淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2907200823205000
中文論文名稱 幾種空間分割方法的比較以及結晶化對分子鹽 DAST 與 DSNS 之超極化率之影響的探討
英文論文名稱 Comparison of some Space Partitioning Schemes and Investigation of the Effects on Hyperpolarizability of Organic Molecular Salts DAST and DSNS due to Crystallization
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 96
學期 2
出版年 97
研究生中文姓名 江定遠
研究生英文姓名 Ting-Yuan Chiang
學號 693180175
學位類別 碩士
語文別 中文
口試日期 2008-06-16
論文頁數 62頁
口試委員 指導教授-李明憲
委員-林志興
委員-許子建
委員-陳俊維
中文關鍵字 電荷密度分割  實空間分割  非線性光學  有機晶體鹽  DAST  DSNS  能帶解析 
英文關鍵字 realspace partitioning  Non-linear Optics  Organic Molecular Salts  hyperpolarizability 
學科別分類 學科別自然科學物理
中文摘要 過去的實空間原子領域劃分方式過於人為,多採用球殼狀的分割方式,以致於許多物理性質包含PDOS投影態密度、LDA+U方法都帶有不自然的人為變因‧本論文中的電荷密度分割方法利用空間中電荷密度分佈趨勢提供了自然的原子領域區分方式,利用到了對電荷密度取梯度、插值法與步幅調控,甚至還能找出島狀鍵的分佈,對於物性的預測將能更自然與準確‧
對於同樣是分子晶體鹽類的兩種二倍頻晶體DAST與DSNS,利用本研究群特有的分析計算工具,包含超極化率計算、能帶解析、SHG density,針對結晶化不同方向壓迫效應造成發色基的影響做分析,比較兩種晶體的行為
英文摘要 To partition real space for atom is artificial in the past, spherical shape around atoms was token as usual, that makes many physical quantities distorted by human factor such as PDOS and LDA+U method. In this thesis we use electronic density and its gradient to divide real space to each atom. By interpolation and step size adjustment we now even find island-shaped bounding between atoms in some cases. That means we can now predict physics quantities more naturally and precisely.

For both organic molecular salts DAST and DSNS using our analysis tools such as band-resolveχ(2)、SHG-Density to see what happened to the chormophores when crystallizing and compare the difference between the two crystals. Exhibiting significantly different behavior in hyperpolarizability when crystallizing
論文目次 目錄

第一部分 幾種實空間電荷密度切割方法探討 1
第1章 理論背景 1
1.1 發展動機 1
1.2 Atoms in Molecules, AIM 2
1.3 程式組成與架構 3
第2章 程式寫作 4
2.1 CASTEP架構簡介 4
2.2 實空間電荷密度切割方法在CASTEP中的實作 5
第3章 實驗結果與探討 20
3.1 Cu 21
3.2 Al2O3 23
3.3 C2H4 23
3.4 BaTiO3(鈣鈦礦結構) 24
3.5 Graphite 24
3.6 Urea尿素晶體與分子 25
3.7 Si島狀鍵區分方法 26
第4章 結論 27

第二部分 分子鹽DAST與DSNS超極化率探討 28
第1章 背景介紹 28
1.1 研究動機 28
1.2 DAST與DSNS晶體介紹 29
1.3 Second Harmonic Generation計算工具 31
第2章 DAST超極化率計算與探討 33
2.1 DAST模型與計算參數 33
2.2 SHG對照 33
2.3 能帶解析圖 35
2.3.1 晶體與長分子還有短分子的比較 35
2.3.2 晶體、晶體中長分子與長分子的比較 36
2.4 能帶解析orabital 38
2.5 SHG density 42
2.6 晶體中單獨長分子的自身壓迫效應 45
第3章 DSNS超極化率計算與探討 47
3.1 DSNS模型與計算參數 47
3.2 能帶解析 49
3.2.1 能帶解析圖 49
3.2.2 能帶解析Orbital 51
3.3 SHG Density 56
3.4 晶胞縮放 57
3.4.1 縮放方法 57
3.4.2 縮放結果(一) 58
3.4.3 縮放結果(二) 60
第4章 結論 61
參考文獻 62


程式碼目錄

程式碼 2 1 Si_00.usp 矽原子超軟贗勢 rcloc = 1.8000 Bohr 6
程式碼 2 2 .switch 8
程式碼 2 3 Charge_part.F90 原子領域劃分的晶包周期性前置作業 8
程式碼 2 4 原子領域劃分,在某原子勢力半徑以內之FFT格子點被指派歸屬給該原子 9
程式碼 2 5 取得FFT格子點上電荷密度 9
程式碼 2 6 呼叫插值附程式qshep3,先將所有FFT點座標以及其梯度值傳入 9
程式碼 2 7 進入最大的格點回圈,接著確認還沒有被原子勢力半徑階段有定過的格點才繼續 10
程式碼 2 8 梯度大小小於使用者定義實定為孤點,而atomic_radius(ni,nsp) 現在則是當作距離的權重,也就是利用原子勢力半徑大小當作權重 10
程式碼 2 9 依照梯度方向乘以步伐大小當作下一個梯度線追蹤點位置 11
程式碼 2 10 插值點PBC檢查部分 12
程式碼 2 11 順利依照梯度線來到某原子勢力半徑內者,歸屬於該顆原子 13
程式碼 2 12 對於空間中難被歸屬的點目前用權重距離判別,後面將被修改成島狀鍵判斷 14
程式碼 2 13 常態性的取得新位置點梯度而呼叫的插值程式 14
程式碼 2 14 步幅調控比較步伐的大小造成的差異,並且給出建議的步伐大小 15
程式碼 2 15 梯度插值追蹤法終點判別式,即島狀鍵可能性判別切入點 15
程式碼 2 16 孤點電荷密度判別式,依然使用距離權重歸屬對待 16
程式碼 2 17 島狀鍵存在就檢查自己是否在這個範圍內,是就新增自己成為成員之一 18
程式碼 2 18 若自己不是此團範圍內,則自己成立一個新的島狀鍵集團 18
程式碼 2 19 空間中還沒有島狀鍵存在,必須自己成立為第一個 19
程式碼 3 1 Cu_inter_density.switch 21


圖目錄

圖 2 1 Si 電荷密度至高區塊X-Y平面俯視圖,( Si Conventional Cell a=b=c=5.43070Å ) 17
圖 2 2 Si晶胞中梯度追蹤法終點X-Y平面俯視圖(單位Å),左圖為沒有電荷密度的篩選相對大小判別;右圖有加上電荷密度的相對大小判別。忠實呈現除了原子中心範圍內電荷密度高點 ( Si Conventional Cell a=b=c=5.43070Å ) 17
圖 3 1 贋勢半徑示意圖rc以內,波函數被改造以形成平滑的位勢,而電荷密度在此半徑以內也失去真實;另外rc以內電子屬於原子內層電子,本應隸屬於該顆原子範圍,所以無須延續梯度劃分,應該直接指定 21
圖 3 2 梯度路徑插值追蹤方法定出的四個銅原子各自勢力範圍 22
圖 3 3 梯度路徑插值追蹤方法定出的孤兒區間(立體對圖),是原子之間比較不重要的區域,因此那些剩下的孤零點若用權重化距離再作最後判斷也頗為合理,而我得到無孤兒點的完全分割最後結果。 22
圖 3 4 Al2O3 原子勢力範圍歸屬(立體對圖),球殼所包覆的空間被歸屬給球中心的原子,這是梯度路徑搜尋歸屬所自然產生的原子勢力範圍。其中有無法被用梯度判斷的孤兒點,只是非常少數。 23
圖 3 5 C2H4 左上、右上-碳原子的領域,左下氫原子所屬區域,右下球殼外是孤點,將會以距離權重方式歸屬給原子,說明了左下圖中氫原子領域外圍的方盒形狀 24
圖 3 6 BaTiO3 左到右-兩個不同氧的原子領域,鈦的原子領域,鋇的原子領域 24
圖 3 7 Graphite,不同原子的領域劃分,右-孤兒點區塊 25
圖 3 8 UREA,上-不同的氫原子領域,中左-氮的原子領域,中右-氧的原子領域,左下-碳的原子領域,右下-孤兒區塊(立體對圖) 25
圖 3 9 Si primitive cell 的四個島狀鍵,與其所對應之實空間歸屬。球狀點為電荷密度最高點,包覆面為領域分割邊界(立體對圖) 26
圖 3 10 Si Conventional cell 的幾個島狀鍵實空間區分範圍(立體對圖) 27
圖 1 1 DAST分子簡圖5 29
圖 1 2 DAST 一般晶胞 α=90,β=92.240,γ=90;a=10.3650, b=11.3220, c=17.8930, V=2098 Å3;共有四個長分子與四個短分子組成 29
圖 1 3 DAST最小晶胞 α=91.5123,β=91.5123,γ=95.0534;a=7.67497, b=7.67497, c=17.8930, V=1049 Å3;共有二個長分子與二個短分子組成 30
圖 1 4 DSNS分子簡圖6 31
圖 1 5 DSNS晶胞,α=70.04,β=73.31,γ=83.69,a=7.864,b=8.054,c=9.893 31
圖 2 1 DAST 最小晶胞計算模型 33
圖 2 2 DAST Virtual electron能帶解析圖(晶體、長分子、短分子),SHG貢獻都是長分子提供 35
圖 2 3 DAST Virtual hole能帶解析圖(晶體、長分子、短分子) ,SHG貢獻都是長分子提供 36
圖 2 4 長分子、晶體中長分子與晶體的能帶解析圖,Virtual Electron部分,一致性高證明長分子佔有晶體SHG能力主導權,另外晶的壓迫效應並未造成能帶本質上大的改變 37
圖 2 5長分子、晶體中長分子與晶體的能帶解析圖,Virtual Hole部分,長分子扮演的SHG主導權顯著 37
圖 2 6 HOMO orbital 對照 38
圖 2 7 DAST Crystal HOMO orbital density(#151,152 orbital) 與LUMO一樣短分子上沒有這個對應的軌域 38
圖 2 8 DAST Crystal HOMO orbital density (#151,152 orbital),“in-cell” veiw 39
圖 2 9 DAST Crystal HOMO-5 group orbital density (#143~146 orbital) 39
圖 2 10 DAST Crystal HOMO-5 group orbital density (#143~146 orbital),”in-cell” view 39
圖 2 11 DAST Crystal HOMO-11 group orbital density (#137~140 orbital) 40
圖 2 12 DAST Crystal HOMO-11 group orbital density (#137~140 orbital) ,“in-cell” veiw 40
圖 2 13 LUMO orbital 對照 40
圖 2 14 DAST Crystal LUMO orbital density (#153,154 orbital),與HOMO一樣短分子上沒有這個對應的軌域 41
圖 2 15 DAST Crystal LUMO orbital density (#153,154 orbital),”in-cell” view 41
圖 2 16 DAST Crystal LUMO+3 group orbital density (#157~165 orbital) 42
圖 2 17 DAST Crystal LUMO+3 group orbital density (#157~165 orbital),”in-cell” view 42
圖 2 18 stilbazolium resonance mode 引用4 Figure1 42
圖 2 19 Virtual Electron conduction band (1/4 iso-surface),顯示短分子身上沒有密度 42
圖 2 20 Virtual Electron conduction band (1/2 iso-surface,in-cell view) 43
圖 2 21 Virtual Electron valence band (1/4 iso-surface) ,顯示短分子身上沒有密度 43
圖 2 22 Virtual Electron valence band (1/2 iso-surface,in-cell view) 43
圖 2 23 Virtual Hole conduction band (1/4 iso-surface) ,顯示短分子身上沒有密度 44
圖 2 24 Virtual Hole conduction band (1/2 iso-surface,in-cell view) 44
圖 2 25 Virtual Hole valence band (1/4 iso-surface) ,顯示短分子身上沒有密度 44
圖 2 26 Virtual Hole valence band (1/2 iso-surface,in-cell view) 45
圖 2 27 晶體中長分子所看到的自己做周期性排列,包含鏈狀方向與層狀堆疊方向 45
圖 2 28 晶體中長分子,沿C軸方向不是壓迫討論的方向不應該有任何交互作用,所以更動模型C軸間隔大於10Å 46
圖 2 29 DAST晶胞 A,B軸長縮放比例對應β及能隙大小 47
圖 3 1 DSNS 晶胞模型 48
圖 3 2 DSNS晶體能帶解析圖 50
圖 3 3 DSNS Virtual electron晶體能帶解析圖(晶體、長分子、短分子),顯示長分子扮演的SHG主導 50
圖 3 4 DSNS Virtual hole晶體能帶解析圖(晶體、長分子、短分子) 顯示長分子扮演的SHG主導 51
圖 3 5 HOMO orbital 對照 51
圖 3 6 HOMO orbital density (#82 orbital) 52
圖 3 7 HOMO orbital density (#82 orbital,in-cell view) 52
圖 3 8 HOMO-4 orbital density (#78 orbital) 52
圖 3 9 HOMO-4 orbital density (#78 orbital,in-cell view) 53
圖 3 10 HOMO-5 orbital density (#77 orbital) 53
圖 3 11 HOMO-5 orbital density (#77 orbital,in-cell view) 53
圖 3 12 HOMO-6 orbital density(#76 orbital) 54
圖 3 13 LUMO orbital 對照 54
圖 3 14 LUMO orbital density(#83 orbital) 54
圖 3 15 LUMO orbital density(#83 orbital ,in-cell view) 55
圖 3 16 LUMO+3 & +4 orbital density (#86,87 orbitals) 55
圖 3 17 LUMO+5 orbital density (#88 orbital) 55
圖 3 18 LUMO+5 orbital density (#88 orbital,in-cell view ) 56
圖 3 19 VE conduction 56
圖 3 20 VE Valance 56
圖 3 21 VH conduction 57
圖 3 22 VH Valance 57
圖 3 23 DSNS縮放分子定位點,左長分子重心原子,右短分子重心原子 58
圖 3 24 Materials Studio下做原子移動的視窗畫面,可以依照自定輸入進去的步伐大小朝特定方向移動。 58
圖 3 25 DSNS晶包縮放比例與β、能隙的關係 59
圖 3 26體積縮放對能隙與β的影響,能隙受到較大的影響,反觀β卻是單純反應出壓迫降低SHG效能 60
圖 3 27 體積縮放對能隙與β的影響(局部放大) 61
參考文獻 [1] R.J. Renka. ALGORITHM 661 QSHEP3D: QUADRATIC SHEPARD METHOD FOR TRIVARIATE INTERRPOLATION OF SCATTERED DATA. ACM Transactions on Mathematical Software. 14 (1988) 151-152.

[2] S.R. Marder, D.N. Beratan, L.-. Cheng. Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules. Science. 252 (1991) 103-106.

[3] S.R. Marder, L.-. Cheng, B.G. Tiemann, A.C. Friedli, M. Blanchard-Desce, J.W. Perry, J. Skindhøj. Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity. Science. 263 (1994) 511-514.

[4] S.R. Marder, J.W. Perry, C.P. Yakymyshyn. Organic salts with large second-order optical nonlinearities. Chemistry of Materials. 6 (1994) 1137-1147.

[5] C. Bosshard, R. Spreiter, L. Degiorgi, P. Günter. Infrared and raman spectroscopy of the organic crystal DAST: Polarization dependence and contribution of molecular vibrations to the linear electro-optic effect. Physical Review B - Condensed Matter and Materials Physics. 66 (2002) 2051071-2051079.

[6] B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, P. Günter. Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity. Journal of Materials Chemistry. 16 (2006) 2839-2842.

[7] J. Lin, M.-. Lee, Z.-. Liu, C. Chen, C.J. Pickard. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals. Physical Review B - Condensed Matter and Materials Physics. 60 (1999) 13380-13389.

[8] Bader, Atoms in Molecules
[9] Popelier, Atoms in Molecules - An Intriduction,
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信