由基清除能力 21
3.4.6.2亞鐵離子螯合能力 21
3.4.6.3還原力 22
3.4.6.4總酚含量 22
3.4.7乳酸菌促進生長分析 23
第四章 結果與討論 24
4.1澱粉酶較適生產條件探討 24
4.1.1碳氮源種類之選擇 24
4.1.2培養溫度 24
4.1.3碳氮源濃度之影響 25
4.1.4培養基酸鹼值 25
4.1.5培養體積 25
4.1.6較適培養時間 26
4.1.7較適培養條件 26
4.2澱粉酶之純化分離 33
4.2.1粗酵素液之製備 33
4.2.2陰離子交換樹脂層析 34
4.2.3疏水性層析 34
4.2.4蛋白質電泳 35
4.2.5綜合結果 35
4.3酵素之生化特性分析 40
4.3.1澱粉酶之最適反應溫度及熱安定性 40
4.3.2澱粉酶之最適反應pH及pH安定性 41
4.3.3金屬離子對酵素之影響 41
4.3.4界面活性劑對酵素之影響 42
4.3.5澱粉酶之型態判定 42
4.4抗氧化分析 51
4.4.1 DPPH自由基清除能力 51
4.4.2亞鐵離子螯合能力 51
4.4.3還原力 52
4.4.4總酚含量 52
4.4.5乳酸菌促進生長分析 53
第五章 結論 59
參考文獻 60
圖2.1不同類型澱粉酶之作用位置 5
圖2.2各類澱粉酶之分類 5
圖4.1不同碳源對於TKU001生產澱粉酶活性之影響 27
圖4.2培養溫度對於TKU001生產澱粉酶活性之影響 28
圖4.3 MBP添加濃度對於TKU001生產澱粉酶活性之影響 29
圖4.4培養基pH對於TKU001生產澱粉酶活性之影響 30
圖4.5培養體積對於TKU001生產澱粉酶活性之影響 31
圖4.6 C. taeanense TKU001於1.5% MBP生產澱粉酶、還原醣及其生長曲線圖 32
圖4.7 TKU001所生產澱粉酶之純化分離流程圖 36
圖4.8澱粉酶之DEAE-Sepharose CL-6B層析圖譜 37
圖4.9澱粉酶之Phenyl Sepharose 6 Fast Flow層析圖譜 38
圖4.10 TKU001澱粉酶SDS -PAGE之分子量分析 39
圖4.11 TKU001澱粉酶之最適反應溫度及熱安定性 43
圖4.12 TKU001澱粉酶之最適反應pH及pH安定性 44
圖4.13不同碳源對於DPPH自由基清除能力之影響 54
圖4.14不同碳源對於亞鐵離子螯合能力之影響 55
圖4.15不同碳源對於還原力之影響 56
圖4.16不同碳源對於生產總酚含量之影響 57
圖4.17不同添加濃度對於L. paracasei TKU010生長之影響 58
表2.1澱粉酶在工業上的應用 6
表3.1 DNS試劑的組成 14
表4.1 TKU001生產澱粉酶之較適培養條件 33
表4.2 C. taeanense TKU001澱粉酶之純化總表 40
表4.3金屬離子與抑制劑對澱粉酶之影響 45
表4.4界面活性劑對澱粉酶之影響 46
表4.5各種微生物之澱粉分解酶特性比較 47
參考文獻 Ali, M. B., Mhiri, S., Mezghani, M., Bejar, S., 2001. Purification and sequence analysis of the atypical maltohexaose-forming a-amylase of the B. stearothermophilus US100. Enzyme Microb Technol 28, 537-42.
Anneliese, C. and Wulf, C., 1990. Glucose transforming enzymes. Microbial Enzymes and Biotechnology (Edited by Fogarty, W. M. and Kelly, C. T.). Elsevier applied science 2nd ed., 5, 117-226.
Aquino, A. C., Jorge, J. A., Terenzi, H. F., Polizeli, M. L., 2003. Studies on a thermostable a-amylase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol 61, 323-8.
AVRDC, 1975. Chemical analysis of mungbean seeds. Asian Vegetable Research and Development Center, Progress report, Shanhua, Taiwan.
Bernfeld, P., 1955. Amylase, a and b. Methods in Enzymology (Edited by Colowick, S. P. and Kaplan, N. P.). Academic Press 1, 149-58.
Bernhardsdotter, E. C. M. J., Ng, J. D., Garriott, O. K., Pusey, M. L., 2005. Enzymic properties of an alkaline chelator-resistant a-amylase from an alkaliphilic Bacillus sp. isolate L1711. Process Biochem 40, 2401-8.
Bertoldo, C. and Antranikian, G., 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6, 151-60.
Brena, B. M., Pazos, C., Franco-Fraguas, L., Batista-Viera, F., 1996. Chromatographic methods for amylases. J Chromatogr B Biomed Appl 684, 217-37.
Buchanan, B. B., Gruissem, W., Jones R. L., Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists, 2001.
Campbell, L. L. and Manning, G. B., 1961. Thermostable a-amylase of Bacillus stearothermophilus III amino acid composition. J Biol Chem 236, 2962-5.
Cheetham, P. S. J. in A. Wisserman (Editor), 1985. Advances in Enzyme Biotechology. Ellis Horwood 2nd ed., 274.
Chua, H., Yu, P. H. F., Lo, W., Sin, S. N., 2001. The degradation of xenobiotic branched carboxylic acids in anaerobic sediment of the Pearl River in Southern China. Sci Total Environ 266, 221-8.
Dey, G., Palit, S., Banerjee, R., Maiti, B. R., 2002. Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. J Industrial Microbiol Biotechnol 28, 193-200.
Dinis, T. C. P., Maderia, V. M. C., Almeida, L. M., 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315, 161-9.
Dixon, M. and Webb, E. C., 1979. Enzymes. Academic Press.
Duedahl-Olesen, L., Kragh, K. M., Zimmermann W., 2000. Purification and characterisation of a malto-oligosaccharide-forming amylase active at high pH from Bacillus clausii BT-21. Carbohydr Res 329, 97-107.
Dziezak, J. D., 1986. Preservatives: antioxidants. Food Technol 40, 94-102.
Fischer, E. H. and Stein, E. A., 1961. a-amylase. The Enzymes (Edited by Boyer, P. D., Lardy, H., Myrback, K.). Academic Press 2nd ed., 316-21.
Giese, B., 1996. Antioxidants: tool for preventing lipid oxidation. Food Technol 50, 73-81.
Greenwood, C. T. and Milne, E. A., 1968. Starch degrading and synthesizing enzymes: a discussion of their properties and action pattern. Adv Carbohydr Chem Biochem 23, 281-366.
Hamilton, L. M., Kelly, C. T., Fogarty, W. M., 1998. Raw starch degradation by the non-raw starch-adsorbing bacterial a-amylase of Bacillus sp. IMD 434. Carbohydr Res 314, 251-7.
Hamilton, L. M., Kelly, C. T., Fogarty, W. M., 1999. Purification and properties of the raw starch-degrading a-amylase of Bacillus sp. IMD 434. Biotechnol Lett 21, 111-5.
Hamilton, L. M., Kelly, C. T., Fogarty, W. M., 1999. Production and properties of the raw starch-digesting a-amylase of Bacillus sp. IMD 435. Process Biochem 35, 27-31.
Hashim, S. O., Delgado, O. D., Martínez, M. A., Hatti-Kaul, R., Mulaa, F. J., Mattiasson, B., 2005. Alkaline active maltohexaose-forming a-amylase from Bacillus halodurans LBK 34. Enzyme Microb Technol 36, 139-46.
Hayashida, S., Teramoto, Y., Inoue, T., 1988. Production and characteristics of raw potato-starch-digesting a-amylase from Bacillus subtilis 65. Appl Environ Microbiol 54, 1516-22.
Krishnan, T. and Chandra, A. K., 1983. Purification and characterization of a-amylase from Bacillus licheniformis CUMC304. Appl Enviorn Microb 46, 430-7.
Li M., 2001. Research advance in chemical composion and pharmacological action of mung bean. Shanghai J Tradit Chin Med 5, 47-9.
Lonsane, B. K. and Ramesh, M. V., 1990. Production of bacterial thermostable a-amylase by solid-state fermentation: a potential tool for achieving economy in enzyme production and starch hydrolysis. Adv Appl Microbiol 35, 1-56.
Marco, J. L., Bataus, L. A., Valencia, F. F., Ulhoa, C. J., Astolfi-Filho, S., Felix, C. R., 1996. Purification and characterization of a truncated Bacillus subtilis a-amylse produced by Escherichia coli. Appl Microbiol Biotechnol 44, 746-52.
Messaoud, E. B., Ali, M. B., Elleuch, N., Masmoudi, N. F., Bejar, S., 2004. Purification and properties of a maltoheptaose- and maltohexaose-forming amylase produced by Bacillus subtilis US116. Enzyme Microb Technol 34, 662-6.
Miller, G. L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426-8.
Moktan, B., Saha, J., Sarkar, P. K., 2008. Antioxidant activities of soybean as affected by Bacillis-fermented to kinema. Food Res Int 41, 586-93.
Morgan, F. J. and Priest, F. G., 1981. Lethal catabolism of glycerol by Bacillus amyloliquefaciens. FEMS Microbiol Lett 10, 257-60.
Murao, S., Ohyama, K., Arai, M., 1979. b-amylase from Bacillus polymxa No.72. Argic Biol Chem 54, 737-43.
Najafi, M. F., Deobagkar D., Deobagkar D., 2005. Purification and characterization of an extracellular a-amylase from Bacillus subtilis AX20. Protein Expr Purif 41, 349-54.
Namiki, M., 1990. Antioxidants/ antimutagens in food. Crit Rev Food Sci Nutr 29, 273-300.
Nanmori, T., Mikami, B., Shinke, R., 1989. Characterization of Bacillus cereus b-amylase and role of its SH group. Denpun Kagaku 36, 73-6.
Neidleman, S. L., 1991. Historical perspective on the industrial uses of biocatalysts. Biocatalysts for Industry (Edited by Tonathan, S. D.). Plenum Press, 21-33.
Nguyen, Q., Rezessy-Szabo, J., Claeyssens, M., Stales, I., Hoschke, A., 2002. Purification and characterization of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme Microb Technol 31, 345-52.
Nigam, P. and Singh, D., 1995. Enzyme and microbials systems involved in starch processing. Enzyme Microb Technol 17, 770-8.
Nikolov, Z. L. and Reilly, P. J., 1991. Enzymatic depolymerization of starch. Biocatalysts for Industry (Edited by Tonathan, S. D.). Plenum Press, 37-62.
Obi, S. K. C. and Odibo, F. J. C., 1984. Partial purification and characterization of thermostable Actinomycete b-amylase. Appl Environ Microbiol 47, 571-5.
Oyaizu, M., 1986. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44, 307-15.
Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., Mohan, R., 2000. Advances in microbial amylases. Biotechnol Appl Biochem 31, 135-52.
Park, M. S., Jung, S. R., Lee, K. H., Lee, M. S., Do, J. O., Kim, S. B., Bae, K. S., 2006. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56, 433-8.
Prakash, B., Vidyasagar, M., Madhukumar, M. S., Muralikrishna, G., Sreeramulu, K., 2009. Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable a-amylases from Chromohalobacter sp. TVSP 101. Process Biochem 44, 210-5.
Saboury, A. A. and Karbassi F., 2000. Thermodynamic studies on the interaction of calcium ions with a-amylase. Thermochimica Acta 362, 121-9.
Sajedi, R. H., Naderi-Manesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B., Asoodeh, A., Moradian, F., 2005. A Ca-independent a-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 36, 666-71.
Shahidi, F. and Wanasundara, P. K., 1992. Phenolic antioxidants. Crit Rev Food Sci Nutr 32, 67-103.
Sohn, C. B., Lee, S. M., Kim, M. H., Ko, J. H., Kim, K. S., Chang, J. E., Ahn, Y. K., Kim, C. H., 1996. Purification and characterization of b-amylase from Bacillus polymyxa No26-1. J Food Sci 61, 230-4.
Um, S. H., Song, Y. O., Cheigh, H. S., 1990. Compositions of lipid class and fatty acids in lipids extracted from mung bean starch. J Korean Soc Food Nutr 19, 87-93.
Van der Maarel, M. J., Van der Veen, B., Uitdehaag, J. C., Leemhuis, H., Dijkhuizen, L., 2002. Properties and applications of starch-converting enzymes of the a-amylase family. J Biotechnol 94, 137-55.
Vieille, C. and Zeikus, G. J., 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65, 1-43.
Vihinen, M. and Mantsala, P., 1989. Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24, 329-418.
Wang, S. L., Huang, T. Y., Wang, C. Y., Liang, T. W., Yen, Y. H., Sakata, Y., 2008b. Bioconversion of squid pen by Lactobacillus paracasei subsp paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers. Biores Technol 99, 5436-43.
Wang, S. L., Yang, C. H., Liang, T. W., Yen, Y. H., 2008a. Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Biores Technol 99, 3700-7.
Webb, E., 1984. a-amylase, b-amylase, r-amylase. Enzyme Nomenclature. Academic Press, 306-7.
Yen, G. C. and Hsieh, C. L., 1998. Antioxidant activity of extracts from du-zhong (Eucommia ulmoides) toward various lipid peroxidation models in vitro. J Agric Food Chem 46, 3952-7.
Yin, L. J., 2005. Effect of rice koji fermentation on the characteristics of mackerel muscle. J Fish Soc Taiwan 34, 341-54.
Zakowski, J. J., Gregory, M. R., Bruns, D. E., 1984. Amylase from human serous ovarian tumors: purification and characterization. Clin Chem 30, 62-8.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信