§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2906201813435900
DOI 10.6846/TKU.2018.00943
論文名稱(中文) 製備碳化矽無機膜應用於薄膜乳化之研究
論文名稱(英文) A study on manufacturing inorganic SiC-based membrane for application in membrane emulsification
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 林怡君
研究生(英文) Yi-Chun Lin
學號 605400018
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-06-13
論文頁數 95頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 莊清榮(cjchuang@cycu.edu.tw)
委員 - 童國倫(kltung@ntu.edu.tw)
關鍵字(中) 碳化矽
無機膜
平板膜
薄膜乳化
液滴尺寸
大豆油
關鍵字(英) Ceramic membrane
silicon carbide
flat membrane
membrane emulsification
droplet size
O/W emulsions
soybean oil
第三語言關鍵字
學科別分類
中文摘要
近年來,薄膜乳化被廣泛應用於乳化過程,是一種透過多孔性薄膜進行逐滴乳化的技術。本研究擬使用燒結法製備多孔性無機膜應用於薄膜乳化,以碳化矽為無機膜之基材,探討不同比例之成孔劑、不同碳化矽粒徑以及膜燒結溫度對於無機膜性質之影響,進而控制薄膜的孔徑與其分布,並探討透膜壓差對於乳化液滴之效果,以適用於薄膜乳化之功能性微膠囊的製程。
在製膜部分中,實驗使用高壓壓錠成型與高溫爐進行燒結成膜,分析不同製膜條件對膜微結構、膜機械強度、孔洞尺寸分布、孔隙度與晶相成份之影響。在薄膜乳化實驗部分,經由分析液滴尺寸、Span Value與分散相通量,探討不同製膜條件與操作壓力對薄膜乳化效果之影響。最後,在薄膜清洗部分,藉由改變清潔劑種類與清潔方法,找出清洗無機膜最佳方法。綜合上述製備出最適化配比之無機膜以提升薄膜乳化效能。
研究結果顯示,當膜燒結溫度由1300 ℃提升至1400 ℃,膜機械強度增加近20%,膜孔徑變大但孔隙率下降。當成孔劑添加量由1 wt%增加至5 wt%時,膜機械強度降低,但孔隙率提升10%。而碳化矽粒徑由3 m增加至38 m時,膜機械強度大幅增加63%,孔徑與孔隙率皆提升。薄膜乳化時,影響液滴尺寸最大的因素為膜孔徑,而乳化後的液滴Span Value皆在0.8左右,且幾乎小於0.8,表示液滴尺寸極均勻分布,在透膜壓差100 kPa時有最小值。而使用2 wt% Derquim LM 03清潔劑水溶液以300 kPa逆洗後,回復率高達近90%,是最有效的清潔方法。
英文摘要
Recently, membrane emulsification represents an alternative way to produce emulsions and particles by permeating the disperse phase through a porous membrane to form a drop-by-drop emulsion. In this study, a low cost and high performing SiC-based inorganic membrane has been fabricated and tested. SiC has excellent structural and mechanical properties. Three different SiC powders were used on the basis of particle size (3 m, 15 m, 38 m) with three different PVB addition (1 wt%, 3 wt%, 5 wt%), respectively, for fabrication by the pressured method, then sintered at 1300-1400 ℃ in air. These membranes were evaluated for their structural properties, pore characteristics and were used for producing soybean oil in water emulsions with 60-120 kPa transmembrane pressure.
The increase in the membrane sintering temperature and decrease in the SiC particle size enhanced the necking area between SiC particles and the interparticle bonding areas, respectively, which created an increase in the membrane mechanical strength. The increase in the PVB addition and decrease in the sintering temperature promote the membrane porosity, which led to higher oil permeability. Moreover, this study shows unimodal pore-size distributions for all samples, and the average pore diameter increases with an increase in the sintering temperature and SiC particles size. In terms of membrane emulsification, the droplet size is strongly related to pore size. Additionally, most of the samples have good performance in emulsification with span value under 0.8. The results show that the highest level of cleaning efficiency was obtained with Derquim+ in backwash mode with 300 kPa transmembrane pressure, followed by NaOH in ultrasonic and NaOH in backwash mode. The membrane emulsification technique resulted in smaller droplet sizes than the emulsions produced through the conventional method. Besides, the membrane emulsification considerably improved the emulsion stability, when compared to the conventional emulsification process. Therefore, the presented membrane proved to be a good candidate for application in membrane emulsification.
第三語言摘要
論文目次
目錄
中文摘要	                                                I
Abstract	                                       II
目錄	                                               IV
圖目錄	                                             VIII
表目錄	                                                X
第一章	緒論	                                        1
1-1	前言	                                        1
1-2	薄膜乳化技術	                                4
1-3	乳化技術應用於微膠囊製備	                        6
1-4	薄膜乳化之近期研究與發展	                        8
1-5	研究動機與目的	                               10
第二章	文獻回顧	                                       11
2-1	應用於薄膜乳化之薄膜	                       11
2-2	多孔陶瓷材料	                               15
2-3	碳化矽多孔材	                               18
2-4	高嶺土	                                       21
2-5	薄膜清潔效率	                               22
第三章	理論背景	                                       23
3-1	影響油滴尺寸之參數	                       23
3-2	油滴尺寸分布之探討	                       25
3-3	孔隙率理論值計算	                               26
3-4	抗折強度計算	                               27
3-5	液滴尺寸與表面張力之探討 [Middleman, 1998]       28
3-6	透膜壓差對分散相之探討	                       31
第四章	實驗材料、裝置與方法	                       32
4-1	碳化矽無機膜製備	                               32
4-1-1	實驗原料	                                       32
4-1-2	實驗設備	                                       33
4-1-3	無機膜粉體配比	                               34
4-1-4	無機膜燒結溫度	                               34
4-1-5	膜製備程序	                               34
4-2	無機膜性質檢測	                               37
4-3	水通量測試實驗	                               39
4-4	薄膜乳化實驗	                               40
4-4-1	實驗材料	                                       40
4-4-2	檢測儀器	                                       41
4-4-3	實驗裝置	                                       42
4-4-4	實驗方法	                                       43
4-5	薄膜清洗實驗	                               44
4-5-1	實驗材料	                                       44
4-5-2	實驗裝置	                                       44
4-5-3	實驗方法	                                       45
第五章	結果與討論	                               46
5-1	碳化矽粉末基本特性分析	                       46
5-2	無機膜特性分析	                               49
5-3	改變膜燒結溫度對於薄膜乳化之探討	               50
5-3-1	膜微結構分析	                               50
5-3-2	膜晶相分析	                               51
5-3-3	膜機械強度分析	                               53
5-3-4	膜孔隙率分析	                               55
5-3-5	膜孔徑分析	                               56
5-3-6	薄膜乳化探討	                               59
5-4	改變成孔劑添加量對於薄膜乳化之探討                61
5-4-1	膜微結構分析	                               61
5-4-2	膜孔隙率分析	                               62
5-4-3	膜機械強度分析	                               63
5-4-4	膜孔徑分析	                               64
5-4-5	薄膜乳化成果探討	                               65
5-5	改變碳化矽粒徑對於薄膜乳化之探討	               67
5-5-1	膜微結構分析	                               67
5-5-2	膜晶相分析	                               68
5-5-3	膜機械強度分析	                               70
5-5-4	膜孔徑分析	                               72
5-5-5	膜孔隙率分析	                               74
5-5-6	薄膜乳化成果探討	                               75
5-6	改變透膜壓差對於薄膜乳化之探討	               77
5-7	薄膜乳化後之無機膜清潔效率分析	               79
第六章	結論	                                       83
符號說明	                                               86
參考文獻	                                               89
附錄	                                               95


 
圖目錄
Fig. 1-1 薄膜乳化技術的發展階段 [Piacentini 等人, 2014]	3
Fig. 1-2 薄膜乳化的影響參數	                        4
Fig. 2-1 不同種清潔條件水通量之回復率 [Trentin等人,2012] 22
Fig. 3-1 油滴通過膜之過程與受力圖 [Piacentini等人,2014]  23
Fig. 3-2 三點負荷作用示意圖	                       27
Fig. 3-3 兩相接觸面之表面張力示意圖 [Middleman, 1998]    28
Fig. 3-4 Weber number與液滴尺寸關係 [Middleman, 1998]   30
Fig. 4-1 無機膜燒結溫度曲線	                       34
Fig. 4-2 水通量測試實驗裝置流程圖	                       39
Fig. 4-3 薄膜乳化實驗裝置流程圖	                       42
Fig. 4-4 薄膜清洗實驗裝置流程圖	                       44
Fig. 5-1 三種碳化矽粉末之X光繞射分析圖	               48
Fig. 5-2 無機膜製備完成示意圖	                       49
Fig. 5-3 膜截面之SEM影像 (M20, M23, M26)	               50
Fig. 5-4 膜燒結溫度與X光繞射分析圖譜 (M20, M23, M26)     52
Fig. 5-5 膜燒結溫度與抗折強度比較(M20, M23, M26)	       53
Fig. 5-6 膜燒結溫度與膜孔隙率比較(M20, M23, M26)	       55
Fig. 5-7 膜燒結溫度與膜孔徑分布(M20, M23, M26)	       56
Fig. 5-8 改變膜燒結溫度之純水通量測試(M20, M23, M26)     57
Fig. 5-9 膜燒結溫度對於乳化液滴尺寸與Span Value	       60
Fig. 5-10 膜截面之SEM影像 (M19, M20, M21)	       61
Fig. 5-11 PVB添加量與膜孔隙率比較(M19, M20, M21)	       62
Fig. 5-12 PVB添加量與膜抗折強度比較(M19, M20, M21)       63
Fig. 5-13 PVB添加量與膜孔徑分布(M19, M20, M21)	       64
Fig. 5-14 改變PVB添加量對於乳化液滴尺寸與Span Value      66
Fig. 5-15 膜截面之SEM影像 (M02, M11, M20)	       67
Fig. 5-16 碳化矽粒徑與X光繞射分析圖譜 (M02, M11, M20)    68
Fig. 5-17 碳化矽粒徑與膜抗折強度比較(M02, M11, M20)      70
Fig. 5-18 碳化矽粒徑與膜孔徑分布(M02, M11, M20)	       72
Fig. 5-19 碳化矽粒徑與膜孔隙率比較(M02, M11, M20)	       74
Fig. 5-20 改變碳化矽粒徑對於乳化液滴尺寸與Span Value      76
Fig. 5-21 透膜壓差對於乳化液滴尺寸與Span Value(M26)      77
Fig. 5-22 薄膜乳化(A)前與(B)後之SEM影像	               79
Fig. 5-23 薄膜乳化次數對於油滴平均尺寸之影響	       80
Fig. 5-24 不同清潔方法之薄膜乳化前後純水通量比較	       81

表目錄
Table 2-1 陶瓷原料及其物化性質	                       16
Table 2-2 製備多孔陶瓷之黏著劑	                       16
Table 4-1 無機膜製備原料表	                       32
Table 4-2 無機膜粉體配比	                               34
Table 4-3 無機膜所有製備條件表	                       36
Table 4-4 薄膜乳化實驗材料表	                       40
Table 4-5 薄膜乳化油相特性分析	                       40
Table 4-6 薄膜清洗實驗之清潔劑參考資料	               44
Table 5-1 三種碳化矽粉末成份分析	                       47
Table 5-2 膜孔徑分析表	                               49
Table 5-3 改變膜燒結溫度之膜阻力比較表(M20, M23, M26)    58
Table 5-4 膜燒結溫度與分散相通量比較 (M20, M23, M26)     60
Table 5-5 PVB添加量與分散相通量比較 (M19, M20, M21)      66
Table 5-6 碳化矽粒徑與分散相通量比較(M02, M11, M20)      76
Table 5-7 透膜壓差與分散相通量比較(M26)	               78
參考文獻
Abbas Bukhari, S.Z., Ha, J.H., Lee, J., Song, I.H., Fabrication and optimization of a clay-bonded SiC flat tubular membrane support for microfiltration applications, Ceramic International, 43, 10, 7736-7742 (2017).
Amirthan, G., Udayakumar, A., Bhanu Prasad, V.V., Balasubramanian, M., Synthesis and Characterization of Si/SiC Ceramics Prepared using Cotton Fabric, Ceramic International, 35, 3, 967-973 (2009).
Aryanti, N., Williams, R.A., Hou, R., Vladisavljević, G.T., Performance of rotating membrane emulsification for o/w production, Desalination, 200, 1–3, 572-574 (2006).
Berot, S., Giraudet, S., Riaublanc, A., Anton, M., Popineau, Y., Key Factors in Membrane Emulsification, Chemical Engineering Research and Design, 81, 9, 1077-1082 (2003).
Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., Maitra, A., Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy, Journal of Nanobiotechnology, 5, 3-20 (2007).
Christov, N.C., Ganchev, D.N., Vassileva, N.D., Denkov, N.D., Danov, K.D., Kralchevsky, P.A., Capillary mechanisms in membrane emulsification: oil-in-water emulsions stabilized by Tween 20 and milk proteins, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209, 1, 83-104 (2002).
Dabir, S., Deng, W., Sahimi, M., Tsotsis, T., Fabrication of silicon carbide membranes on highly permeable supports, Journal of Membrane Science, 537, 239-247 (2017).
Fraga, M.C., Sanchesb, S., Pereirab, V.J., Crespoa, J.G., Yuanc, L., Marcherc, J., Martínez de Yusod, M.V., Rodríguez-Castellóne, E., Benavente, J., Morphological, chemical surface and filtration characterization of anew silicon carbide membrane, Journal of the European Ceramic Society, 37, 3, 899-905 (2017).
Higashi, S., Tabata, N., Kondo, K.H., Maeda, Y., Shimizu, M., Nakashima, T., Setoguchi, T., Journal of Pharmacology and Experimental Therapeutics, 289, 2, 816-819 (1999).
Imada, K., Sakaue, K., Kawabata, H., Tsutsumi, N., Nakashima, T. and Nobuhara, K., Studies on the Internal Surface of Porous Glass and Chemical Modification thereof, Nihon Kagaku Kaishi, 1990, 4, 407-414 (1990).
Imbrogno. A., Piacentini, E., Drioli, E., Giorno, L., Micro and nano polycaprolactone particles preparation by pulsed back-and-forward cross-flow batch membrane emulsification for parenteral administration, International Journal of Pharmaceutics, 477, 1-2, 344-350 (2014).
Jia, L., Wong, H., Cerna, C., Weitman, S.D., Effect of nanonization on absorption of 301029: ex vivo and in vivo pharmacokientic correlations determined by liquid chromatography/mass spectrometry, Pharmaceutical Research, 19, 8, 1091-1096 (2002).
Kandori, K., Gaonkar, A.G., Applications of microporous glass membranes: membrane emulsification. In: Gaonkar AG editor, Food Processing: Recent Developments, Elsevier Science, Food Processing: Recent Developments, 113-142 (1995).
Karbstein, H., Schubert, H., Developments in the continuous mechanical production of oil-in-water macro-emulsions, Chemical Engineering and Processing, 34, 205–211 (1995).
Kobayashi, I., Mukataka, S., Nakajima, M., Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels, Journal of Colloid and Interface Science, 279, 1, 277–280 (2004).
Kukizaki, M., Goto, M., Preparation and characterization of a new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification, Journal of Membrane Science, 299, 1-2, 190-199 (2007).
Kukizaki, M., Nakashima, T., Acid leaching process in the preparation of porous glass membranes from phase-separated glass in the Na2O-CaO-MgO-Al2O3-B2O3-SiO2 system, Membrane, 29, 5, 301-308 (2004).
Kukizaki, M., Preparation of solid lipid microcapsules via solid-in-oil-in-water dispersions by premix membrane emulsification, Chemical Engineering Journal, 151, 1-3, 387-396 (2009).
Kukuzaki, M.; Fujimoto, K.; Kai, S.; Ohe, K.; Oshima, T.; Baba, Y. Ozone mass transfer in an ozone–water contacting process with Shirasu porous glass (SPG) membranes—A comparative study of hydrophilic and hydrophobic membranes, Separation and Purification Technology, 72, 3, 347– 356 (2010).
Lin, C.C., Lin, H.Y., Chen, H.C., Yu, M.W., Lee, M.H., Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions, Food Chemistry, 116, 4, 923-928 (2009).
Liu D.M. (ed.), Porous Ceramis Materials: Fabrication, characterization, applications, Trans Tech Publications (1996).
Li, X.Q., Li, Q., Gong, F.L., Lei, J.D., Zhao, X., Ma, G.H., Su, Z.G., Preparation of large-sized highly uniform agarose beads by novel rotating membrane emulsification, Journal of Membrane Science, 476, 30-39 (2015).
Maan, A.A., Schroen, K., Boom, R., Spontaneous droplet formation techniques for monodisperse emulsions preparation - Perspectives for food applications, Journal of Food Engineering, 107, 3-4, 334–346 (2011).
Matos, M., Gutiérrez, G., Lobo, A., Coca, J., Pazos, C., Benito, J.M., Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. Journal of Membrane Science, 520, 749–759 (2016).
Matos, M., Suárez, M.A., Gutiérrez, G., Coca, J., Pazos, C., Emulsification with microfiltration ceramic membranes: A different approach to droplet formation mechanism, Journal of Membrane Science, 444, 345–358 (2013).
Middleman, S. (1998), An introduction to fluid dynamics: principles of analysis and design, University of California, San Diego: Wiley.
Miller, D.L., O'Leary, T.J., Girton, M., Distribution of iodized oil within the liver after hepatic arterial injection, Radiology, 162, 3, 849-852 (1987).
Nakashima, T., Kuroki; Y., Effects of Composition and Heat Treatment on the Phase Separation of Na2O-B2O3-SiO2-Al2O3-CaO Glass Prepared from Volcanic Ashes, Nippon Kagaku Kaishi, 8, 1231-1238 (1981).
Nataliya D. Shcherban, Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide, Journal of Industrial and Engineering Chemistry, 50, 15-28 (2017).
Okochi, H., Nakano. M., Preparation and evaluation of W/O/W type emulsions containing vancomycin, Advanced Drug Delivery Reviews, 45, 1, 5-26 (2000).
Omi, S., Preparation of monodisperse microspheres using the Shirasu porous glass emulsification technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109, 97-107 (1996).
Piacentini, E., Drioli, E., Giorno, L., Pulsed back-and-forward cross-flow batch membrane emulsification with high productivity to obtain highly uniform and concentrate emulsions, Journal of Membrane Science, 453, 119-125 (2014).
Piacentini, E., Drioli, E., Giorno, L., Membrane emulsification technology: Twenty-five years of inventions and research through patent survey, Journal of Membrane Science, 468, 410-422 (2014).
Piacentini, E., Figoli, A., Giorno, L., Drioli, E., Membrane emulsification. In: Drioli E, Giorno L (eds) Comprehensive membrane science and engineering. Elsevier, Kidlington, 47-78 (2010).
Park, S.H., Yamaguchi, T., Nakao, S.I., Transport mechanism of deformable droplets in microfiltration of emulsions, Chemical Engineering Science, 56, 11, 3539-3548 (2001).
Rice, R.W., Comparison of stress concentration versus minimum solid area based mechanical property–porosity relations, Journal of Materials Science, 28, 8, 2187–2190 (1993).
Santos, J., Vladisavljević, G.T., Holdich, R.G., Dragosavac, M.M., Muñoz, J., 2015. Controlled production of eco-friendly emulsions using direct and premix membrane emulsification, Chemical Engineering Research and Design, 98, 59–69 (2015).
Shaikh, J., Ankola, D.D., Beniwal, V., Singh, D., Kumar, M.N., Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer, European Journal of Pharmaceutical Sciences, 37, 3-4, 223-230 (2009).
Simon M.J., Gun, T., Membrane emulsification - a literature review, Journal of Membrane Science, 169, 1, 107-117 (2000).
Sokolar, R., Smetanova, L., Dry Pressed Ceramic Tiles Based on Fly Ash-Clay Body: Influence of Fly Ash Granulometry and Pentasodium Triphosphate Addition, Ceramic International, 36, 1, 215-221 (2010).
Suárez, M.A., Gutiérrez, G., Matos, M., Coca, J., Pazos C., Emulsification using tubular metallic membranes, Chemical Engineering and Processing: Process Intensification, 81, 24-34 (2014).
Trentin, A., Güell, C., Gelaw, T., Lamo, S.D., Ferrando, M., Cleaning protocols for organic microfiltration membranes used in premix membrane emulsification, Separation and Purification Technology, 88, 70-78 (2012).
Vladisavljević, G.T., Structured microparticles with tailored properties produced by membrane emulsification, Advances in Colloid and Interface Science, 225, 53-87 (2015).
Vladisavljevi´c, G.T., Lambrich, U., Nakajima, M., Schubert, H., Production of O/W emulsions using SPG membranes, ceramic α-aluminium oxide membranes, microfluidizer and a silicon microchannel plate - a comparative study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232, 2-3, 199-207 (2004).
Vladisavljević, G.T., Shimizub, M., Nakashimac, T., Preparation of monodisperse multiple emulsions at high production rates by multi-stage premix membrane emulsification, Journal of Membrane Science, 244, 1-2, 97-106 (2004).
Wang, X., Jiang, Y., Wang, Y.W., Huang, M.T., Ho, C.T., Huang, Q., Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions, Food Chemistry, 108, 2, 419-424 (2008).
Watcharaphorn, T., Tiyaboonchai, W., Plianbangchang, P., Formulation and characterization of curcuminoids loaded solid lipid nanoparticles, International Journal of Pharmaceutics, 337, 1-2, 299-306 (2007).
Wit, D.P., Kappert, E.J., Lohaus, T., Wessling, M., Nijmeijer, A., Benes, N.E., Highly permeable and mechanically robust silicon carbide hollow fiber membranes, Journal of Membrane Science, 475, 480-487 (2015).
Yasuno, M., Nakajima, M., Iwamoto, S., Maruyama, T., Sugiura, S., Kobayashi, I., Shono, A., Satoh, K., Visualization and characterization of SPG membrane emulsification, Journal of Membrane Science, 210, 1, 29-37 (2002).
Zhao, D.Y. (ed.), Recent Progress in Mesostructured Materials: Proceedings of the 5th International Mesostructured Materials Symposium (IMMS2006), Studies in Surface Science and Catalysis, Oxford Elsevier, 165 (2007).
Zhou, Q.Z., Wang, L.Y., Ma, G.H., Su, Z.G., Preparation of uniform-sized agarose beads by microporous membrane emulsification technique, Journal of Colloid and Interface Science, 311, 1, 118-127 (2007).
吳晴雯 (2007),添加鋁矽酸鹽礦物於多微孔姓(MPC)碳化矽瓷之製備研究,碩士論文,國立成功大學資源工程研究所,台灣。
陳姿樺 (2007),製備多孔性碳化矽陶瓷之研究,碩士論文,國立成功大學資源工程研究所,台灣。
陳如茵、陳仲仁、蔡依潔、吳家駒、黃志平、朱中亮 (2014),含高濃度奈米/次微米疏水性機能化合物之水相分散液之製備方式,財團法人食品工業發展研究所,TW I425914B。
曾令可、王慧、羅民華 (2005),多孔功能陶瓷製備與應用,中國大陸:化學工業出版社。
詹彩鑾、鄭育奇 (2006),微膠囊及其製造方法,財團法人食品工業發展研究所,TW I402084。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信