淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2906200702082800
中文論文名稱 變動需求下考慮允許缺貨且部分欠撥之非瞬間退化物品的存貨模式
英文論文名稱 An EOQ inventory model for non-instantaneous deteriorating items with shortages and partial backordering under variable demands
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 95
學期 2
出版年 96
研究生中文姓名 吳興漢
研究生英文姓名 Hsing-Han Wu
學號 694560342
學位類別 碩士
語文別 中文
口試日期 2006-06-11
論文頁數 61頁
口試委員 指導教授-歐陽良裕
委員-楊志德
委員-婁國仁
中文關鍵字 存貨  非瞬間退化  部份欠撥  斜坡型需求  售價 
英文關鍵字 Inventory  Non-instantaneous Deteriorating  Partial Backlogging  Ramp Type Demand Rate  Selling Price 
學科別分類 學科別社會科學管理學
中文摘要 在日常生活中,大部份的消費型物品都會產生腐敗或者是衰敗的現象,最常見的就是市場中生鮮蔬果類和酒精類,另外還有化學製品、科技產品等,在正常存放情況下,都會因為時間的流逝導致物品自然發生退化。而退化可分為兩種情況,一種為瞬間退化,一種則為非瞬間退化。瞬間退化即物品在購入的同時,就發生退化;而非瞬間退化則是物品在購入後,經過一段時間後才發生退化。再者,如果期初物品的訂購數量過少,或是當期需求量大增時,往往會發生缺貨的情況。在一家獨佔或數家寡佔的市場,一旦發生缺貨,而且沒有同類型的替代品可供使用時,顧客只好選擇等待補貨或放棄購買,其所造成的損失對公司總利潤的影響並不顯著。然而近幾年,在全球化的影響下,市場多已轉型為完全競爭,亦即,市場上充斥著許多同質性高的物品,除非顧客對該品牌有一定程度的忠誠或特殊的偏好,否則於發生缺貨時,顧客可能選擇購買其他同質性的替代品。此時,因缺貨而產生的損失對公司的總利潤而言,可能會造成嚴重的影響。
傳統的存貨模式,都假設物品是可以永久保存的,而且不允許缺貨的情形發生,為了使模式更能符合真實市場,本研究探討非瞬間退化性物品、允許缺貨且部份欠撥的存貨系統,我們建立兩個不同需求率的單一物品存貨模式。第二章係假設物品的需求與售價呈線性遞減的關係,模式中考慮允許缺貨且部份欠撥,而欠撥率為顧客等候下一次補貨所需時間長度的函數。第三章則是保留第二章部份欠撥的假設,將物品的需求率改為斜坡型且與存貨水準有關。兩個模式皆以單位時間總利潤有最大值為目標,先以傳統的最佳化原理,證明最適解存在而且唯一。接著,分別建立演算法以輔助找出最適解。最後,舉數值範例說明求解過程,並做敏感度分析。
英文摘要 In the real world, most of consumptive products could be decayed or damaged, such as vegetables, fruits, alcohol, chemical products, technical products and others. Normally, the products in storage could be deteriorated by itself as the time going. There are two kinds of deterioration, one is instantaneous deteriorating items, and the other is non-instantaneous deteriorating items. Instantaneous deteriorating means that the product is deteriorated immediately and non-instantaneous deteriorating means that the product is deteriorated after a period of time. Furthermore, if the order quantity is not large enough, or the demand of the product accrues, the backlogging will happen. At a monopoly or oligopoly market, once the shortages occur and there is no substitute to be supplied, customers only have to wait for backorder or give up. The influence caused by shortages is not significant to the company’s total profits. However in recent years, under the influence of globalization, the market has already transformed into perfect competition market and it is filled with the homogeneous products. Unless the customers have the loyalty or special preference to the brand, as the shortage occurs, the customers may probably choose to purchase other homogeneous substitutes. At this situation, the loss caused by shortages will do the serious damage to the company’s total profit.
In classical inventory models, it is generally assumed that the items can be stored indefinitely and occurrences of shortages have never happened. In order to make the model fit to the real market, we discuss the inventory system for non-instantaneous deteriorating items with shortages and partially backlogging. We develop two inventory models for a single product with the different demand rates. In chapter 2, it is assumed that the demand depends on the selling price with a linear decreasing relation. In this model, shortages are allowed and the backlogging rate is variable, which depends on customers’ waiting time for the next replenishment. In chapter 3, we extend the model in chapter 2 with a ramp-type and stock-dependent consumption rate. The objective is to find the maximum total profit per unit time of the inventory system for the two models. First, we prove that the optimal solution is exists uniquely. Then, we establish algorithms to find the optimal solution, respectively. Finally, numerical examples are provided to illustrate the proposed model and sensitivity analysis is carried out.
論文目次 目錄
目錄.....................I
表目錄...................III
圖目錄...................IV
使用符號一覽表...................V
基本假設...................VI
第一章 緒論...................1
1.1 研究動機與目的...................1
1.2 相關文獻探討...................3
1.3 研究方法...................5
1.4 研究架構...................5
第二章 需求與售價有關且允許缺貨的非瞬間退化物品之經濟訂購量存貨模式...................7
2.1 前言...................7
2.2 符號與假設...................7
2.3 模式的建立...................8
2.4 模式的求解...................11
2.5 敏感度分析...................19
2.6 數值範例...................20
第三章 允許缺貨,需求呈斜坡型且與存貨水準有關的非瞬間退化物品之經濟訂購量存貨模式...................24
3.1 前言................... 24
3.2 符號與假設...................24
3.3 模式的建立...................25
3.4 模式的求解...................40
3.5 數值範例...................50
第四章 結論及後續研究...................54
4.1 結論 ...................54
4.2 後續研究方向...................56
參考文獻...................58

表目錄
表2.1 例題2.1的求解程序列表...................21
表2.2 例題2.2的求解程序列表...................21
表2.3 存貨模式中不同參數值變動對最適解之影響的彙整表...................22
表3.1 例題3.2的求算結果列表...................50
表3.2 例題3.3的求算結果列表...................51
表3.3 存貨模式中不同參數值變動對最適解之影響的彙整表...................51

圖目錄
圖 2.1存貨水準與時間的關係圖...................8
圖 3.1 情況一的存貨水準與時間關係圖...................26
圖 3.2 情況二的存貨水準與時間關係圖...................31
圖 3.3 情況三的存貨水準與時間關係圖...................36

參考文獻 中文文獻:
楊志德 (2007)。考慮非即時退化性物品的一些確定性存貨模式之研究,淡江大學管理科學研究所博士學位論文。


英文文獻:
[1] Abad, P. L. (1996), “Optimal pricing and lot sizing under conditions of perishability and partial backordering,” Management Science, Vol. 42, No. 8, pp. 1093-1104.
[2] Abad, P. L. (2001), “Optimal price and order size for a reseller under partial backordering,” Computers & Operations Research, Vol. 28, Issue 1, pp. 53-65.
[3] Cohen, M. A. (1977), “Joint pricing and ordering policy for exponentially decaying inventory with known demand,” Naval Research Logistics Quarterly, Vol. 24, No. 2, pp. 257-268.
[4] Covert, R. P. and Philip, G. C. (1973), “An EOQ model with Weibull distribution deterioration,” AIIE Transactions, Vol. 5, No. 4, pp. 323-326.
[5] Datta, T. K. and Pal, A. K. (1990), “A note on an inventory model with inventory-level-dependent demand rate,” Journal of the Operational Research Society, Vol. 41, pp. 971-975.
[6] Dye, C. Y. (2007), “Joint pricing and ordering policy for a deteriorating inventory with partial backlogging,” Omega, Vol. 35, No. 2, pp. 184-189.
[7] Eilon, S. and Mallaya, R. V. (1966), “Issuing and pricing policy of semi-perishables,” Proceedings of the 4th International Conference on Operational Research, Wiley-Interscience, New York.
[8] Erlenkotter, D. (1989), “Notes: An early classic misplaced: Ford W. Harris’s Economic Order Quantity Model of 1915,” Management Science, Vol. 35, No. 7, pp. 898-900.
[9] Ghare, P. M. and Schrader, G. H. (1963), “A model for an exponentially decaying inventory,” Journal of Industrial Engineering, Vol. 14, pp. 238-243.
[10] Gupta, R. and Vrat, P. (1986), “Inventory model with multi-items under constraint systems for stock dependent consumption rate,” Operational Research, Vol. 24, pp. 41-42.
[11] Harris, F. W. (1913), “How many parts to make at once,” Factory, The Magazine of Management, Vol. 10, No. 2, pp. 135-136.
[12] Mandal, B. and Pal, A. K. (1998), “Order level inventory system with ramp type demand rate for deteriorating items,” Journal of Interdisciplinary Mathematics, Vol. 1, pp. 49-66.
[13] Mandal, B. N. and Phaujdar, S. (1989), “An inventory model for deteriorating items and stock-dependent consumption rate,” Journal of the Operational Research Society, Vol. 40, pp. 483-488.
[14] Ouyang, L. Y. and Dye, C. Y. (2005), “An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging,” European Journal of Operational Research, Vol. 163, Issue 3, pp. 776-783.
[15] Park, K. S. (1982), “Inventory models with partial backorders,” International Journal of Systems Science, Vol. 13, pp. 1313-1317.
[16] Philip, G. C. (1974), “A generalized EOQ model for items with Weibull distribution,” AIIE Transactions, Vol. 6, pp. 159-162.
[17] Roach, B. (2005), “Origin of the economic order quantity formula; transcription or transformation? ,” Management Decision, Vol. 43, No. 9, pp. 1262-1268.
[18] Shah, Y. K. (1977), “An order-level lot size inventory model for deteriorating items,” AIIE Transactions, Vol. 9, pp. 108-112.
[19] Silver, E. A., Pyke, D. F. and Peterson, R. (1998), “Inventory management and production planning and scheduling,” John Wiley & Sons, New York, Third Ed., p. 150.
[20] Tadikamalla, P. R. (1978), “An EOQ inventory model for items with Gamma distribution,” AIIE Transactions, Vol. 10, pp. 100-103.
[21] Wee, H. M. (1992), “Perishable commodities inventory policy with partial backordering,” Chung Yuan Journal, Vol. 12, pp. 191-198.
[22] Wee, H. M. (1995), “Joint pricing and replenishment policy for deteriorating inventory with declining market,” International Journal of Production Economics, Vol. 40, pp. 163-171.
[23] Wee, H. M. (1997), “A replenishment policy for items with a price-dependent demand and a varying rate of deterioration,” Production Planning & Control, Vol. 8, No. 5, pp. 494-499.
[24] Wee, H. M. (1999), “Deteriorating inventory model with quantity discount, pricing and partial backordering,” International Journal of Production Economics, Vol. 59, No. 1, pp. 511-518.
[25] Wu, K. S. and Ouyang, L. Y. (2000), “A replenishment policy for deteriorating items with ramp type demand rate,” Proceedings of the National Science Council(Part A), Vol. 24, No. 4, pp. 279-286.
[26] Wu, K. S., Ouyang, L. Y. and Yang, C. T. (2006), “An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging,” International Journal of Production Economics, Vol. 101, Issue 2, pp. 369-384.
[27] Wu, K. S., Ouyang, L. Y. and Yang, C. T. (2007), “Retailer’s Optimal Ordering Policy for Deteriorating Items with Ramp-type Demand under Stock-dependent Consumption Rate,” International Journal of Information and Management Sciences, In Press.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信