淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2907200818423600
中文論文名稱 奈米流體應用於迴路式虹吸熱管之效益
英文論文名稱 Effect of Nanofluids on Loop Thermosyphon Thermal Performance
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 陳建佑
研究生英文姓名 Chien-Yu Chen
學號 695370337
學位類別 碩士
語文別 中文
口試日期 2008-07-04
論文頁數 80頁
口試委員 指導教授-康尚文
委員-陳炳輝
委員-陳志臣
委員-陳增源
委員-楊龍杰
中文關鍵字 迴路式虹吸熱管  奈米流體 
英文關鍵字 Loop Thermosyphon  Nanofluid 
學科別分類 學科別應用科學機械工程
中文摘要 本研究為探討奈米流體於迴路式虹吸熱管之熱性能影響。奈米流體為平均粒徑30nm銀奈米顆粒混合於水溶液中。
虹吸熱管蒸發室之尺寸為內徑25mm、高25mm;並於內部製作兩種的沸騰結構來研究其影響。第一種為平滑的沸騰表面,第二種為長寬17mm×17mm、厚度1mm、粒徑大小183.5μm、孔隙率53.7%的銅粉燒結結構。實驗元件為使用恆溫水槽進行冷卻,並固定流量與溫度20度之條件來進行實驗。實驗將以量測迴路式虹吸熱管之溫度分佈與溫差,來比較奈米流體與純水充填於迴路式虹吸熱管之性能。
實驗結果顯示使用平滑的沸騰表面時,在260W的輸入功率,濃度30ppm銀奈米流體的整體效能比純水提昇13.82%。當使用增強沸騰結構時,濃度20ppm銀奈米流體的整體體效能比純水提昇0.12%。
英文摘要 The purpose of this thesis is to study the effects of silver nano-fluids on loop thermosyphon thermal performance. The nano-fluid used in this study is an aqueous solution 30nm diameter silver nanoparticles.
The evaporator chambers of thermosyphon used in this study has an inside diameter of 25 mm and a height of 25 mm. Two types of boiling structures in evaporator chambers have fabricated to investigate the influence. The first type of boiling structures is flat with smooth boiling surface. The second one is 17.3mm square, 1mm thickness of sintered copper powder structure. The average diameter of copper powder and the porosity is 185.5μm and 53.7%, respectively. The tested device was condensed by the thermal bath with constant flow rate at 20℃. The experiment was performed to measure the temperature distribution and the temperature difference to compare the thermal performance of nano-fluid and DI-water.
Based on the smooth boiling surface of evaporator chambers, the experimental result of 30ppm silver nanofluid showed that thermal resistance enhanced 13.82% compared to DI-water at an input power of 260W. While the loop thermosyphon were with copper powder structure in the evaporator chamber, the thermal performance improved 0.12% at 20ppm silver nanofluid compare with DI-water.
論文目次 目錄
第一章 緒論..............................................................................................1
1-1 研究動機......................................................................................1
1-2 文獻回顧......................................................................................2
1-2-1 奈米流體應用於虹吸熱管..........................................2
1-2-2 奈米流體應用於熱管...................................................4
1-2-3 奈米流體應用於震盪式熱管.....................................9
1-3 研究目的....................................................................................12
第二章 理論基礎....................................................................................13
2-1 虹吸熱管簡介............................................................................13
2-1-1 虹吸熱管形式.............................................................14
2-1-2 虹吸熱管之優點.........................................................16
2-2 奈米流體簡介............................................................................16
2-2-1 奈米顆粒之製備.........................................................17
2-2-2 奈米流體之製備.........................................................18
2-3 沸騰理論介紹............................................................................20
2-3-1 沸騰的基本模式.........................................................20
2-3-2 成核理論.....................................................................21
2-3-3 池核沸騰的相關參數影響.........................................23
第三章 實驗設備與方法........................................................................25
3-1 迴路式虹吸熱管結構........................................................25
3-2 測試項目…………....................................................................28
3-3 實驗流程....................................................................................29
3-3-1 設備架設.....................................................................30
3-3-2 熱電偶線位置及校正.................................................31
3-3-3 加熱底板清潔.............................................................32
3-3-4 內部管路清潔.............................................................33
3-3-5 工作流體的準備.........................................................33
3-3-6 脫氣充填.......................................................................34
3-3-7 性能測試.....................................................................36
3-3-8 加熱平台構造與原理...................................................36
第四章 實驗結果與討論................................................................38
4-1 純水與銀奈米流體比較 - 平板結構…..................................39
4-1-1 加熱表面......................................................................39
4-1-2 蒸發端溫差..................................................................40
4-1-3 整體溫差……………………………………………..41
4-2 純水與銀奈米流體比較 - 銅粉燒結結構.............................42
4-2-1 加熱表面……………………………………………..42
4-2-2 蒸發端溫差…………………………………………..43
4-2-3 整體溫差……………………………………………..44
4-3 分析與探討…………………………………………………...45
4-3-1 銀奈米流體於不同加熱表面之沸騰性能影響……..45
4-3-2 蒸發端性能比較…………………………..…............51
4-3-3 銀奈米流體整體效能提升比……..............................52
第五章 總結與建議………………………………………………...….58
5-1 總結……………………………………………………….......58
5-2 未來建議………………………………………………….......60
參考文獻..................................................................................................61
附錄一 性能測試實驗數據....................................................................64
附錄二 充填量誤差值............................................................................79
附錄三 不準度分析.............................................................................80

圖目錄
圖1-1 虹吸熱管充填奈米流體與純水之整體熱阻比較......................2
圖1-2 虹吸熱管充填奈米流體與純水之熱傳性能比較......................3
圖1-3 虹吸熱管充填奈米流體與純水之整體熱阻比較......................3
圖1-4 虹吸熱管充填奈米流體與去離子水之熱阻比較......................4
圖1-5 金奈米流體與純水之性能比較..................................................5
圖1-6 去離子水與銀奈米流體之熱管效能比較..................................6
圖1-7 純水於光滑表面與微溝槽表面之沸騰熱傳性能比較..............6
圖1-8 氧化銅奈米流體於光滑表面與微溝槽之沸騰熱傳性能比較..7
圖1-9 氧化銅奈米流體與純水之整體熱阻性能比較......................8
圖1-10 氧化銅奈米流體在不同系統壓力之熱傳係數提升比..............8
圖1-11 氧化銅奈米流體在不同系統壓力的臨界熱通量提升比..........8
圖1-12 銀奈米流體在相同濃度不同粒徑與純水的溫差......................9
圖1-13 鑽石奈米流體與去離子水之震盪式熱管溫差比較................10
圖1-14 鑽石奈米流體與去離子水之震盪式熱管熱阻比較................10
圖1-15 銅奈米流體與高純度蒸餾水之熱傳性能比較........................11
圖1-16 不同填充率與奈米流體體積比之熱傳性能比較....................11
圖2-1 虹吸熱管作動示意圖................................................................13
圖2-2 單管虹吸熱管............................................................................14
圖2-3 迴路式平行熱虹吸熱管............................................................15
圖2-4 迴路式虹吸熱管........................................................................15
圖2-5 常見奈米粉末製作方法............................................................18
圖2-6 基本沸騰模式............................................................................20
圖2-7 過熱表面成核過程....................................................................21
圖2-8 池沸騰區域加熱表面的蒸汽結構............................................22
圖2-9 各種不同增強沸騰表面............................................................24
圖3-1 迴路式虹吸熱管 爆炸圖..........................................................26
圖3-2 平板結構加熱底板....................................................................27
圖3-3 銅粉燒結結構加熱底板............................................................27
圖3-4 迴路式虹吸熱管 尺寸圖..........................................................27
圖3-5 迴路式虹吸熱管 組合完成圖..................................................28
圖3-6 實驗流程圖................................................................................29
圖3-7 測試設備示意圖........................................................................30
圖3-8 熱電偶線位置............................................................................31
圖3-9 加熱器平台構造........................................................................37
圖4-1 銀奈米流體與純水之加熱表面溫度比較平板結構..............39
圖4-2 銀奈米流體與純水之蒸發端溫差比較平板結構..................40
圖4-3 銀奈米流體與純水之整體溫差比較平板結構......................41
圖4-4 銀奈米流體與純水之加熱表面溫度比較銅粉燒結結構......42
圖4-5 銀奈米流體與純水之蒸發端溫差比較銅粉燒結結構..........43
圖4-6 銀奈米流體與純水之整體溫差比較銅粉燒結結構..............44
圖4-7 純水於平板結構之沸騰與液膜關係圖....................................46
圖4-8 銀奈米流體於平板結構之沸騰與液膜關係圖........................47
圖4-9 純水於銅粉燒結結構之沸騰關係圖...............................47
圖4-10 銀奈米流體於銅粉燒結結構之沸騰關係圖...................47
圖4-11 銅粉燒結結構之SEM圖(500倍)..............................................48
圖4-12 銀奈米顆粒於銅粉燒結結構之SEM圖(500倍)…………......48
圖4-13 銅粉燒結結構之SEM圖(1000倍)……....................................49
圖4-14 銀奈米顆粒於銅粉燒結結構之SEM 圖(1000倍).................49
圖4-15 銅粉燒結結構之SEM 圖(2000倍) ........................................50
圖4-16 銀奈米顆粒於銅粉燒結結構之SEM 圖(2000倍) ................50
圖4-17 濃度20ppm銀奈米流體與純水之蒸發端溫差比較................51
圖4-18 銀奈米流體於蒸發端效能提升比較平板結構………............53
圖4-19 銀奈米流體於冷凝端效能提升比較平板結構……................53
圖4-20 銀奈米流體於整體效能提升比較平板結構………................54
圖4-21 銀奈米流體於蒸發端效能提升比較銅粉燒結結構……........55
圖4-22 銀奈米流體於冷凝端效能提升比較銅粉燒結結構……........55
圖4-23 銀奈米流體於整體效能提升比較銅粉燒結結構..................56
圖4-24 銀奈米流體與純水於不同沸騰結構之整體效能提升比較....57

表目錄
表4-1 實驗操作參數............................................................................38
參考文獻 [1] H. S. Xue, J. R. Fan, Y. C. Hu, R. H. Hong and K. F. Cen, “The Interface Effect of Carbon Nanotube Suspension on the Thermal Performance of a Two-Phase Closed Thernosyphon”, Journal of Applied Physics 100 (2006) 104909.
[2] Z. H. Liu, X. F. Yang and G. L. Guo, “Effect of Nanoparticles in Nanofluids on Thermal Performance in a Miniature Thernosyphon”, Journal of Applied Physics, 102 (2007) 013526.
[3] S. Khandekar, Y. M. Joshi and B. Mehta, “Thermal Performance of Closed Two-Phase Thermosyphon using Nanofluids”, International Journal of Thermal Sciences 47 (2008) 659-667.
[4] C.Y. Tsai, H. T. Chien, B. Chan, P. H. Chen, P. P. Ding and T.Y. Luh, “Effect of Structural Character of Gold Nano-particles in Nanofluid on Heat Pipe Thermal Performance”, Materials Letters 58 (2004) 1461-1465.
[5] S. W. Kang , W. C. Wei, S. H. Tsai and S.Y. Yang, “Experimental Investigation of Silver Nano-fluid on Heat Pipe Thermal Performance”, Applied Thermal Engineering, 26 (2006) 2377-2382.
[6] Z. H. Liu, J.G. Xiong and R. Bao, “Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator with Micro-Grooved Heating Surface”, International Journal of Multiphase Flow, 33 (2007) 1284–1295.
[7] X. F. Yang, Z. H. Liu and J. Zhao, “Heat Transfer Performance of a Horizontal Micro-Grooved Heat Pipe using CuO Nanofluid”, Journal of Micromechanics and Microengineering 18 (2008) 035038.
[8] S. W. Kang, W. C. Wei, S. H. Tsai and C. C. Huang, “Experimental Investigation of Nanofluids on Sintered Heat Pipe Thermal Performance”, Applied Thermal Engineering (2008) Article in Press.
[9] H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S. U. S. Choi and M. Tirumala, “Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe”, Applied Physics Letters, 88 (2006) 143116.
[10] H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S. U. S. Choi and M. Tirumala, “An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe”, Journal of Heat Transfer, 128 (2006) 1213-1216.
[11] K. Park and H. B. Ma, “Nanofluid Effect on Heat Transport Capability in a Well-Balanced Oscillating Heat Pipe”, Journal of Thermophysics and Heat Transfer, 21 (2) (2007) 443-445.
[12] F.-M. Shang, D.-Y. Liu, H.-Z Xian, Y.-P. Yang and X.-Z. Du, “Heat Transfer Characteristics of Cu-water in Self-exciting Mode Oscillating-flow Heat Pipe”, Dongli Gongcheng/Power Engineering, 27 (2) 2007 233-236.
[13] F.-M. Shang, D.-Y. Liu, H.-Z Xian, Y.-P. Yang and X.-Z. Du, “Flow and Heat Transfer Characteristics of Different Forms of Nanometer Particles in Oscillating Heat Pipe”, Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 58 (9) 2007 2200-2204.
[14] 謝志昇,”迴路式虹吸熱管之增強沸騰結構”,淡江大學機械與機電工程學系碩士論文,2006.
[15] A. Pal, Y.K. Joshi, M.H. Beitelmal, C.D. Patel and T. M. Wenger, “Components and Packaging Technologies”, IEEE Transactions on Packaging and Manufacturing Technology, Part A: Packaging Technologies, Vol.25, No.4, 2002
[16] Navas Khan, D.Pinjala and K.C.Toh,” Pool Boiling Heat transfer Enhancement by Surface Modification I Micro Structures for Electronics Cooling: A Review”, IEEE Electronics Packaging Technology Conference, 2004
[17] 黃嘉慶,”銀奈米流體應用於燒結式熱管效益之研究”,淡江大學機械與機電工程學系碩士論文,2007.
[18] Y. Xuan, Q. Li, “Heat Transfer Enhancement of Nanofluids,” International Journal of Heat and Flow, Vol. 21, pp. 58-64 (2000).
[19] 馬振基,“奈米材料科技原理與應用”,全華科技圖書股份有限公司,台北,民國92年。
[20] 潘欽,“沸騰熱傳與雙相流”,國立編譯館主編,俊傑書局印行,2001.
[21] F. Kreith, and M. S. Bohn, “Principle of Heat Transfer”, Brooks Cole, USA, 2001.
[22] Chi, S. W.,“Heat Pipe Theory and Practice”, McGraw-Hill, N.Y., 1976.
[23] 依日光譯著,日本熱管技術協會編,“熱管技術理論實務”,復漢出版社印行。
[24] J. P. Holman, Experimental Methods for Engineers, McGraw-Hill, Singapore. (1989).
[25] S. J. Kim, I. C. Bang, J. Buongiorno and L. W. Hu, “Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids”, Applied Physics Letters 89 (2006) 153107
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-08-05公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-08-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信