§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2906201300302000
DOI 10.6846/TKU.2013.01208
論文名稱(中文) 一些Hadamard不等式更細緻的結果
論文名稱(英文) Some refinements of Hadamard’s inequalities
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 中等學校教師在職進修數學教學碩士學位班
系所名稱(英文) Executive Master's Program In Mathematics for Teachers
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 劉恩君
研究生(英文) En-Chun Liu
學號 799190151
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2013-06-22
論文頁數 31頁
口試委員 指導教授 - 楊國勝
委員 - 李武炎
委員 - 曾貴麟
關鍵字(中) Hadamard不等式
凸函數
關鍵字(英) Hadamard's double inequality
convex functions
第三語言關鍵字
學科別分類
中文摘要
設  :I R→R 是一個定義在區間I上的凸函數,   I  . 則以下不等式成立
      (1.1)
此為Hadamard不等式
本文建立一些不等式(1.1)更細緻的結果。
英文摘要
Let  :I R→R be a convex function defined an the interval I of real numbers and   I with  . Then the following double inequality
      (1.1)
is Hadamard’s inequality.
We establish some refinements generalizations of the double inequality(1.1)
第三語言摘要
論文目次
目錄
中文部份                                               
1.緒論                                                 1
2.主要結果                                             1
參考文獻                                              15

English part
1.Introduction                                        17
2. Main Results                                       17
Reference                                             30
參考文獻
[1]. S.S. Dragomir , Two mappings in connection to Hadamard’s inequalities , J. Math. 
Anal. , 167(1992)49-`56.
[2]. S.S. Dragomir and R.P. Agarwal , Two inqualities for differentiable mappings and 
applications tospecial means of real numbersand to trapezoidal formula , Appl. 
Math. Lett. , 11(1998)91-95.
[3]. S.S. Dragomir , Y.J. Cho and S.S. Kim , Inequalities of Hadamard’s type for 
Lipschitzian mappings and their applicaitions , J. Math. Anal. , 45(2000),489-501.
[4]. S.S. Dragomir and C.E.M. Pearce , Selected Topics on Hermite-Hadamard 
Inequalities and Applications , RGMIA Monographs , Victoria University , 2000. 
Online:[http://www.Staff.va.edu.au/RGMIA/monographs/hermits_hadamard.html]
[5]. S.S. Dragomir and S. Wang , A new inequality of Ostrowski’s type in L1 norm and 
applications to some special means and to some numerical quadrature rule , 
Tamkang J. Math. , 28(1997)239-244.
[6]. S.S. Dragomir and S. Wang , Applications of Ostrowski’s inequality to the 
estimation of error bounds for some special means and for some numerical 
quadrature rule , Appl. Math. Lett. 11(1998)1005-109.
[7]. H. Hudzik and L. Maligranda , Some remarks on s-convex functions , Aequationes 
Math. , 48(1994),100-111.
[8]. U.S. Kirmaci et al. , Hadamard-type inqualities for s-convex functions , Appl. Math. Comp. , 193(2007),26-35.
[9]. U.S. Kirmaci , Inequalities for differentiable mappings and applications to special 
means of real numbers to midpoint formula , Appl. Math. Comp. , 
147(2004),137-146.
[10]. U.S. Kirmaci and M.E. Özdemir , On some inequalities for differentiable 
mappings and applications to special means of real numbers and to midpoint 
formula , Appl. Math. Comp. , 153(2004),361-368
[11]. M.E. Özdemir , A theorem on mappings with bounded derivatives with 
applications to quadrature rules and means , Appl. Math. Comp. , 
138(2003),425-434. 
[12]. B.G. Pachpatte , On some migualities for convex functions RGMIA Res/Coll. 
6(E)(2003), http://rgmia,vu.edu.au/v6(E).html. 
[13]. C.E.M. Pearce and J. Pečarić , Inequalities for differentiable mappings with 
application to special means and quadrature formual , Appl. Math. Lett. , 
13(2000)51-55.
[14]. G.S. yang , D.Y. Hwang and K.L. Tseng , Some inequalities for differentiable 
convex and concave mappings, Comp. Math. Appl. , 47(2004), 207-216.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信