淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2906200719330100
中文論文名稱 平面Notch型天線的接地面縮小化及其陣列應用的研究
英文論文名稱 Investigation of ground size reduction and array application for the planar notch antenna
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 翁律淨
研究生英文姓名 Liu-Jing Wong
學號 694350181
學位類別 碩士
語文別 中文
口試日期 2007-06-05
論文頁數 94頁
口試委員 指導教授-李慶烈
委員-丘建青
委員-賴友仁
委員-張道治
委員-林丁丙
中文關鍵字 凹槽天線  彎折傳輸線殘段  藍芽  天線陣列 
英文關鍵字 notch antenna  bent open transmission line stub  Bluetooth  WiMAX  array antenna 
學科別分類 學科別應用科學電機及電子
中文摘要 論文提要內容:
本論文藉由電容性金屬殘段(stub)負載技術設計一小型全平面式反J形凹槽天線,其可能應用為一操作在2.45 GHz ISM頻帶且可支援行動電話及其配備(如藍芽耳機)所需的小型天線,用以取代低溫共燒陶瓷(LTCC)晶片藍芽天線;本論文並進一步利用此凹槽天線為元件,設計一高增益的線形陣列天線。
此天線元件的結構乃是將一字形凹槽予以彎曲成反J形,並引進一個L型金屬殘段來提供電容性負載以達到縮小化的目的。其目的乃在利用一便宜的製程或電路板上來實現一平面式的小型天線,這不需要用到三維的結構以節省機械加工的費用,也不需用到先進的LTCC等技術。
有關本天線元件的設計,首先探討在一0.8公釐厚的FR4板上(接地面尺寸為30×40mm2)的四分之一波長的一字形凹槽天線,再將凹槽予以彎曲成反J形,並引進一個L形金屬殘段(stub)來提供電容性負載以進一步縮小化凹槽,最後配合凹槽結構將微帶饋線適當彎曲以使整個天線結構(凹槽加上殘段及三折微帶線)的尺寸縮小到7.94×7.41 mm2的占用面積(occupation area)。惟接地面尺寸維持為30×40mm2,因此,本論文並探討了凹槽結構參數對天線特性的影響,並藉此以進一步將接地面的尺寸縮小為30×14mm2,此時的10dB頻寬仍有50MHz。
實測結果顯示此凹槽天線的H-plane輻射場型具有全向性,其增益為3.29dB左右。另外,本論文亦探討了該凹槽天線與手機電路板整合後的效應,為此,我們將一接地面的尺寸縮小成只有14×14m m2的反J形凹槽天線搭載在一真實尺寸的手機電路板(100×60m m2)上,以模擬與真實手機結合的情況,此時的10dB頻寬仍有50MHz。
吾人進一步比例縮小原反J形天線的凹槽,使該天線操作在3.5GHz(3.4~3.6GHz)的頻帶,並以此凹槽天線為元件設計一高增益的線形陣列天線,目標在支援Wimax無線通訊的應用,有關陣列天線元件的不同排列方式,以及以簡單一字型的凹槽天線作為天線元件的可能與其縮小化論文亦做了探討。
英文摘要 Abstract:
This thesis reports a miniature monopole notch antenna implemented by suitably meandering the notch into inverted J shape and being seriously coupled to anopen transmission line stub. The possible application of the proposed antenna is for the handset and its accessories such as the Bluetooth earphone as a substitution for the LTCC Bluetooth chip antenna. In addition, the proposed notch antenna structure is employed as the antenna element to design a linear antenna array of high gain.
In this thesis, a simple notch is suitably meandered to into inverted J shape and a bent and asymmetrical open transmission line is introduced to capacitively couple the notch antenna on a ground plane in order to achieve the reduction of antenna size. The purpose is to utilize a cheap PCB process and/or PCB board to implement a planar antenna without the use of 3D structure and the mechanical process, also to avoid the use of the LTCC (Low-temperature co-fired ceramic) process.
As the routine of the design process, a simple quarter-wavelength notch residing on a FR4 board with thickness 0.8mm (with the ground size 30×40mm2) is considered first. The notch is then suitably meandered to into inverted J shape and a bent L-shapedopen transmission line stub is introduced across the notch as a capacitive load to the notch antenna to reduce the antenna size. The microstrip fed is also suitably bent to match upwith the inverted J shape notch such that the total occupation area of the whole antenna structure is reduced to 7.94×7.41 m m2 which includes the notch, the open stub and the microstrip feeding part. It should be mentioned that the ground size 30×40mm2 is still maintained. The influences of antenna structure parameters upon the antenna input impedance are also studied, by which the antenna design with the ground size reduced to 30×14mm2 can be easily carried out.
The experimental results show that the H-plane antenna pattern is omni-directional for the proposed notch antenna of inverted J shape, while the antenna gain is 3.29dB. The thesis also studies the effect of the integration of the notch antenna with a large ground plane to simulate the practical situation in usage. Thus, theproposed antenna of inverted J shape notch with small ground size of 14×14m m2is connected with a large ground plane of size 100×60m m2, of which the 10dB bandwidth is ~50MHz.
Finally, the size of proposed notch antenna of inverted J shapeis scaled down for higher frequencies. The purpose is to have the new notch antenna operate in the 3.5GHz(3.4~3.6GHz) WiMAX band, and to utilize it as the antenna element to design a linear antenna array of high gain for WiMAX application. Different orientations for the antenna element are studied, while, on the other hand, the antenna array made of simpleelement with quarter-wavelength notch is also tested.
論文目次 目錄
第一章 序論...............................................1
1.1簡介...................................................1
1.2研究目的...............................................1
1-3論文架構...............................................3
第二章 反J形凹槽天線......................................4
2-1 簡介..................................................4
2-2 槽孔 ( Slot ) 與帶線片 ( Strip ) 之互補...............4
2-3 簡單偶極槽孔天線特性之研究............................8
2-4 反J形凹槽天線設計.....................................9
2-5 反J形凹槽天線之接地面縮小化設計......................10
2-5-1 天線設計討論.......................................10
2-5-2 天線之模擬與實測...................................12
2-6 天線輻射場型量測.....................................14
第三章 反J型凹槽天線之陣列應用...........................46
3-1 簡介.................................................46
3-2 線性天線之陣列因子...................................46
3-3 應用於Wimax頻帶中之凹槽陣列天線設計..................49
3-3-1 反J型凹槽陣列天線..................................50
3-3-2 一字型凹槽天線設計.................................51
3-3-3一字型凹槽陣列天線..................................52
3-3-4增加邊緣接地面的一字型凹槽陣列天線..................53
3-3-5 一字型凹槽陣列天線之縮小化設計.....................54
3-4 輻射場型量測.........................................55
第四章 結論..............................................91

圖目錄

圖2.1 Stratton-Chu formula 示意圖........................16
圖2.2 無窮大金屬面上之槽孔...............................17
圖2.3 利用Stratton-Chu formula 解槽孔之EM 場之模型.......18
圖2.4 帶片(strip)天線....................................19
圖2.5(a) 簡單槽孔偶極天線立體示意圖......................19
圖2.5(b) 微帶線饋入簡單槽孔偶極天線Wf=1.4mm,de=1.635mm,在h=0.8mm,Ls=39.624mm.....................................20
圖2.6 簡單槽孔偶極天線結構特性圖.........................21
圖2.7 簡單槽孔偶極天線模擬S11 圖.........................22
圖2.8(a) 二分之一波長槽孔之電場..........................23
圖2.8(b) 二分之一波長槽孔之等效磁流......................23
圖2.9(a) 簡單槽孔偶極天線H-plane 模擬輻射場型............24
圖2.9(b) 簡單槽孔偶極天線E-plane 模擬輻射場型............24
圖2.10 反J形凹槽藍芽手機天線之俯視示意圖.................25
圖2.11 反J形凹槽藍芽天線實作圖(正面).....................25
圖 2.12 反J形凹槽藍芽天線實作圖(背面)....................25
圖2.13 天線之微帶饋入線及L型殘段之示意圖.................26
圖2.14 天線之接地面及其上凹槽之示意圖....................26
圖2.15 反J形凹槽天線之S11響應圖..........................27
圖2.16(a) 改變Lf4長度之S11響應圖.........................28
圖2.16(b) Lf4長度減少0.46mm與原本天線的阻抗對頻率之關係圖 (Wf=1.4mm,Lf1=21.964mm,Lf2=5.41mm,Lf3=5.77mm,Lf4=1.407mm,Wc=1mm,Lc1=7.94mm,Lc2=5.41mm,d1=0.41mm,d2=1.91mm,d=1mm,Ls1=5.3mm,Ls2=5.2mm,Ls3=4.3mm)...29
圖2.16(c) Lf4長度增加0.5mm與原本天線的阻抗對頻率之關係圖 (Wf=1.4mm,Lf1=21.964mm,Lf2=5.41mm,Lf3=5.77mm,Lf4=2.367mm,Wc=1mm,Lc1=7.94mm,Lc2=5.41mm,d1=0.41mm,d2=1.91mm,d=1mm,Ls1=5.3mm,Ls2=5.2mm,Ls3=4.3mm......29
圖2.17(a)改變d2長度之S11響應圖.........................30
圖2.17(b) d2長度減少0.5mm與原本天線的阻抗對頻率之關係圖(Wf=1.4mm,Lf1=21.964mm,Lf2=5.41mm,Lf3=5.77mm,Lf4=1.867mm,Wc=1mm,Lc1=7.94mm,Lc2=5.41mm,d1=0.41mm,d2=1.41mm,d=1mm,Ls1=5.3mm,Ls2=5.2mm,Ls3=4.3mm)......31
圖2.17(c) d2長度增加0.5mm與原本天線的阻抗對頻率之關係圖(Wf=1.4mm,Lf1=21.964mm,Lf2=5.41mm,Lf3=5.77mm,Lf4=1.867mm,Wc=1mm,Lc1=7.94mm,Lc2=5.41mm,d1=0.41mm,d2=2.41mm,d=1mm,Ls1=5.3mm,Ls2=5.2mm,Ls3=4.3mm)......31
圖2.18(a) 改變d長度之S11響應圖..........................32
圖2.18(b) d長度減少0.5mm與原本天線的阻抗對頻率之關係圖(Wf=1.4mm,Lf1=21.964mm,Lf2=5.41mm,Lf3=5.77mm,Lf4=1.867mm,Wc=1mm,Lc1=7.94mm,Lc2=5.41mm,d1=0.41mm,d2=1.91mm,d=0.5mm,Ls1=5.3mm,Ls2=5.2mm,Ls3=4.3mm)....33圖2.18(c) d長度增加0.5mm原本天線的阻抗對頻率之關係圖(Wf=1.4mm,Lf1=21.964mm,Lf2=5.41mm,Lf3=5.77mm,Lf4=1.867mm,Wc=1mm,Lc1=7.94mm,Lc2=5.41mm,d1=0.41mm,d2=1.91mm,d=1.5mm,Ls1=5.3mm,Ls2=5.2mm,Ls3=4.3mm)....33
圖2.19(a) 改變Ls3長度之S11響應圖........................34
圖2.19(b) Ls3長度減少0.5mm原本天線的阻抗對頻率之關係圖(Wf=1.4mm,Lf1=21.964mm,Lf2=5.41mm,Lf3=5.77mm,Lf4=1.867mm,Wc=1mm,Lc1=7.94mm,Lc2=5.41mm,d1=0.41mm,d2=1.91mm,d=1mm,Ls1=5.3mm,Ls2=5.2mm,Ls3=3.8mm)......35
圖2.19(c) Ls3長度增加0.5mm原本天線的阻抗對頻率之關係圖(Wf=1.4mm,Lf1=21.964mm,Lf2=5.41mm,Lf3=5.77mm,Lf4=1.867mm,Wc=1mm,Lc1=7.94mm,Lc2=5.41mm,d1=0.41mm,d2=1.91mm,d=1mm,Ls1=5.3mm,Ls2=5.2mm,Ls3=4.8mm)......35
圖2.20 Lf5寬度增加0.5mm與小ground天線的阻抗比較圖.......36
圖2.21(a) ground大小為30×14mm2 的反J形凹槽藍芽天線結構圖......................................................37
圖2.21(b) 天線實作圖(正面) .............................37
圖2.21(c) 天線實作圖(背面) .............................37
圖2.22 ground大小為30×14mm2的反J形凹槽藍芽天線的S11響應圖......................................................38
圖2.23(a) ground大小為30×14mm2 的fat line藍芽手機天線結構圖
........................................................39
圖2.23(b) 天線實作圖(正面) .............................39
圖2.23(c) 天線實作圖(背面) .............................39
圖2.24 ground大小為30×14mm2的fat segment藍芽手機天線的S11響應圖....................................................40
圖2.25 ground大小為100×60mm2的藍芽天線結構圖............41
圖2.26 ground大小為100×60mm2的藍芽天線實作圖............41
圖2.27 ground大小為100×60mm2 的藍芽天線的S11響應圖......42
圖2.28(a) 天線實作圖(正面),圖中黑點為SMA接頭的center pin.....................................................43
圖2.28(b) 天線實作圖(背面) .............................43
圖2.29 以垂直餽入訊號之藍芽天線實測之S11響應圖..........44
圖2.30 反J形凹槽藍芽天線在2.43GHz實際量測之y-z平面輻射場型圖,最大增益為2.27dBi...................................45
圖2.31 反J形凹槽藍芽天線在2.43GHz實際量測之x-z平面輻射場型圖,最大增益3.29dBi.....................................45
圖3.1 線性天線陣列示意圖................................57
圖3.2 平行偶極天線陣列示意圖............................58
圖3.3(a) 操作在3.5GHz的凹槽天線示意圖...................59
圖3.3(b) 操作在3.5GHz的凹槽天線之微帶饋入線之示意圖.....60
圖3.3(c) 操作在3.5GHz的凹槽天線之接地面及凹槽之示意圖...60
圖3.4 操作在3.5GHz的反J型凹槽天線的S11響應圖............61
圖3.5(a) 凹槽天線在3.5GHz之x-z平面輻射場型模擬圖........62
圖3.5(b) 凹槽天線在3.5GHz之y-z平面輻射場型模擬圖........62
圖3.5(c) 凹槽天線在3.5GHz之x-y平面輻射場型模擬圖........62
圖3.6 1×2反J型凹槽陣列天線示意圖........................63
圖3.7 1×2反J型凹槽陣列天線的S11響應圖...................64
圖3.8(a) 1×2天線陣列在3.5GHz之x-z平面輻射場型模擬圖.....65
圖3.8(b) 1×2天線陣列在3.5GHz之y-z平面輻射場型模擬圖.....65
圖3.8(c) 1×2天線陣列在3.5GHz之x-y平面輻射場型模擬圖.....65
圖3.9 1×4反J型凹槽陣列天線示意圖........................66
圖3.10 1×4反J型凹槽陣列天線的S11響應圖..................67
圖3.11(a) 1×4天線陣列在3.5GHz之x-z平面輻射場型模擬圖....68
圖3.11(b) 1×4天線陣列在3.5GHz之y-z平面輻射場型模擬圖....68
圖3.11(c) 1×4天線陣列在3.5GHz之x-y平面輻射場型模擬圖....68
圖3.12(a) 一字型凹槽天線示意圖..........................69
圖3.12(b)一字型凹槽天線之微帶饋入線之示意圖.............70
圖3.12(c) 一字型凹槽天線之接地面及凹槽之示意圖..........70
圖3.13 一字型凹槽天線之S11模擬之響應圖..................71
圖3.14(a) 一字型凹槽天線之x-z平面輻射場型模擬圖.........72
圖3.14(b) 一字型凹槽天線之y-z平面輻射場型模擬圖.........72
圖3.14(c) 一字型凹槽天線之x-y平面輻射場型模擬圖.........72
圖3.15 1×2一字型凹槽陣列天線示意圖......................73
圖3.16(a) 1×2一字型凹槽陣列天線實作圖(正面) ............73
圖3.16(b) 1×2一字型凹槽陣列天線實作圖(背面) ............73
圖3.17 1×2一字型凹槽陣列天線之S11之響應圖...............74
圖3.18(a) 1×2 一字型凹槽陣列天線在3.5GHz之x-z平面輻射場型
模擬圖..................................................75
圖3.18(b) 1×2 一字型凹槽陣列天線在3.5GHz之y-z平面輻射場型
模擬圖..................................................75
圖3.18(c),1×2 一字型凹槽陣列天線在3.5GHz之x-y平面輻射場型
模擬圖..................................................75
圖3.19 1×4一字型凹槽陣列天線示意圖......................76
圖3.20(a) 1×4一字型凹槽陣列天線實作圖(正面) ............76
圖3.20(b) 1×4一字型凹槽陣列天線實作圖(背面) ............76
圖3.21 1×4 Wimax 一字型凹槽陣列天線之S11之響應圖........77
圖3.22(a) 1×4 一字型凹槽陣列天線在3.5GHz之x-z平面輻射場
型模擬圖................................................78
圖3.22(b) 1×4 一字型凹槽陣列天線在3.5GHz之y-z平面輻射場
型模擬圖................................................78
圖3.22(c) 1×4 一字型凹槽陣列天線在3.5GHz之x-y平面輻射場
型模擬圖................................................78
圖3.23 增加邊緣接地面的1×2一字型凹槽陣列天線............79
圖3.24(a) 增加邊緣接地面的1×2一字型凹槽陣列天線實作圖(正面)
........................................................79
圖3.24(b) 增加邊緣接地面的1×2一字型凹槽陣列天線實作圖(背面)
........................................................79
圖3.25 天線模擬與實測之S11響應圖........................80
圖3.26(a) 增加邊緣接地面的1×2一字型凹槽陣列天線在3.5GHz
之x-z平面輻射場型模擬圖.................................81
圖3.26(b) 增加邊緣接地面的1×2一字型凹槽陣列天線在3.5GHz
之y-z平面輻射場型模擬圖.................................81
圖3.26(c) 增加邊緣接地面的1×2一字型凹槽陣列天線在3.5GHz
之x-y平面輻射場型模擬圖.................................81
圖3.27 增加邊緣接地面的1×4一字型凹槽陣列天線............82
圖3.28(a) 增加邊緣接地面的1×4一字型凹槽陣列天線實作圖(正面)
........................................................82
圖3.28(b) 增加邊緣接地面的1×4一字型凹槽陣列天線實作圖(背面)
........................................................82
圖3.29 天線模擬與實測之S11響應圖........................83
圖3.30(a) 增加邊緣接地面的1×4一字型凹槽陣列天線在3.5GHz
之x-z平面輻射場型模擬圖.................................84
圖3.30(b) 增加邊緣接地面的1×4一字型凹槽陣列天線在3.5GHz
之y-z平面輻射場型模擬圖.................................84
圖3.30(c) 增加邊緣接地面的1×4一字型凹槽陣列天線在3.5GHz
之x-y平面輻射場型模擬圖.................................84
圖3.31 接地面尺寸30×10mm2一字型凹槽陣列天線示意圖.......85
圖3.32(a) 接地面尺寸30×10mm2一字型凹槽陣列天線實作圖(正面)
........................................................85
圖3.32(b) 接地面尺寸30×10mm2一字型凹槽陣列天線實作圖(背面)
........................................................85
圖3.33 天線模擬與實測之S11響應圖........................86
圖3.34(a) 接地面尺寸為30×10mm2的一字型凹槽1×2陣列天線在3.5GHz之x-z平面輻射場型模擬圖...........................87
圖3.34(b) 接地面尺寸為30×10mm2的一字型凹槽1×2陣列天線在3.5GHz之y-z平面輻射場型模擬圖...........................87
圖3.34(c) 接地面尺寸為30×10mm2的一字型凹槽1×2陣列天線在3.5GHz之x-y平面輻射場型模擬圖...........................87
圖3.35(a) 1×4 一字型凹槽陣列天線在3.5GHz之x-z平面輻射場型實
測圖....................................................88
圖3.35(b) 1×4 一字型凹槽陣列天線在3.5GHz之y-z平面輻射場型實
測圖....................................................88
圖3.35(c) 1×4 一字型凹槽陣列天線在3.5GHz之x-y平面輻射場型實
測圖....................................................88
圖3.36(a) 增加邊緣接地面的1×4一字型凹槽陣列天線在3.5GHz之x-z平面輻射場型實測圖.....................................89
圖3.36(b) 增加邊緣接地面的1×4一字型凹槽陣列天線在3.5GHz之y-z平面輻射場型實測圖.....................................89
圖3.36(c) 增加邊緣接地面的1×4一字型凹槽陣列天線在3.5GHz之x-y平面輻射場型實測圖.....................................89

表目錄
表一 不同結構的天線陣列的模擬增益比較圖.................90


參考文獻 參考文獻
[1] H.K. Han,Small printed antennas for wireless communication handset terminals, PhDthesis,RMIT University, Nov. 2001.
[2] Kyriacou, G.A.; Sahalos, J.N.; Analysis of a probe-fed short-circuited microstrip antenna, Vehicular Technology, IEEE Transactions on , Volume: 45 Issue: 3 , Aug 1996 Page(s): 427 -430
[3] Chow, Y.L.; Wan, K.L.; Miniaturizing patch antenna by adding a shorting pin near the feed probe - a folded monopole equivalent,Antennas and Propagation Society International Symposium, 2002. IEEE, Volume: 4 , 2002 Page(s):6-9
[4] R.R.; Jofre, L.; de Flaviis, F.; Small size single and multiband antenna arrays with diversity capabilities for portable devices,Ramirez, Radio and Wireless Conference, 2001. RAWCON 2001. IEEE , 2001 Page(s): 215 -218
[5] Fan Yang; Xue-Xia Zhang; Slitted small microstrip antenna, Antennas and Propagation Society International Symposium, 1998. IEEE , Volume: 2 , 21-26 Jun 1998 Page(s): 1236 -1239 vol.2
[6] Wang, H.Y.; Taylor, S.; Simkin, J.; Oakley, J.M.; Emson, C.; Lancaster, M.J.; Simulation of microstrip small antennas, Antennas and Propagation, 2001. Eleventh International Conference on (IEE Conf. Publ. No. 480) , Volume: 2 , 2001 Page(s): 611 -614 vol.2
[7] Kan, H.K.;Small square dual spiral printed antennas, Waterhouse, R.B.; Electronics Letters , Volume: 37 Issue: 8 , Apr 2001 Page(s): 478 –479
[8] Choi, W.; Kwon, S. and Lee, B.;Ceramic chip antenna using meanderconductor lines, Electronics Letters , Volume: 37 , Issue: 15 , 19 Jul 2001 Pages:933 – 934
[9] Jung-Ick Moon; Seong-Ook Park;Small chip antenna for 2.4/5.8-GHz dual ISM-band applications, Antennas and Wireless Propagation Letters , Volume: 2 , Issue: 21 , 2003, Pages:313 - 315
[10] Folded meander line and multilayered dielectric chip antenna for surface mount Sangman Moon; Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , 3-6 Dec. 2001, Pages:472 - 475 vol.2
[11] P.M.; Bartek, M.; Burghartz, J.N. and Correia, J.H. ; Design and analysis of a 6 GHz chip antenna on glass substrates for integration with RF/wireless Microsystems, Mendes, Antennas and Propagation Society International Symposium, 2003. IEEE , Volume: 2 , 22-27 June 2003 Pages:667 - 670 vol.2
[12]Tsung-Wen Chiu; Wang, C.; Chih-Ming Su and Kin-Lu Wong;Surface-mountable dual side-feed circularly polarized ceramic chip antenna, Electronic Materials and Packaging, 2002. Proceedings of the 4th International Symposium on , 4-6 Dec. 2002, Pages:434 - 437
[13]張建平,Notch及T型槽孔平面天線特性之研究,碩士論文,淡 江大學電機工程學系,2004年6月。
[14]林文彥,符合IEEE802.16e-2005標準的WiMAX多頻帶(2.4~6GHz)小型天線的設計,碩士論文,淡江大學電機工程學系,2006年6月。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信