§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2907200901374100
DOI 10.6846/TKU.2009.01086
論文名稱(中文) 適用於Ku頻帶圓極化相位陣列天線之設計及最佳化之初步研究
論文名稱(英文) Design of the satellite Ku-band CP array antennas and its initial study of Optimization
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 段龍輝
研究生(英文) Fai-Lung Tuen
學號 696440055
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2009-07-14
論文頁數 113頁
口試委員 指導教授 - 李慶烈(chingliehli@gmail.com)
委員 - 張知難(tnchang@ttu.edu.tw)
委員 - 陳一鋒(ex0206@just.edu.tw)
委員 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 李慶烈(chingliehli@gmail.com)
關鍵字(中) 陣列天線
威爾金森
遺傳演算法
Ku頻帶衛星頻帶
關鍵字(英) Circular polarization array antenna
genetic algorithm
Ku-band satellite
第三語言關鍵字
學科別分類
中文摘要
本論文的目的是在設計一使用於Ku頻帶衛星的圓極化陣列天線,微波頻段的Ku頻帶範圍是12GHz~18GHz,本論文主要探討的是用於固定式衛星服務及衛星廣播服務11.45~12.75GHz之頻率範圍的圓極化陣列天線,首先設計出一符合圓極化Ku頻帶衛星頻帶要求之單一天線元件,此單一元件達到寬頻、圓極化的特性外,更要有高增益(高指向性)、低旁瓣及隔離度的基本要求。
本論文提出的衛星圓極化陣列天線結構為以簡單的槽孔耦合patch天線(Aperture Coupling Patch Antenna)為基礎,此天線具有三層金屬結構,上層為方形patch輻射體之所在,中層為接地面(Ground Plane) 金屬,也是耦合槽孔之所在,下層金屬為50Ω饋入線之所在,當槽孔1和槽孔2的饋入線的相位相差90度即可產生圓極化輻射,另外,為了減少背向輻射又加上另一金屬接地面形成四層金屬的結構。
我們發現令激發槽孔位在patch的角會比位在patch的邊有更好的隔離度,並於後續結構中採用。另外,針對饋入網路,考慮頻寬的因素,吾人選用威爾金森(Wilkinson)功率分配器來做為訊號功率饋入的分配元件。為了考慮饋入網路走線之間彼此的耦合效應,它的激發路徑也是必須要經過精密的調整。我們探討了2X1及2X2陣列的模擬特性,並實作了2X2陣列的原型,模擬和量測結果非常一致。
接著,本論文進一步將遺傳演算法應用於圓極化陣列天線(Antenna Arrays)的最佳化,目標在調控激發相位使得圓極化陣列天線可在空間座標中進行波束掃描,為了在掃描主波束的過程中維持圓極化的特性,並達到較低的旁瓣位準(SLL),必須將其鄰近元件的耦合效應納入。為此,吾人得事先計算取得整個天線陣列環境(至少包含鄰近元件)中的單一天線元件在單阜(不是雙阜)饋入下的輻射特性,吾人利用全波模擬軟體來模擬2X2陣列天線在某一單阜獨自激發的情況下的輻射遠場rE,包括各角度的數據之收集,以作為GA演算程式做進行個別阜的激發相位調整時的輻射遠場更新之用。最後,針對2X2陣列天線的激發相位進行優化設計,但得先選擇適當的條件式與權重:由於是圓極化的陣列天線,故在波束掃描過程中,高增益(高指向性)、低旁瓣位準(SLL)以及低軸比等特性的維持都被納入搜尋條件。再藉由遺傳演算法來搜尋最佳解,以計算出掃瞄各角度所需的激發值相位列表,並將GA最佳化的結果與模擬軟體的數據進行的比對,結果顯示兩者之間的準確度及一致性極高,兩者誤差比約在1%以內。
英文摘要
The purpose of this thesis is to design a Ku-band circular polarization array for satellite application. Ku-band microwave frequency ranges from 12GHz to 18GHz in general. The objective of this thesis is to explore the circular polarization array antenna for fixed satellite services and satellite broadcasting services covering 11.45 ~ 12.75GHz frequency range. At first, one need to design a single antenna element with circular polarization that meet Ku-band satellite bandwidth requirements. The single antenna element need to achieve broadband characteristics of circular polarization, but also have high isolation.
This thesis presents an array of circular polarization satellite antenna, of which the structure is based on a simple slot-coupled patch antenna. The patch antenna has three matellic layers, of which the upper layer is where a square patch radiator resides. Meanwhile, the middle layer is the metallic ground plane, where the coupling slots are etched, and the lower layer is intended for the 50Ω feed line and/or feeding network. When the feed line for slot 1 and slot 2, respectively, exhibits 90-degree phase difference the circular polarization of radiation can be generated. In addition, in order to reduce the backscattered radiation another metal surface is added to form a four-layer metallic structure.
We found that putting the excitation slot at the corner of the patch can improve the isolation as compared with putting the excitation slot at the edge of the patch. Thus the structure with excitation slot being at the corner of the patch is adopted for the successive investigation. In addition, for the feeding network the Wilkinson power splitter is used to feed input signal power regarding the frequency bandwidth. Taking into account of the coupling effect between the feed lines of near paths, careful adjustment for the path length is necessary. We have examined the simulated characteristics of the 2X1 and 2X2 arrays, and the prototype of the 2X2 array is fabricated and measured. The simulation and measurement results are found in very good agreement.
Then, in this thesis the genetic algorithm is applied to further optimize the design for the circular polarization array antenna. The objective is to scan the main beam by suitable adjustments of the phase of the excitation current. During the course of scanning the characteristics of circular polarization must be maintained, meanwhile, the sidelobe level (SLL) is kept low, for which the coupling effect between the antenna elements must be took into account. To accomplish this, we have to calculate in advance the radiated E fields of the entire antenna array (at least including the neighboring components) with only a single antenna element being excited. The full-wave simulation software is employed to simulate the the 2X2 array antenna as mentioned. The far zone E fields rE of all the angles (up to one degree resolution) are obtained and saved for successive optimization using GA algorithm. In GA, the far zone E fields must be updated for different phase adjustments of the excitation current.
Finally, for the optimal excitation phase searching for the 2X2 phase array, one must first select the appropriate optimization conditions and weights: as a circular polarization array antenna is considered, the conditions of high-gain, low sidelobe level (SLL) and low axial ratio are included into the searching fitness criteria. Then through the genetic algorithm the optimal solution to achieve the required scanning angle can be obtained, and the list of the excitation phases of the current is calculated and saved for practical usage. The results of GA optimization are compared with the simulation results by software, and the results show very good accuracy and consistency with error less than 1%
第三語言摘要
論文目次
目錄
中文摘要...........................................II
英文摘要...........................................V
第一章 序論 ...................................... 1
1.1概述 .......................................... 1
1.2 研究動機 ..................................... 22
1.3 研究內容簡介 ................................. 24
第二章 槽孔式耦合圓極化平面天線 .................. 25
2.1 前言 ......................................... 25
2.2 微帶天線的優點與缺點 ......................... 26
2.3 微帶天線輻射原理 ............................. 27
2.4饋入激發的方式 ................................ 31
2.5 反射金屬板(Metal Reflector) .................. 34
2.6等效電路(Equivalent Circuit) .................. 35
第三章 陣列天線的模擬與饋入網絡 .................. 39
3.1 整體天線的結構與實驗構思 ..................... 39
3.2 單一圓極化天線設計分析 ....................... 43
3.3威爾金森功率分配器(Wilkinson power divider) ... 60
3.3.1結合威爾金森功率分配器的單一菱形天線 ........ 64
3.3.2陣列天線與饋入網路 .......................... 72
第四章 量測與分析 ................................ 81
4.1實體製作 ...................................... 81
4.2遺傳演算法進行相位陣列天線最佳化設計 .......... 89
第五章 結論 ...................................... 95

圖目錄
圖一、衛星的即時移動影音通訊的示意圖...............1
圖二、遺傳演算法的流程圖示.........................5
圖三、目標條件式架構...............................6
圖四、天線陣列示意圖...............................7
圖四、天線陣列示意圖(續)...........................8
圖五、一個二維矩形天線陣列的幾何結構示意圖.........10
圖六、Cmnpq 描述互耦合(mutual coupling)的效應......12
圖七、各種陣列天線的型態...........................14
圖八、蝴蝶型式(bow-tie)天線........................15
圖九、梯狀型態的天線...............................16
圖十、2D輻射場形圖	.................................16
圖十一、(a)小環金屬線條天線以及軸比特性參數........17
圖十一、(b)菱形狀金屬線條天線以及軸比特性參數......17
圖十一、(c)菱形狀金屬線條天線以及軸比特性參數......18
圖十二、(a)特殊材質鈦酸鍶鋇結構圖..................19
圖十二、(b)特殊材質鈦酸鍶鋇位置移動圖示............19
圖十二、(C)特殊材質鈦酸鍶鋇各項圖表................20
圖十三、微帶天線示意圖.............................25
圖十四、平面式微帶天線各符號表示...................27
圖十五、平面式微帶天線(a)為立體圖(b)為側邊圖,圖(c)為俯視圖.................................................28
圖十六、平面式微帶天線(a)直接饋入(Direct feed) (b)同軸(Coaxial)	..........................................31
圖十七、孔隙天線...................................33
圖十八、孔隙天線各介質層簡述.......................34
圖十九、正規化後的等相位天線雷達圖與示意圖.........35
圖二十、等效電路 (a)側圖(Side View) (b)俯視圖(Top View)
...................................................35
圖二十一、通用的網路模型...........................36
圖二十二、電場在孔隙中分佈的現象...................37
圖二十三、阻抗匹配等比關係.........................37
圖二十四、天線陣列之組成元件的概略示意圖...........42
圖二十五、單一天線元件初始架構的尺寸及外觀.........44
圖二十六、初始架構天線元件的(a)S參數、(b)2D輻射圖及(c)軸比及(d)Port1與Port2相差(Phase)90度激發的電流圖。...47
圖二十七、修正初始架構天線元件的(a)結構(b)S參數及(c)軸比.................................................50
圖二十八、輻射體位置修正為菱形.....................50
圖二十九、(a)菱形的天線結構之s參數特性.............51
圖二十九、(b)菱形的天線結構之AR....................51
圖三十、修改菱形天線結構的槽孔設計.................52
圖三十一、(a)修改菱形天線槽孔後的單一天線元件之S參數
...................................................53
圖三十一、(b)修改菱形天線槽孔後的單一天線元件之AR參數
...................................................53
圖三十一、(c)修改菱形天線槽孔後的單一天線元ZX-Plane
...................................................54
圖三十一、(d)修改菱形天線槽孔後的單一天線元ZY-Plane
...................................................54
圖三十二、(a)HFSS上菱形天線輻射導體的尺寸..........55
圖三十二、(b)菱形天線厚度尺寸......................55
圖三十二、(c)HFSS上的菱形天線尺寸..................56
圖三十三、(a)菱形天線的S參數模擬結果...............56
圖三十三、(b)菱形天線的AR模擬結果..................57
圖三十三、(c)菱形天線的隔離度模擬結果..............57
圖三十三、(d)ZY-Plane的模擬輻射特性................58
圖三十三、(e)ZX-Plane的模擬輻射特性................58
圖三十三、(f)XY-Plane的模擬輻射特性................59
圖三十四、威爾金森功率分配器.......................60
圖三十五、威爾金森功率分配器在HFSS上模擬...........62
圖三十六、威爾金森功率分配器的S參數................63
圖三十七、(a)結合菱形天線與威爾金森功率分配器......64
圖三十七、(b)結合菱形天線與威爾金森功率分配器後的S參數
...................................................65
圖三十七、(c)結合菱形天線與威爾金森功率分配器的AR..65
圖三十七、(d)結合菱形天線與威爾金森功率分配器ZX-Plane
...................................................66
圖三十七、(e)結合菱形天線與威爾金森功率分配器ZY-Plane
...................................................66
圖三十七、(f)結合菱形天線與威爾金森功率分配器XY-Plane
...................................................67
圖三十七、(g)結合菱形天線與威爾金森功率分配器的激發電流分佈圖.................................................67
圖三十八、加入金屬背板.............................68
圖三十九、(a)加入金屬背板後的S參數.................69
圖三十九、(b)加入金屬背板後的AR....................69
圖三十九、(c)ZX-Plane的模擬輻射特性................70
圖三十九、(d)ZY-Plane的模擬輻射特性................70
圖三十九、(e)XY-Plane的模擬輻射特性................71
圖四十、2 x 1天線陣列結構圖........................72
圖四十一、(a) 2 x 1天線陣列的S參數.................73
圖四十一、(b) 2 x 1天線陣列的軸比..................73
圖四十一、(c) 2 x 1天線陣列ZX-Plane的模擬輻射特性..74
圖四十一、(d) 2 x 1天線陣列ZY-Plane的模擬輻射特性..74
圖四十一、(e) 2 x 1天線陣列XY-Plane的模擬輻射特性..75
圖四十二、(a) 2 x 1天線陣列的電流分佈圖............75
圖四十二、(b) 2 x 1天線陣列的電流分佈及相量圖......76
圖四十三、(a)七個威爾金森功率分配器形成的2 x 2天線陣列之饋入網路...............................................76
圖四十三、(b) 2 x 2天線陣列的S參數.................77
圖四十三、(c) 2 x 2天線陣列的AR....................78
圖四十三、(d) 2 x 2天線陣列ZX-Plane的模擬輻射特性..78
圖四十三、(e) 2 x 2天線陣列ZY-Plane的模擬輻射特性..79
圖四十三、(f) 2 x 2天線陣列XY-Plane的模擬輻射特性..79
圖四十三、(g)七個威爾金森功率分配器加2 x 2天線陣列的電流分佈.................................................79
圖四十四、2x2天線陣列饋入網路系統的結構尺寸........80
圖四十五、(a)威爾金森功率分配器實體圖..............82
圖四十五、(b) 2x2天線陣列槽孔實體圖................82
圖四十五、(c) 2x2天線陣列輻射體實體圖..............83
圖四十五、(d) 2x2天線陣列反射板實體圖..............83
圖四十六、2x2天線陣列各種板材的材料圖示............84
圖四十七、以塑膠螺絲固定的2x2陣列天線原型..........85
圖四十八、(a) 2x2天線陣列的駐波比..................86
圖四十八、(b) 2x2天線陣列的S參數...................86
圖四十九、(a) 2x2天線陣列ZX-Plane量測與模擬的2D輻射場形比較圖.................................................87
圖四十九、(b) 2x2天線陣列ZY-Plane量測與模擬的2D輻射場形比較圖.................................................87
圖四十九、(c) 2x2天線陣列XY-Plane量測與模擬的2D輻射場形比較圖.................................................88
圖四十九、(d) 2x2天線陣列ZX-Plane量測與模擬的HPBW束寬比較圖.................................................88
圖五十、為2X2陣列天線各點激發阜的示意圖............91
圖五十一、為(Case1)2D的場形圖......................93
圖五十二、為(Case1)3D的立體圖......................93
圖五十三、為(Case2)2D的場形圖......................94
圖五十四、為(Case2)3D的立體圖......................94

表目錄
表一、威爾金森功率分配器的插入損耗.................61
表二、模擬與實測之間的差異表.......................81
表三、主波束在 且 (Case1),由GA最佳化的數值與HFSS數值的比較(Case1)GA最佳化後所得數值與HFSS數值的比較表........91
表四、主波束在 且 (Case2),由GA最佳化後的數值與HFSS數值的比較(Case2)GA最佳化後所得數值與HFSS數值的比較表......92
參考文獻
參考文獻
[1].
Tombak, A.; Tito Ayguavives, F.; Maria, J.-P.; Stauf, G.T.; Kingon, A.I.; Mortazawi, A., “Low voltage tunable barium strontium titanate thin film capacitors for RF and microwave applications”, Microwave Symposium Digest., 2000 IEEE MTT-S International Volume 3, 11-16 June 2000 Page(s):1345 - 1348 vol.3
[2].
Kurchania R., Bell A.J., Chakraborty T., Hunter I.C., 2004, An Investigation of BST:MgTiO3 and X7R:MgTiO3 based Ceramics for Microwave Applications, IEEE International Ultrasonics, Ferroelectrics and Frequency Control 50th Anniversary Joint Conference, Montreal, Canada
[3].
Yu Fan; Ronghong In; Bo Liu; “Synthesis of antenna arrays using a modified complex number coded genetic algorithm”, Antennas and Propagation Society International Symposium, 2004. IEEE Volume 3, 20-25 June 2004 Page(s):2667 - 2670 Vol.3
[4].
Seong Ho Son; Eom, S.Y.; Jeon, S.I.; Woonbong Hwang; “Automatic Phase Correction of Phased Array Antennas by a Genetic Algorithm”, Antennas and Propagation, IEEE Transactions on Volume 56, Issue 8, Part 2, Aug. 2008 Page(s):2751 - 2754
[5].
Taeksoo Ji; Yoon, H.; Abraham, J.K.; Varadan, V.K.; “Ku-band antenna array feed distribution network with ferroelectric phase shifters on silicon”, Microwave Theory and Techniques, IEEE Transactions on Volume 54, Issue 3, March 2006 Page(s):1131 - 1138
[6].
Baggen, L.; Bottcher, M.; Eube, M.; “3D-Butler matrix topologies for phased arrays”, Electromagnetics in Advanced Applications, 2007. ICEAA 2007.International Conference on 17-21 Sept. 2007 Page(s):531 - 534
[7].
Shahabadi, M.; Busuioc, D.; Borji, A.; Safavi-Naeini, S.; “ Low-cost, high-efficiency quasi-planar array of waveguide-fed circularly polarized microstrip antennas”, Antennas and Propagation, IEEE Transactions on Volume 53, Issue 6, June 2005 Page(s):2036 - 2043
[8].
Walcher, D.A.; Lee, R.Q.; Lee, K.; “Microstrip patch antenna receiving array operating in the Ku band”, Antennas and Propagation Society International Symposium, 1996. AP-S. Digest Volume 3, 21-26 July 1996 Page(s):1904 - 1907 vol.3
[9].
Filipovic, D.F.; “A planar wideband circularly polarized antenna for satellite communications”, Technologies for Wireless Applications, 1999. Digest. 1999 IEEE MTT-S Symposium on 21-24 Feb. 1999 Page(s):213 - 216
[10].
Hirose, K.; Tajima, R.; Nakano, H.;”Ladder antennas for dual circular polarization”, Antennas and Propagation Society International Symposium, 2005 IEEE Volume 2A, 3-8 July 2005 Page(s):242 - 245 vol. 2A
[11].
RongLin Li; DeJean, G.; Laskar, J.; Tentzeris, M.M.; “ Investigation of circularly polarized loop antennas with a parasitic element for bandwidth enhancement”, Antennas and Propagation, IEEE Transactions on Volume 53,Issue 12, Dec. 2005 Page(s):3930– 3939
[12].
DeJean, G.; Li, R.L.; Laskar, J.; Tentzeris, M.M.; “Circularly polarized loop antennas with a parasitic element for bandwidth enhancement”, Antennas and Propagation Society International Symposium, 2005 IEEE Volume 1B, 2005 Page(s):401 - 404 vol. 1B
[13].
Y. Zhang, “Ultra-wide bandwidth channel analysis in time domain using 3-D ray tracing,” High Frequency Postgraduate Student Colloquium of IEEE, pp. 189-194, September 2004.
[14].
Qingduan Meng, Xueqiang Zhang, Fei Li, Jiandong Huang, Xiaohong Zhu, Dongning Zheng, Bolin Cheng, Qiang Luo, Changzhi Gu, and Yusheng He , “An Impedance Matched Phase Shifter Using BaSrTiO3 Thin Film”, IEEE MIcrowave and Wireless components letters, vol. 16, no.6 june 2006.
[15].
Hargsoon Yoon; Vinoy, K.J.; Abraham, J.K.; Varadan, V.K.; “CPW phase shifter using barium strontium titanate thin film on silicon substrate”, Antennas and Propagation Society International Symposium, 2003. IEEE Volume 3, 22-27 June 2003 Page(s):970 - 972 vol.3
[16].
A.A.H. Azrem, N.A. Saidatul, P.J. Soh, M.A. Idris, N.Mahmed , “A Cylindrical Barium Strontium Titanate (BST) Dielectric Resonator Antenna for 5.0 GHz Wireless LAN Application” , pp. 327-330, 2008 Asia-Pacific Symposium on Electromagnetic compatibility, 19-22 May 2008, Singapore
[17].
Tombak, A.; Maria, J.-P.; Ayguavives, F.; Zhang Jin; Stauf, G.T.; Kingon, A.I.; Mortazawi, A.; “Tunable barium strontium titanate thin film capacitors for RF and microwave applications”, Microwave and Wireless Components Letters, IEEE Volume 12, Issue 1, Jan. 2002 Page(s):3 – 5
[18].
Ching-Lieh Li, Jian-Ping Chang, Wen-Yen Lin, “A Broadband Microstrip-Fed Notch Antenna with Multiple Rejection Zeros”, ICEMAC 2004, Friday ,Octobor 15, Session AP-4, AP-44
[19].
Ting-Yen Shih, Ching-Lieh Li and Chen-Shian Lai, Oct. 2004, DESIGN OF AN UWB FULLY PLANAR QUASI-ELLIPTIC MONOPOLE ANTENNA, ICEMAC’2004, Taipei, Taiwan
[20].
Ching-Lieh Li, Jian-Ping Chang and Wen-Yen Lin, Oct. 2004, A Broadband Microstrip-fed Notch Antenna with Multiple Rejection Zeros, ICEMAC’2004, Taipei, Taiwan
[21].
Ching-Lieh Li, Pei-Ying Lin, Chien-Ping Chang and Shao-Hon Chen, Sept. 2004, Broadband Extended Double Folded Slot Antenna Fed By a Microstrip Line, Cross Strait Tri-regional Radio Science and Wireless Technology Conference, HsinChu, Taiwan
[22].
Microstrip-fed dual-frequency printed triangular monopole Chen, H.-M.; Electronics Letters , Volume: 38 Issue: 13 , 20 Jun 2002 Page(s): 619 -620
[23].
Dual frequency coplanar triangular monopole antenna Yi-Fang Lin; Hua-Ming Chen; Chin-Chun Kuo; Kuang-Chih Huang; Antennas and Propagation Society International Symposium, 2002. IEEE , Volume: 2 , 16-21 June 2002 Page(s): 48 -51 vol.2
[24].
A compact dual-band microstrip-fed monopole antenna Hua-Ming Chen;
[25].
Compact CPW-fed dual-frequency monopole antenna Horng-Dean Chen; Electronics Letters , Volume: 38 Issue: 25 , 5 Dec. 2002 Page(s): 1622 -1624
[26].
Microstrip-fed dual-U-shaped printed monopole antenna for dual-band wireless communication applications I-Fong Chen; Chia-Mei Peng; Electronics Letters , Volume: 39 Issue: 13 , 26 June 2003 Page(s): 955 -956
[27].
A low-profile planar monopole antenna for multiband operation of mobile handsets Kin-Lu Wong; Gwo-Yun Lee; Tzung-Wern Chiou; Antennas and Propagation, IEEE Transactions on , Volume: 51 Issue: 1 , Jan. 2003 Page(s): 121 -125
[28].
Low-profile planar monopole antenna for GSM/DCS/PCS triple-band mobile phone Lee, G.; Chiou, T.; Wong, K.; Wang, C.; Antennas and Propagation Society International Symposium, 2002. IEEE , Volume: 3 , 16-21 June 2002 Page(s): 26
[29].
Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations Yen-Liang Kuo; Kin-Lu Wong; Antennas and Propagation, IEEE Transactions on , Volume: 51 Issue: 9 , Sep 2003 Page(s): 2187 -2192
[30].
Planar monopole antennas for 2.4/5.2 GHz dual-band application Jen-Yea Jan; Liang-Chih Tseng; Antennas and Propagation Society International Symposium, 2003. IEEE , Volume: 4 , June 22-27, 2003 Page(s): 158 -161
[31].
Planar dual-band monopole antenna designs embedded with an open square slot Jen-Yea Jan; Tsung-Han Wu; Antennas and Propagation Society International Symposium, 2003. IEEE , Volume: 4 , June 22-27, 2003 Page(s): 142 -145
[32].
Printed monopole antenna for 2.4/5.2 GHz dual-band operation Hua-Ming Chen; Yi-Fang Lin; Antennas and Propagation Society International Symposium, 2003. IEEE , Volume: 3 , June 22-27, 2003 Page(s): 60 -63
[33].
施廷諺 超寬頻單極微帶天線, 專題報告, 淡江大學電機工程學系, 2003年11月
[34].
李慶烈, 張建平, 林佩穎, 縮小化T型槽孔天線之設計,2003EMC Conference ,Taipei, Taiwan
[35].
李慶烈, 史青平, 李翊瑋, 單一饋入寬頻槽孔天線的設計, ,2003EMC Conference ,Taipei, Taiwan
[36].
史青平, 單一饋入寬頻及多頻天線的分析與設計, 淡江大學電機工程學系, 民92
[37].
莊宜璋, 方形環狀及H型槽孔天線特性之研究, 淡江大學電機工程學系, 民91
[38].
李翊瑋, 微帶環形槽孔天線的分析與設計, 淡江大學電機工程學系, 民90年
[39].
鍾源德, 應用遺傳演算法於天線陣列之最佳化, 淡江大學電機工程學系, 民89年
[40].
E Brookner, ”Major Advances in Phased Arrays: Part 1,”Microwave Journal(May 1997):288-293,
[41].
E Brookner, ”Major Advances in Phased Arrays: Part 1,”Microwave Journal(May 1997):84-92,
[42].
I.,Eriksson and S. Broden, ”High Performance Automotive Radar.”Microwave Journal (October 1996):24-38.
[43].
A. Stove.”Automobile Radar, ”Applied Microwave Magazine(Spring 1993)102-115.
[44].
C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and Decoding: Turbo Codes.”IEEE Int Conf.Comm.Conf.Record ,vol.2(May 1993):1064-1070.
[45].
J.Budinger et al,"Direct data distribution from low earth orbit."IEEE Int't Conf.Comm.,(June 1997):662-673
[46].
C. A. Jensen J.D.Terry. and M.Vanderaar. "The implication of encoder /Modulator/Phased array Designs for future Broadband LEO communication, "SPIE Proc.,vol.3232(1997):61-72.
[47].
S.Ohmori,S.Taira, and M,Austin.J.Comm.Res.Lab,38 no.2(1991):217.
[48].
D.collier, "Optimizing LNAs for Use in Phased Arrays, "Microwave Systems News(April 1990):37-45
[49].
L.Dunleavy,"GaAs MMICs Perform in Phase Shifter, "Microwaves & RF (April 1984):49-52
[50].
J.White,Microwave Semiconductor Engineering(New Yourk :Van Nostrand Reinhold Co.,1982).
[51].
G.Batolucci.F.Giannini, and E.Limiti, "On the Generalized Loaded-Line Phase Shifter."IEEE Int'l Microwave and Optoelectronics Conf. Proc.(1995):554-558.
[52].
J.Geddesetal, "Characteristics of 30GHz MMIC Receivers for satellite Feed Array Application, "GaAs IC Symposium Digest(1987).
[53].
S.Ohmori,S.Taira,and M.Austin,"Beam Scanning Error of Phased Array Antenna,"Journalof Communications Research Laboratory,vol.38,no.2(July1991)217-222.
[54].
Z.Wang et al,"Single-Chip 4Bit 35GHz Phase-Shifting receiver with Gb/s Digital Interface circuitry,"GaAs IC Symposium(1995):234-237.
[55].
K.Bhasim et al."Control of a GaAs Monolithic Ka-Band Phase shifter Using a High-Speed Optical Interconnect,"IEEE Trans.MTT,38,no.5(May 1990):686-688.
[56].
S.Rossek and C.Free."Optically Controlled Microwave Switching and Phase Shifting Using GaAs FET," IEEE Micro.Guided Wave Letter ,vol,5.no.3(March 1995):8-83.
[57].
R.Romsnofsky."On the relationship Between Schottky Barrier Capacitance and Mixer Performance at Cryogenic Temperatures."IEEE Micro.Guided Wave
[58].
Letter,vol.6,no.8(August 1996):286-288.
[59].
W.Mclevige and V.Sokolow,"Resonated GaAs FET Devices for Microwave Switching ."IEEE Trans.Elect.Dev.,vol.ED-28,no.2 (February 1981):198-204.
[60].
V. Sokolov et al,"A ka-band GaAs Monolithic Phase Shifter ,"IEEE Trans, Microwave Theory Tech ,vol MTT-31,no.12(December 1983):1077-1082.
[61].
K.Kurokawa and W.Schlosser, "Quality Factor of Switching Diodes for Digital Modulation,Proc.IEEE,vol.38(January 1970):180-181
[62].
H. Atwater and R.Sudbury."Use of Switching Q in the Design of EFT Microwave Switches,""IEEE MTT-S Int. Microwave Symposium Digest(June 1981):370-372.
[63].
M.Schindler and A.Morris,"DC-40GHz and 20-40Ghz MMIC SPDT Switches,"IEEE Truns.Micro Theory Tech,vol.MTT-35,no.12(December 1987):1486-1492.
[64].
Aa.Tagantsev,"Mcchanisms of Dielectric Loss in Microwave Materials, "Materials Research Society Proceedings,6003(2000):221-232.
[65].
R.Katiyar et al," Investigations on Sol-Gel Derived BaosSrosTiδMnδO3Thin Films for Phase Shifter Application s,” Materials. Research Society Proceedings vol.720(2002):3-14
[66].
H. Wu and F.Barnes.”Doped BaosSrosTiO3 Thin Films for Microwave Device Applications at Room Temperature.”Integrated Feeolectrics,.vol.22(1998):291-305.
[67].
N.Navi,J. Horowitz.H,Wu,and S.Qadi,” Structure-Property
[68].
V. Varadan et al,”Ceramic Phase Shifters for Electronically Steerable Antenna Systems,” Microwave Journal(January 1992):116-127.
[69].
V. Varadan et al,”a Novel Microwave Planner Phase Shifter.”Microwave Journal (April 1995):244-253.
[70].
F.DeFlaviis,N,Alexopoulos,andO.Stafsudd, ”Planar Microwave Integrated Phase Shifter Design with High purity Ferroelectric Material,”IEEE Trans.MTT,vol.45,no.6(June 1997):963-969.
[71].
O.Vendik,I.Mironenko,and L. Ter-Martirosyan.”Superconductors Spur Applications of Ferroelectric Films.”Microwave &Rf(July 1994):67-70.
[72].
J.Rao,D.Patel,and L. Sengupta,” Phased array Antennas Based on Bulk Phase Shifting with Ferroelectrics,” Integrated Ferroelectrics,vol.18(1998).
[73].
F.Van Keuls et al,”Y BasCusO7δ,Au/ SrTi/LaAIO3,Thin Film Conductor/Ferroelectric Coupled Microstripline Phase Shifter for Phased Array Application.”Applied Physics Letter,vol.71(November 1997):3075-3077.
[74].
F.Van Keuls et al,”Ku-Band Gold/ BaosSrosTiO3/ LaAIO3 Conductor/Thin Film erroelectrics Microstripline Phase Shifter for Room Temperature Operation.”Microwave and Optical Tech. Letter. Vol.20(January 1999):53-56.
[75].
R.Romanofsky,”Advances in Scanning Reflect array Antennas Based on Thin Ferroelectric Film Phase Shifters.”Pro.IEEE, Special Issue on Technical Advances in Deep Space Communications and Tracking ,to be published(2007)
[76].
R.Romanofsky et al.”K-band Phased Array Antennas Based on BaosδSrδoTiO3 Thin Film Phase Shifters,” IEEE Trans.MTT,vol.48,no.(December2000):2504-2510.
[77].
R.Romanofsky.” Broadband, Low-Loss K and Ka-Band Phase Shifters Based on Thin Ferroelectric Films,” IEEE MTT Symposium Workshop WMC, Fort Worth,TX.June 7,2004.
[78].
R.Romanofsky and A.Qureshi, ”A Model for Ferroelectric Phase Shifters,” IEEE Trans.Mag.Vol.36,no.5(September 2000):3491-3494.
[79].
G.M.Rebeiz,RF MEMS Theory, Design and Technology(New York: John Wiley & Sons Inc.,2003)
[80].
B I.akshminarayanan and T.Weller,” Design and Modeling of 4-bit Slow-Wave MEMS Phase Shifters,” IEEE Trans.MTT,vol.54,no. 1(2006):120-127.
[81].
N.Barker and G.Rebeiz.,” Optimization of Distributed MEMS Phase Shifters,” IEEE Trans.MTT-S Digest(1999):299-302.
[82].
N.Barker and G.Rebeiz.,” Optimization of Distributed MEMS Phase Shifters and Wide Band Switches,”IEEE Trans.MTT.vol46,no.11(1998):1881-1890.
[83].
M.Scardelletti,G.Ponchak. and N.Varaljay.”MEMS.Ka-Band Single-Pole Double-Throw(SPDT)Switch for Switched Line Phase Shifters,” IEEE International Symposium on Antennas
[84].
M.Scandelletti et al, ”RF MEMS Phase Shifters and Their Application in Phased Array Antennas,” IEEE Wireless and Microwave Technology Conference. Clearwater. Florida, April 2005.
[85].
G.Rebeiz,G-L Tan,and J.Hayden, ”RF MEMS Phase Shifters: Design and Application, ”IEEE Microwave Magazine(June 2002):72-82.
[86].
R.Romanofsky, ”Slow-Wave Phase Shifters Based on Thin Ferroelectric Films, for Reflect array Antennas,” IEEE MTT Symposium Workshop WMG(June 2006):121-137.
[87].
A.Nagra and R.York, ”Distributed Analog Phase Shifters with Low Insertion Loss.”IEEE Truns.MTT.vol.47,no.9(September 1999): 1705-1711.
[88].
E.Erker et al.”Monolithic Ka-Band Phase Shifter Using Voltage Tunable BaSrTiO3, Parallel Plate Capacitors, ”IEEE Microwave and Guided Wave Letter,vol.10,no. 1(January 2000):10-12,
[89].
B.Acikel et al, ”A New High Performance Phase Shifter Using BaSrTiO3 Thin Films,” IEEE Microwave and Wireless Comp.Letter, Vol.12, no.7(July 2002): 237-239.
[90].
R.York, ”BST Technology for RF Front Ends,” MTT Symposium Workshop WMG(June 2006):73-91.
[91].
G.Ponchak, ”RF Transmission Lines on Silicon Substrates ,”29th European Microwave Conference(October 1999)158-161.
[92].
G.F.Dionne et al, ”Superconductivity for Improved Ferrite Devices,” Lincoln Laboratory Journal.vol.9.no.I(1996):19-31.
[93].
W.Hord,”Microwave and Millimeter-Wave Ferrite Phase Shifters,” Microwave Journal, State of the Art Reference(1989): 81-94.
[94].
T.Nelson et al, Small Analog Stripline X-Band Ferrite Phase Shifter, ”IEEE Trans.MTT Correspondence(January 1970): 45-46.
[95].
D. Oates et al, ”Superconductor Microwave Phase Shifters and Circulators,” Proc.Appl. superconductivity Conf.(1996).
[96].
G.Dionne et al, ”Superconductor Microwave Phase Shifters,” IEEE Trans.Mag., vol.30, no.(November 1994): 4518-4520.
[97].
D.Durand et al, ”The Distributed Josephson Inductance Phase Shifter.”IEEE Trans.Appl, Superconductivity, vol.27,no.1 (March 1992):33-38.
[98].
E.Track et al, ”Investigation of an Electronically Tuned 100GHZ Superconducting Phase Shifter,”IEEE Trans,Mag., vol.27, no.2(March 1991): 2700-2703.
[99].
J.Bednorz and K.Muller, ”Possible High Tc Superconductivity in the Ba-La-Cu-O System, ”Z-fur Phys., 64(1986): 189.
[100].
Z-Y Shen, High-Temperature Superconductor Opening Switch.”Applied Physics Letter.vol.54. no.10(1989): 949-950.
[101].
J.Martens et al,”A reflective Switch Made of TI-Ca-Ba-Cu-O for Signal Control Applications,” IEEE Microwave and Guided Wave Letter,vol.1,no.10(1991):291-293:
[102].
YTzeng ET AL, ”High Temperature Superconductor Opening Switch. ”Applied Physics Letter. vol.54. no.10(1989): 949-950.
[103].
W.Donaldson et al, ”Interaction of Pico second Optical Pulses with
[104].
C.Jackson et al,”A High Temperature Superconductor Phase Shifter, ”Microwave Journal(December 1992):72-78.
[105].
P. Mason and R. Gould, ”Slow Wave Structure Utilizing Superconducting Thin-Film Transmission Lines, ”J.Appl. Phy. , vol.40. ,no.5 (April 1969): 2039-2051.
[106].
W-L Cao et al, ”Pico second Superconductor Opening Switches,” IEEE Trans.Appl.Superconductivity,vol.3,no.1(1993):2848-2851.
[107].
F.Xiong and R.Romanofsky, ”Study of Behavior of Digital Modulations for Bean Steerable Reflect array Antenna,” IEEE Trans.Ant. and Prop..vol.53.no.3(March 2005):1083-1096.
[108].
O.S.Sands,”Beam-Switch Transient effects in the RF Path of the ICAPA Receive Phased Array Antenna,” NASA Technical Memonndum TM2003-212588 (February 2002).
[109].
R.Reinhart et al,” Phased Array Antenna-Based System Degradation at Wide Scan Angles,” IEEE International Symposium on Phased Array Systems and Technology. Revolutionary Developments in Phased Arrays, Boston.MA. October 2003.
[110].
S.K Koul and B.Bhat, Microwave and Millimeter Wave Phase Shifters:Vol.11 Semiconductor and Delay Line Phase Shifters(Boston: Artech House.1991).
[111].
A.Kozyrev et al, ”Response Time and Power Handling Capability of Tunable Microwave Devices Using Ferroelectric Films, ”Integrated Ferroelectrics,vol.22(1998).
[112].
M.Hines, ”Fundamental Limitations in RF Switching and Phase Shifting Using Semicondactor Diodes,” Proc,IEEE(June 1964): 697-708.
[113].
J White,”Review of Semiconductor Microwave Phase Shifters, ”Proc, IEEE ,vol.56. no.11, (November 1968): 1924-1930.
[114].
G.A. Dechamps. Microstrip microwave antennas. In 3rd USAF Symposium on Antennas, 1953.
[115].
R. E. Munson. Conformed microstrip antennas microstrip phased arrays. IEEE Transactions on Antennas and Propagation, 22:74-78, 1974
[116].
Inder J. Bahl and Prakash Bhartia. Microstrip Antennas. Artech House, Inc.,Norwood (Mass.), 1980.
[117].
David M. Pozar. Microstrip antenna aperture coupled to a microstrip line. Electronic Letters, EL{21(2):49{50, January 1985.
[118].
E. O. Hammerstad and O. Jensen. “Accurate models for microstrip computer-aided design”. Digest IEEE MIT-S Internat. Microwave Symposium, pages 407-409,1980.
[119].
Jean-Francois Zurcher and Fred E. Gardiol. “Broadband Patch Antennas”. Artech House, Inc., Norwood (Mass.), 1995.
[120].
Technische Universitat Wien DIPLOMARBEIT, Aperture-Coupled Microstrip Patch Antenna Array,ausgefuhrt am Institut fur Nachrichtentechnik und Hochfrequenztechnik der Technischen Universitat Wien von Alexander Kuchar Friedhofallee 4a/11 A-2232 Deutsch-Wagram March 15, 1996 Aperture Coupled Microstrip Antennas Using Reflector Elements for Wireless Communications S. D. Targonski and D.M. Pozar Departmentof Electrical & Computer Engineering University of Massachusetts at Amherst Amherst, MA 0 1003 R.B. Waterhouse Department of Communication & Electronic Engineering Royal Melboume Institute of Technology Melbourne, Australia
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信