系統識別號 | U0002-2906201319191200 |
---|---|
DOI | 10.6846/TKU.2013.01217 |
論文名稱(中文) | 設計及實作於異質性網路中之物聯網閘道器 |
論文名稱(英文) | Design and Implementation of Internet of things Gateway in heterogeneous network |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 101 |
學期 | 2 |
出版年 | 102 |
研究生(中文) | 高承安 |
研究生(英文) | Cheng-An Kao |
學號 | 600410228 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | 英文 |
口試日期 | 2013-06-01 |
論文頁數 | 77頁 |
口試委員 |
指導教授
-
石貴平(kpshih@mail.tku.edu.tw)
委員 - 張志勇(cychang@mail.tku.edu.tw) 委員 - 石貴平(kpshih@mail.tku.edu.tw) 委員 - 廖文華(whliao@ttu.edu.tw) |
關鍵字(中) |
物聯網 異質性網路共存 家庭自動化 蜂群網路 |
關鍵字(英) |
Internet of Things Coexistence of Heterogeneous Network Home Automation ZigBee Network |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
近年來,隨著網路與通訊技術的創新及微機電與嵌入式技術的進步,物聯網(Internet of Things, IoT)的相關應用已逐漸受到關注。透過這些技術,感測、辨識與通訊能力已可嵌入於日常生活中的各種實體設備或與其高度整合,使這些設備成為具有基本智能的智慧物件。因此,物聯網應用在近期已受到世界各國的關注,並投入大量的資源從事研發與推廣。然而,在物聯網的世界裡,同一個空間中可能存在使用不同通訊協定 (如Wi-Fi、ZigBee等) 的智慧物件,若是沒有相對應的特殊處理,可能導致傳輸干擾的問題產生,其根本的原因在於兩相異之通訊協定(802.11與802.15.4)使用同一免費頻段(2.4GHz)進行傳輸,較易造成封包傳輸間的碰撞,進而拉低整體網路傳輸效率。有鑒於此,本論文主要將現有之Wi-Fi基地台結合ZigBee標準,研發一兼具連結網際網路能力及ZigBee通訊功能之無線訊號轉換之基地台,並探討及分析當Wi-Fi與ZigBee於同時間通訊情況下之網路效能。藉由韌體的更新,將原本的無線基地台從網際網路的產品提升為物聯網基地台,使其扮演連結感知層與網路層設備的重要角色。 |
英文摘要 |
In recent years, the network communication and the micro electro mechanical embedded technologies have attracted much attention. Through these technologies, the capabilities of sensing, identification, and communication can be embedded in various physical devices which automatically connect to the Internet and form a big network called Internet of Things (IoT). However, the IoT devices are embedded with different wireless communication interfaces. The most popular interfaces are Wi-Fi and ZigBee. This thesis presents the design and implementation of an IoT Access Point which supports functionalities of coordination of WiFi and ZigBee standards. Based on the existing Wi-Fi Access Point, we have embedded a ZigBee module and implemented the ZigBee protocol such that the designed Access Point can support ZigBee communication capabilities. The designed IoT Access Point can connect to both Internet and home appliances and provide remote access, remote control, and other services for the home appliances. To handle the common interference existed between WiFi and ZigBee protocols, this thesis developed a dynamic channel selection scheme which selects the best channel for constructing ZigBee networks under the coordination of WiFi channel detection. Performance results reveal that the designed IoT Access Point could efficiently improve the link quality, packet error rate, and ZigBee response time. |
第三語言摘要 | |
論文目次 |
目錄 圖目錄 V 表目錄 VII 第一章、簡介 1 第二章、相關研究 5 第三章、背景知識 10 A.IEEE 802.15.4(ZigBee) technology 10 B.IEEE 802.11B(Wi-Fi) technology 11 C.Wi-Fi與ZigBee共存問題 12 第四章、物聯網無線基地台系統架構 13 4.1 使用環境 13 4.2 物聯網無線基地台之功能介紹 14 4.3 系統架構 16 第五章、系統設計 20 5.1 Wi-Fi頻道干擾偵測 22 A.物聯網無線基地台預建表格 22 B.物聯網無線基地台頻道偵測推薦 26 5.2 ZigBee頻道探測與設定機制 28 第六章、系統實作 31 第七章、系統展示 46 第八章、系統效能分析 53 8.1 實驗環境 53 8.2 實驗數據 55 第九章、結論 66 參考文獻 67 附錄-英文論文 71 圖目錄 圖1.Wi-Fi及ZigBee頻譜重疊示意圖 12 圖2.物聯網無線基地台建置於智慧生活之場景 14 圖3.物聯網無線基地台之系統架構 17 圖4.ZigBee頻道偵測與設定機制流程圖 30 圖5.CeraMicro ZigBee收發器相關硬體資訊 31 圖6.Ralink RT3052相關硬體資訊 32 圖7.物聯網無線基地台之軟韌體模組 33 圖8.抓取USB裝置代號示意圖 34 圖9.ZigBee裝置回傳之RSSI與LQI 36 圖10.XML Generator函式轉換後之XML檔案 37 圖11.ZigBee裝置之對應檔案資訊 38 圖12.使用者對ZigBee裝置知詳細操控流程 40 圖13.UPnP執行流程圖 42 圖14.UPnP擷取資訊 44 圖15.物聯網無線基地台之軟韌體模組 46 圖16.Power Meter硬體相關資訊 47 圖17.Power Switch相關硬體資訊 49 圖18.UPnP掃描ZigBee裝置資訊 51 圖19.透過標準HTTP控制Power Switch開關 52 圖20.物聯網無線基地台效能測試之環境設置 54 圖21.不同無線基地台個數下所選擇到之頻率偏移量比較 56 圖22.不同Wi-Fi吞吐量下對ZigBee封包遺失率的影響 57 圖23.ZigBee裝置與物聯網無線基地台之間的距離,在不同Wi-Fi吞吐量下對ZigBee網路連線品質的影響 58 圖24.ZigBee裝置與物聯網無線基地台之間的距離,在不同Wi-Fi吞吐量下對ZigBee封包遺失率的影響 59 圖25.ZigBee裝置與物聯網無線基地台之間的距離,在不同Wi-Fi吞吐量下對ZigBee裝置回應時間的影響 60 圖26.ZigBee裝置與物聯網無線基地台之間的距離,在不同ZigBee封包傳輸週期下對ZigBee封包遺失率的影響 62 圖27.ZigBee網路在Wi-Fi干擾程度為20%環境中,Wi-Fi干擾源與物聯網無線基地台之間的距離對ZigBee封包遺失率的影響 63 圖28.ZigBee網路在Wi-Fi干擾程度為50%環境中,Wi-Fi干擾源與物聯網無線基地台之間的距離對ZigBee封包遺失率的影響 64 圖29.ZigBee網路在Wi-Fi干擾程度為100%環境中,Wi-Fi干擾源與物聯網無線基地台之間的距離對ZigBee封包遺失率的影響 65 表目錄 表1.Wi-Fi與ZigBee之頻率偏移量對照表 24 表2.頻道群集對照表 26 表3.ZigBee裝置回應命令型態對照表 38 表4.ZigBee協調器命令封包結構 48 表5.Power Meter命令回傳封包結構 48 表6.ZigBee協調器命令封包結構 50 表7.Power Switch命令回傳封包結構 50 |
參考文獻 |
[1] Internet-of-Things Definition http://www.gartner.com/it-glossary/internet-of-things/ [2] N. C. Tas, C. Sastry, and Z. Song, “IEEE 802.15.4 Throughput Analysis under IEEE 802.11 Interference,” International Symposium on Innovations and Real Time Applications of Distributed Sensor Networks, 2007 [3] G. Yang, and Y. Yu, “ZigBee Networks Performance under WLAN 802.11b/g Interference,” IEEE International Symposium on Wireless Pervasive Computing, 2009. [4] D. G. Yoon, S. Y. Shin, W. H. Kwon , and H. S. Park, “Packet Error Rate Analysis of IEEE 802.11b under IEEE 802.15.4 Interference,” IEEE Vehicular Technology Conference, 2006. [5] M. Petrova, J. Riihijarvi, P Mahonen, and S. Labella, “Performance Study of IEEE 802.15.4 Using Measurements and Simulations,” IEEE Wireless Communications and Networking Conference, 2006. [6] S. Y. Shin, H. S. Park, and W. H. Kwon, “Mutual Interference Analysis of IEEE 802.15.4 and IEEE 802.11b,” ACM International Journal of Computer and Telecommunications Networking, vol.51, no. 12, pp. 3338-3353, Aug. 2007. [7] W. Yuan, X. Wang, and J. - P. M. G. Linnartz, “A Coexistence Model of IEEE 802.15.4 and IEEE 802.11b/g,” IEEE Symposium on Communications and Vehicular Technology, 2007. [8] A. R. Al-AliandM. Al-Rousan, “Java-Based Home Automation System,” IEEE Transactions on Consumer Electronics, vol. 50, no. 2, pp. 498-594, May 2004. [9] H. V. Dange, and V. k. Gondi, “Powerline Communication Based Home Automation and Electricity Distribution System,” IEEE International Conference on Process Automation, Control and Computing, 2011. [10] J. H. Su, C. S. Lee, and W. C. Wu, “The Design and Implementation of a Low-cost and Programmable Home Automation Module,” IEEE Transactions on Consumer Electronics, vol. 52, no. 4, pp. 1239, Nov. 2006. [11] K. Gill, S. H. Yang, and X. Lu, “A ZigBee-Based Home Automation Syatem,” IEEE Transactions on Consumer Electronics, vol. 55, no. 2, pp. 422-430, May 2009. [12] M. Ha, S. H. Kim, K. Kwon, N. Giang, and D. Kim, “SNAIL Gateway: Dual-mode Wireless Access Points for WiFi and IP-based Wireless Sensor Networks in the Internet of Things,” IEEE Consumer Communications and Networking Conference, 2012. [13] M. Z. Bjelica, B. Mrazovac, N. Teslic, I. Papp, and D. Stefanovic, “Cloud-enabled Home Automation Gateway with The Support for UPnP over IPv4/IPv6 and 6LoWPAN,” IEEE International Conference on Consumer Electronics, 2012. [14] K. Bing, L. Fu, Y. Zhuo, and L. Yanlei, “Design of an Internet of Things-based Smart Home System,” International Conference on Intelligent Control and Information Processing, 2011. [15] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway: Bridging Wireless Sensor Networks into Internet of Things,” International Conference on Embedded and Ubiquitous Computing, 2010. [16] P. Yi, A. Iwayemi, and C. Zhou, “Developing ZigBee Deployment Guideline Under WiFi Interference for Smart Grid Applications,” IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 110-120, March 2011. [17] F. Yao, and S.-H. Yang, “Design of Interference Aware ZigBee Building Monitoring Network,” International Conference on Automation and Computing, 2011. [18] F. Dominguez, A. Touhafi, J. Tiete, and K. Steenhaut, “Coexistence with WiFi for a Home Automation ZigBee Product,” IEEE Symposium on Communications and Vehicular Technology, 2012. [19] H. Khojasteh, J. Misic, and V. B. Misic, “Integration of an IEEE 802.15.4 RFID Network with Mobile Readers with a 802.11 WLAN,” Journal of Wireless Communications and Mobile Computing, 2012 [20] H. Khojasteh, J. Misic, and V.B. Misic, “A Two-Tier Integrated RFID/Sensor Network with a WiFi WLAN,” International Wireless Communications and Mobile Computing Conference, 2012 [21] F. Vanheel, I. Moerman, J. Verhaevert, “Spectral Interference Study of WiFi on Wireless Sensor Networks,” University of Ghent Faculty of Engineering Sciences PhD Symposium, Ghent, Belgium, pp. 108, Dec. 2007. [22] Portable SDK for UPnP Devices, http://upnp.sourceforge.net/ [23] ZigBee Specification (2004), www.zigbee.org [24] ZigBee Alliance, “ZigBee Enables Smart Buildings of the Future Today”, ZigBee White Paper 2007 April |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信