淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2906201214361700
中文論文名稱 估算信任值:一個社會網絡的視角
英文論文名稱 Estimating Trust Value: A Social Network Perspective
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士班
系所名稱(英) Department of Business Administration
學年度 100
學期 2
出版年 101
研究生中文姓名 狄愛林
研究生英文姓名 Arleen Nicole Diaz Castillo
學號 699611025
學位類別 碩士
語文別 英文
第二語文別 中文
口試日期 2012-06-09
論文頁數 77頁
口試委員 指導教授-張瑋倫
委員-解燕豪
委員-許瑋元
中文關鍵字 信任  社會網絡  集群  自組織映射圖網路  網路建議系統  社會媒體 
英文關鍵字 Trust  social network  clustering  SOM  ORS  social media 
學科別分類 學科別社會科學管理學
中文摘要 資訊負荷已成為現今資訊時代的一大問題,在資訊量成長快速的狀況下,資訊過
濾的方式也叫無效率。另一方面,社會網絡中的使用者越來越傾向將網路上的內容排
序。本研究主要目的在探討是否可衡量社會網絡中的信任值,以及透過分群的方式是
否能有效協助分析。此外,本研究也提出信任值計算模式,此模式以社會網絡以及線
上評分系統為基礎。本研究透過社會距離的概念,輔以分群法為基礎協助區隔社會網
絡中的個體。並以分群後的個體間距離為信任值推算基礎。
研究結果顯示透過分群法應用在社會網絡中,是能夠推算出信任值。本研究所
提出的模式結合了不同變數如時間變數與評分值的概念,在計算信任值上以多維度的
角度來思考。研究結果也顯示較高的評分結合較短的社會距離夠產生較高的信任值,
較低的評分結合較長的社會距離則產生較低的信任值。這也證明了社會網絡中社會距
離的影響性。縱言之,本研究主要提供了多維度的信任值推算模式,主要考量變數包
含社會距離、權重、時間以及內容評分值,此外,不同層級的個體關係也有不同的重
要性。本研究期望對於社會網絡中信任的概念文獻提供初步的基礎,並且也提供在資
訊爆炸時代下資訊過濾方式的一個新思維。
英文摘要 Information overload is an increasing problem, and as information available
continues to grow in volume, current filtering techniques are proving inefficient.
Social network users and people in general, tend to prioritize recommendations
coming from people they are acquainted to. The purpose of this study was to
investigate if it was possible to measure trust within individuals in a social network,
as well as find out if data clustering methods could help to achieve said goal. Another
aim was to develop a trust model that would estimate a trust value for content creators
on an online rating system with social network capabilities.
This research introduces the concept of social distance, which is drawn from
clustering methods applied to the social network user base; and incorporates said
distance in the estimation of trust, as well as user generated ratings. The trust value
estimated will serve as a metric for filtering and sorting content of any kind based on
the trustworthiness of the creator.
The results of the study revealed that it is possible to provide an estimate
measure of trust within individuals in a social network and that clustering methods
were of significant help into said evaluation as well as the integration of other
variables affecting the building of trust. It was found that the model proposed by this
study was able to integrate various variables and provide a more complete and
integrated, multidimensional value to an estimated trust. Results also showed, that
higher rating scores combined with shorter social distances provide satisfactory trust
values, while the opposite happened for subjects presenting lower rating scores in
combination with longer distances.
The principal conclusion was that our model provides a multidimensional
estimated value for trust on content from the Internet, that integrates some of the
variables necessary for the building of trust in online setting, as are: social distance,
weight of relationship, time, and ratings from an online rating system; as well trust
levels between individuals within a social network. This study contributes to the
current literature on trust estimation and social networks role in such endeavors. This
will provide also an alternative for current information overload issues as well.
論文目次 Table Content

Figure Content

Chapter 1. Introduction
1
1.1 Background
1
1.1.1 The Problem of Information Overload
1
1.1.2 The importance of Social Media
3
1.1.3 Social media and consumer behavior
4
1.1.4 The concept of trust
8
1.2 Problem statement
10
1.3 Research questions
12
1.4 Purpose of the study
13
1.5 Value of the study
14
Chapter 2: Literature Review
16
2.1 Collaborative Filtering Algorithms
16
1.2.1 Online Recommender Systems (ORS)
16
1.2.2 Collaborative Filtering and Social Networks
17
2.2 Trust issues and Social Networks
18
2.2.1 Trust models within Social Networks
19
2.2.2 Common issues for Trust Models
19
2.3 Clustering Techniques
20
Chapter 3: Research Method
22
3.1 Research Framework
22
3.1.1 Self-Organization Maps (SOM)
24
3.1.2 The Social Network
27
3.2 The Trust Model
27
3.2.1 Social Distance
28
3.2.1.1 Calculation of social distance
29
3.2.2 The relationship between social distance and rating score 30
3.2.3 The Estimated Trust Value (ETV)
31
3.2.4 Measure of the weight variable w and the rating R 33
Chapter 4: Analysis
36
4.1 Settings for simulation
36
4. 1.1 Ranges for other variables
38
4.1.2 User alternatives
39
4.2 User Option 1 Results
43
4.2.1 User Option 1 Original Data
43
4.2.2 User Option 1 Clustering Results
44
4.2.2.1 User Option 1 Cluster #1
46
4.2.2.2 User Option 1 Cluster #2
46
4.2.2.3 User Option 1 Cluster #3
47
4.2.3 User Option 1 ETV Results
47
4.3 User Option 2 Results
49
II
4.3.1 User Option 2 Original Data
49
4.3.2 User Option 2 Clustering Results
51
4.3.2.1 User Option 2 Cluster #1
52
4.3.2.2 User Option 2 Cluster #2
53
4.3.2.3 User Option 2 Cluster #3
53
4.3.3 User Option 2 ETV Results
54
4.4 User Option 3 Results
55
4.4.1 User Option 3 Original Data
55
4.4.2 User Option 3 Clustering Results
57
4.4.2.1 User Option 3 Cluster #1
59
4.4.2.2 User Option 3 Cluster #2
60
4.4.2.3 User Option 3 Cluster #3
60
4.4.3 User Option 3 ETV Results
61
Chapter 5: Concluding Remarks
63
5.1 Cross Analysis
63
5.2 Conclusion
68
5.3 Managerial Implications
70
5.4 Research Limitations
71
References
73
Table Content
Table 4.1 Summary User Attributes Ranges 37
Table 4.2 User option #1 attributes 40
Table 4.3 User option #1 “network of friends” sample ranges 41
Table 4.4 User option #2 attributes 41
Table 4.5 User option #2 “network of friends” sample ranges 42
Table 4.6 User option #3 attributes 42
Table 4.7 User option #3 “network of friends” sample ranges 43
Table 4.8 Attributes and ranges for User Option 1 43
Table 4.9 User Option 1 cluster means results 45
Table 4.10 User Option 1 cluster results 45
Table 4.11 User Option 1 ΣETV results by cluster 48
Table 4.12 User Option 1 variable results by cluster 48
Table 4.13 Attributes and ranges for User Option 2 49
Table 4.14 User Option 2 cluster means results 51
Table 4.15 User Option 2 cluster results 52
Table 4.16 User Option 2 ΣETV results by cluster 54
Table 4.17 User Option 2 variable results by cluster 55
Table 4.18 Attributes and ranges for User Option 3 56
Table 4.19 User Option 3 cluster means results 58
Table 4.20 User Option 3 cluster results 58
Table 4.21 User Option 3 ΣETV results by cluster 61
Table 4.22 User Option 3 variable results by cluster 61
Table 5.1 User options results for variable rb 63
Table 5.2 User option results for ETV 64
Table 5.3 User option results for all variables and ETV 65
Table 5.4 Average Σd and ETV values for each user option 66
Table 5.5 Average Σrb variable values and ETV for each user option 67
Figure Content
Figure 1.1. The increase on information vs. the amount of information we
are able to process.
1
Figure 1.2. Diagram of the uneven proportions of information. 3
Figure 1.3. Top 10 U.S. Social Networks and Blogs >> Unique Audience 4
Figure 1.4. Consumers’ preference for sources of product and service
information.
6
Figure 3.1. Research Framework 23
Figure 3.2 Concept of Self-Organization Maps 24
Figure 3.3 Examples of topological neighborhood (N,(t)) on an SOM 25
Figure 3.4 Representation of a three-dimensional grid-like SOM 25
Figure 3.5 Concept of Best Matching Unit (BMU) in learning process. 26
Figure 3.6 Type of data that will be collected from the SN 28
Figure 3.7 Step-by-step processes for the calculation of Social Distance 29
Figure 3.8 Representation of clusters in a data set. 30
Figure 3.9 Diagram of ETV variables 33
Figure 3.10 Rating System diagram and point values for R 34
Figure 4.1. Users attributes 37
Figure 4.2. User Attributes Ranges 37
Figure 4.3 SOM clusters for User Option 1 45
Figure 4.4 SOM clusters for User Option 2 51
Figure 4.5 SOM clusters for User Option 3 58
Figure 5.1 Average Σrb values for each user option 64
Figure 5.2 Average distances by user option 66
Figure 5.3 Average ETV by user option 67
參考文獻 References
Abdul-Rahman, A., & Hailes, S. (1997). A Distributed Trust Model. (T. Haigh, B. Blakley, M. E.
Zurbo, & C. Meodaws, Eds.)Proceedings of the 1997 workshop on New security paradigms NSPW 97,
48-60. ACM Press.
Barabasi, A.-L., Apr. 2003. Linked: How Everything Is Connected to Everything Else and What It
Means, reissue Edition. Plume. http://www.worldcat.org/isbn/0452284392
Bobadilla, J., Serradilla, F., & Bernal, J. (2010). A new collaborative filtering metric that improves the
behavior of recommender systems. Knowledge-Based Systems, 23(6), 520-528. Elsevier B.V.
Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for
Collaborative Filtering. (G. Cooper & S. Moral, Eds.)Proceedings of the 14th conference on
Uncertainty in Artificial Intelligence, 461(8), 43–52. San Francisco, CA.
Caverlee, J., Liu, L., & Webb, S. (2010). The SocialTrust framework for trusted social information
management: Architecture and algorithms. Information Sciences, 180(1), 95-112. Elsevier Inc.
Chen, S.C., 2003. Interpreting Dimensions of Consumer Trust in E-Commerce. Information
Technology and Management, 4(2-3), p.303-318. Available at:
http://www.springerlink.com/index/h35834p301x325j0.pdf.
comScore (2007), “Online Consumer-Generated Reviews Have
Significant Impact on Offline Purchase Behavior,” press release, (November 29).
http://www.comscore.com/press/release.asp?press=1928].
DCC. (2011) The Digital Curation Centre (DCC), http://www.dcc.ac.uk
Davis D., (2010). The Information Overload Paradox. The Tipping Point Labs. Retrieved from
http://tippingpointlabs.com/2010/10/20/chart-of-the-week-the-information-overload-paradox/commentpage-1/
DuBois, T., Golbeck, J., Kleint, J., & Srinivasan, A. (2009). Improving Recommendation Accuracy by
Clustering Social Networks with Trust. Proceedings of the ACM RecSys 2009 Workshop.
Recommender Systems & the Social Web, P.8. http://www.cs.tudortmund.de/nps/de/Forschung/Publikationen/Graue_Reihe1/Ver__ffentlichungen_2009/826.pdf#page
=8
Fu B., O'Sullivan D., (2007) Trust Management in Online Social Networks, In Proceedings of the 7th
IT&T Conference, - Digital Convergence in a Knowledge Society, pp.3-12, ITB, Dublin, Ireland
Godes, D., & Mayzlin, D. (2009). Firm-created word-of-mouth communication: evidence from a field
test. Marketing Science, 28(4), 721–739.
Golbeck, J. (2006). Generating Predictive Movie Recommendations from Trust in Social Networks.
Work, 3986, 93-104. Springer. Retrieved from
http://www.springerlink.com/index/KL313421W6252620.pdf
Grandison, T., & Sloman, M. (2000). A survey of trust in internet applications.IEEE Communications
Surveys Tutorials, 3(4), 2-16. IEEE.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=534080480
Gross, R., & Acquisti, A. (2005). Information revelation and privacy in online social networks. Human
Factors, 0707(November), 71. ACM Press.
Hemp, P. (2009). Death by information overload. Harvard Business Review,87(9), 82-89, 121. Harvard
Business School Publication Corp. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19736853
Herbig, P. A., & Kramer, H. (1994). The Effect of Information Overload on the Innovation Choice
Process: Innovation Overload. Journal of Consumer Marketing, 11(2), 45-54. Retrieved from
http://www.emeraldinsight.com/10.1108/07363769410058920
Iyengar, R., Valente, T. W., & Van den Bulte, C. (2011). Opinion Leadership and Social Contagion in
New Product Diffusion. Marketing Science, 30(2), 195–212.
Jin, S., Park, C., Choi, D., Chung, K., & Yoon, H. (2005). Cluster-based trust evaluation scheme in an
ad hoc network. ETRI Journal, 27(4), 465-468. Electronics and Telecommunications Research Institute,
161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305-350, South Korea,.
Kate S. (2009), “Trustworthiness within social networking sites: A study on the intersection of hci and
sociology,” Master Thesis.
Katz, E., & Lazarsfeld, P. F. (1955). Personal influence: The part played by people in the flow of mass
communications. Journal of Marketing. Vol. 21, pp. 129-130. Free Press. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/13409025
Kautz, H., Selman, B., & Shah, M. (1997). Combining Social Networks and Collaborative
Filtering. Communications of the ACM, 40(3), 63-65.
Kohonen, T. (1990), ‘The Self-Organizing Map’, Proceedings of the IEEE, 78(9) 1464 – 1480.
Kohonen, T., Hynninen, J., Kangas, J., & Laaksonen, J. (1996). SOM PAK : The Self-Organizing Map
Program Package SOM PAK : The Self-Organizing Map Program Package. Technical Report A31,
Helsinki University of Technology.
Lagus, K., Honkela, T., Kaski, S., & Kohonen, T. (1996). Self-organizing maps of document
collections: A new approach to interactive exploration. Neural Networks, 1(2), 238-243. AAAI Press.
Retrieved from https://www.aaai.org/Papers/KDD/1996/KDD96-039.pdf
Lathia, N., Hailes, S., & Capra, L. (2008). Trust-based collaborative filtering.Trust Management II, 263,
299-300. SPRINGER.
Lee, M., & Turban, E. 2001. A Trust Model for Consumer Internet Shopping. International Journal of
Electronic Commerce, 6(1): 75-91.
Lewis, J. D., & Weigert, A. (1985). Trust as a Social Reality. Social Forces,63(4), 967-985. JSTOR.
Liu, F., & Lee, H. J. (2010). Use of social network information to enhance collaborative filtering
performance. Expert Systems with Applications, 37(7), 4772-4778. Elsevier Ltd.
Liu, H., & Maes, P. (2005). InterestMap: Harvesting Social Network Profiles for
Recommendations. Paper presented at the IUI’05, San Diego, California. Network.81
Lu, Y., Tsaparas, P., Ntoulas, A., & Polanyi, L. (2010). Exploiting social context for review quality
prediction. Proceedings of the 19th international conference on World wide web WWW 10, 15(4), 691.
ACM Press.
Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011). Recommender systems with social
regularization. (I. King, W. Nejdl, & H. Li, Eds.), 287-296. ACM Press.
Massa, P., & Avesani, P. (2004). Trust-aware collaborative filtering for recommender systems. (R.
Meersman & Z. Tari, Eds.)On the Move to Meaningful Internet Systems 2004 CoopIS DOA and
ODBASE, 3290, 492-508. Springer. Retrieved from
http://www.springerlink.com/index/8BAJ2BP1HATVFGKC.pdf
Massa, P., & Bhattacharjee, B. (2004). Using trust in recommender systems: an experimental analysis.
(C. D. Jensen, S. Poslad, & T. Dimitrakos, Eds.)Trust Management, 2995, 221-235. Springer.
Retrieved from http://www.springerlink.com/index/TFCG7W34VF58YAWL.pdf
McKnight, D., & Chervany, N. 2002. What Trust Means in E-Commerce Customer Relationships: An
Interdisciplinary Conceptual Typology. International Journal of Electronic Commerce, 6(2): 35-59.
McKnight, D., Cummings, L., & Chervany, N. 1998. Initial Trust Formation in new Organizational
Relationships. Academy of Management Review, 23(3): 473-490.
Melville P. & Sindhwani V., Recommender Systems. Encyclopedia of Machine Learning, Claude
Sammut and Geoffrey Webb (Eds), Springer, 2010.
Meo, P. D., Graziella, V., Feo, L., Calabria, R., Nocera, A., Quattrone, G., Rosaci, D., et al. (2009).
Finding reliable users and social networks in a social internetworking system. Social Networks, 173-
181. ACM Press.
Montaner, M., Lopez, B., & De La Rosa, J. L. (2002). Developing trust in recommender agents. (M.
Gini, T. Ishida, C. Castelfranchi, & W. L. Johnson, Eds.)Proceedings of the first international joint
conference on Autonomous agents and multiagent systems part 1 AAMAS 02, 304. ACM Press.
Mui L., Mohtashemi M., Ang C., Szolovits P., Halberstadt A. (2001) "Ratings in Distributed Systems:
A Bayesian Approach," Workshop on Information Technologies and Systems (WITS'2001).
Nambisan, S. and Nambisan, P. (2008), “How to profit from a better virtual customer
environment”, MIT Sloan Management Review, Vol. 49 No. 3, pp. 53-61.
Nielsen Media. (2011) Social Media Report: Q3 2011. Nielsen Wire. Retrieved from
http://blog.nielsen.com/nielsenwire/social/
Nielsen Media. (2011) How Social Media Impacts Brand Marketing. Nielsen Wire. Retrieved from
http://blog.nielsen.com/nielsenwire/consumer/how-social-media-impacts-brand-marketing/
O’Donovan, J., & Smyth, B. (2005). Trust in recommender systems. (R. J, J. A, B. D, & L. T,
Eds.)Proceedings of the 10th international conference on Intelligent user interfaces IUI 05, 15, 167.
ACM Press.
Pham, M. C., Cao, Y., Klamma, R., & Jarke, M. (2010). A Clustering Approach for Collaborative
Filtering Recommendation Using Social Network Analysis. Journal Of Universal Computer
Science, 17(4), 1-21. Retrieved from http://www.jucs.org/82
Prahalad, C.K. and Ramaswamy, V. (2004), “Co-creation experiences: the next practice in value
creation”, Journal of Interactive Marketing, Vol. 18 No. 3, pp. 5-14.
Relander, A. (2010). Trusty Mechanisms In Social Networks. Seminar on Internetworking. Aalto
University School of Science and Technology. Department of Computer Science and Engineering.
Retrieved from http://www.cse.hut.fi/en/publications/B/10/
Reviews, A. (2011). The Role of the Critical Review Article in Alleviating Information Overload.
Annual Reviews , A Nonprofit Scientific Publisher. 1-16. Retrieved from
http://www.annualreviews.org/userimages/ContentEditor/1300384004941/Annual_Reviews_WhitePap
er_Web_2011.pdf
Rousseau, D.M., Sitkin, S.B., Burt, R.S. and Camerer, C. (1998) Not so different after all: A crossdiscipline view of trust, Academy of Management Review 23(3) 393–404.
Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing. (M. I. T. Press, Ed.)
Foundations (Vol. 1, pp. 135-153). MIT Press.
Ryu, Y., Kim, H. K., Cho, Y. H., & Kim, J. K. (2006). Peer-oriented content recommendation in a
social network. A Paper presented at the 16th Workshop on Information Technologies and Systems
(WITS 2006)
Sarwar, B. M., Karypis, G., Konstan, J., & Riedl, J. (2002). Recommender Systems for Large-scale ECommerce : Scalable Neighborhood Formation Using Clustering. Communications, 50(12), 158–167.
Retrieved from http://grouplens.org/papers/pdf/sarwar_cluster.pdf
Sashi, C M, (2012) "Customer engagement, buyer-seller relationships, and social media", Management
Decision, Vol. 50 Iss: 2
Schultz T., (2011) Preface. Annual Review of Entomology. Annual Reviews , A Nonprofit Scientific
Publisher. Vol. 56, 4-6
Sinha, R. and Swearingen, K. 2001. Comparing recommendations made by online systems and friends.
In Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in
Digital Libraries. Dublin, Ireland.
Stanier, J., Naicken, S., Basu, A., Li, J., & Wakeman, I. (2010). Can We Use Trust in Online
Dating? Journal of Wireless Mobile Networks Ubiquitous Computing and Dependable
Applications, 1(4), 50-61.
Takac, C., Hinz, O. & Spann, M., 2011. The social embeddedness of decision making: opportunities
and challenges. Electronic Markets, 21(3), p.185-195. Available at:
http://www.springerlink.com/index/10.1007/s12525-011-0066-y.
Tan, F. B. & Sutherland, P. (2004). Online Consumer Trust: A Multi-Dimensional Model. Journal of
Electronic Commerce in Organizations 2:3, 40–58.
Tan, Y., & Theon, W. 2001. Toward a Generic Model of Trust for Electronic Commerce. International
Journal of Electronic Commerce, 5(2): 61-74.
Thackeray, R., Neiger, B.I., Hanson, C.L. and McKenzie, J.F. (2008), “Enhancing
promotional strategies within social marketing programs: use of Web 2.0 social
media”, Health Promotion Practice, Vol. 9 No. 4, pp. 338-43.83
Valente, T. W. (1995). Network models of the diffusion of innovations. Cresskill N.J.: Hampton Press.
Wang J., Yin J., Liu Y., Huang, C. (2011) "Trust-based Collaborative Filtering," Fuzzy Systems and
Knowledge Discovery (FSKD), 2011 Eighth International Conference on , vol.4, no., pp.2650-2654,
26-28
Yakel, E. (2007). Digital curation. OCLC Systems Services, 23(4), 335-340. Retrieved from
http://www.emeraldinsight.com/10.1108/10650750710831466
Yu, J. B., Xi, and L. F. (2008). Using an MQE chart based on a self-organizing map NN to monitor
out-of-control signals in manufacturing processes. International Journal of Production Research,
46(21):5907-5933.
Zhai, D., & Pan, H. (2008). A Social Network-Based Trust Model for E-Commerce. 2008 4th
International Conference on Wireless Communications Networking and Mobile Computing,
(70639002), 1-5. IEEE. Retrieved from
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4680333
Zhao, X., Li, P., & Kohonen, T. (2011). Contextual self-organizing map: software for constructing
semantic representations. Behavior Research Methods, 43(1), 77-88. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/21287105
Ziegler, C.-nicolas, & Golbeck, J. (2006). Investigating Correlations of Trust and Interest Similarity -
Do Birds of a Feather Really Flock Together ? Decision Support Systems, 43(2), 1-34. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.7225&rep=rep1&type=pdf
Ziegler, C.-nicolas, & Lausen, G. (2004). Analyzing Correlation between Trust and User Similarity in
Online Communities. (C. Jensen, S. Poslad, & T. Dimitrakos, Eds.)Trust Management, 2995, 251-265.
Springer.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信