淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2906200623250300
中文論文名稱 結合零價鐵與Fenton法處理染料廢水
英文論文名稱 Treating dye wastewater by ZVI and Fenton reaction
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 林美蕙
研究生英文姓名 Mei-Hui Lin
電子信箱 693331018@s93.tku.edu.tw
學號 693331018
學位類別 碩士
語文別 中文
口試日期 2006-06-07
論文頁數 57頁
口試委員 指導教授-李奇旺
委員-康世芳
委員-李柏青
中文關鍵字 偶氮染料  零價鐵  擬一階反應速率常數  Fenton法  ZVI-Fenton法  ZVI-H2O2法 
英文關鍵字 Azo dye  ZVI (zero valent iron)  first-order reaction rate constant  Fenton  ZVI-Fenton  ZVI-H2O2 
學科別分類 學科別應用科學環境工程
中文摘要 零價鐵(zero valent iron,ZVI)可以有效去除偶氮染料之色度,而Fenton對於TOC有不錯的處理成效,倘若零價鐵一直存在系統中,就會有源源不絕的亞鐵提供Fenton反應,而且染料被零價鐵分解成較小的分子後,也將有利於Fenton氧化降解TOC。因此本研究將結合零價鐵與Fenton法來處理偶氮染料orange II的色度及TOC,一開始先以零價鐵處理染料,探討於不同pH值、零價鐵加入量和初始染料濃度下,色度和TOC之去除、產生亞鐵與用酸量之關係,接著比較ZVI-Fenton、Fenton、ZVI-H2O2三種不同系統對染料去除之影響。
在pH 3.0、加入愈多的零價鐵色度去除速率愈快,而擬一階反應速率常數也愈大,但是不同的初始染料濃度並不會影響反應速率常數;零價鐵處理染料60分鐘後,其TOC去除效果並不明顯;由加酸量和亞鐵產生量的比值觀察主要與零價鐵反應的物質,發現零價鐵在pH 3.0與染料作用的比例高於pH 4.0且加入的零價鐵量越多、染料初始濃度越低會不利於零價鐵的使用率,而色度去除率達90%後,系統會開始出現浮鐵現象,將不利零價鐵連續處理染料。另外,以色度和TOC去除效果來看,ZVI-Fenton的確優於Fenton系統,且零價鐵與Fenton程序最好分開於不同槽體下反應。
最後,以批次式所得之結果,規劃出連續式操作流程與條件,發現染料色度及TOC去除率分別可達95%和40%。
英文摘要 Azo dye can be decolorized easily by zero valent iron (ZVI), and Fenton process is effective for TOC removal. With ZVI presented in the system, supply of ferrous ions for Fenton reaction will be unlimited. After the dye is reduced into small molecules by ZVI, TOC removal of these small molecules by Fenton oxidation will be more favorable. In this study, decolorization and TOC removal of azo dye orange II by ZVI and Fenton were studied.
First, we observe decolorization, TOC removal and acid added versus ferrous generated under different pH value, ZVI dosage and initial dye concentration. And then, we observe treatment effectiveness of dye removal using different systems, namely ZVI-Fenton, Fenton and ZVI-H2O2.
Decolorization of dye was accelerated by ZVI under pH 3.0 and increasing ZVI dosage. Initial dye concentration did not affect the first-order reaction rate constant. TOC removal by ZVI was negligible for reaction time up to sixty minute. The ratio of acid added versus ferrous generated was used to explore the major reaction substance with ZVI. More ZVI react with dye at pH 3.0 than at pH 4.0. It is unfavorable for utilization of ZVI under higher ZVI dosage and lower initial dye concentration. Floatation of ZVI was observed when more than 90% of color was removed due to the generation of hydrogen gas. Decolorization and TOC removal by ZVI-Fenton is better than Fenton system. Meanwhile, ZVI reduction and Fenton oxidation should be employed under different reactors.
Finally, based on the results of the batch reaction, we operated ZVI-Fenton process under completely mixed reactor, obtaining more than 95% and 40% of decolorization and TOC removal, respectively.
論文目次 目錄
第一章、前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章、文獻回顧 4
2-1 結合Fenton處理染料廢水之相關方法 4
2-1-1 Fenton法 4
2-1-2 Fenton-like法 5
2-1-3 Electro-Fenton法 6
2-1-4 Photo-Fenton法 7
2-2 影響Fenton反應之因數 8
2-2-1 Fe2+ and H2O2 加入量 8
2-2-2 pH值 9
2-2-3 溫度 9
2-3 零價鐵的應用及影響零價鐵反應之因數 10
2-3-1 鐵的表面積 10
2-3-2 pH值 11
2-3-3 攪拌強度 12
2-4 結合零價鐵及Fenton(ZVI/Fenton)處理程序 13
第三章、材料與方法 15
3-1 實驗材料與設備 15
3-1-1 實驗材料 15
3-1-2 實驗設備 16
3-2 實驗步驟 21
3-2-1 批次式零價鐵 21
3-2-2 連續式 21
3-3 分析方法與干擾去除 23
第四章、結果與討論 29
4-1 零價鐵在染料廢水中之處理成效 29
4-1-1 零價鐵對於染料廢水中的真色度及TOC去除情形 29
4-1-2 零價鐵在染料廢水中產生亞鐵情形 37
4-2 ZVI-Fenton在染料廢水中處理成效 47
第五章、結論與建議 52
5-1 結論 52
5-2 建議 54
參考文獻 55

 
Figure 1. The chemical structue of Orange II...........................................16
Figure 2. (a) The experimental setup for the batch reaction, (b) The size
of glass column. ........................................................................................18
Figure 3. The experimental setup for the completely mixed reaction......20
Figure 4. Color developed versus time for samples been reacted with ZVI
for various reaction time. ..........................................................................24
Figure 5. The calibration curve for analysis of ferrous concentration
(mM). ........................................................................................................25
Figure 6. Color removal as a function of reaction time for various initial
Dye concentration. ZVI=10 g L-1, pH=3.0. ..............................................31
Figure 7. First order decrease as a function of reaction time for various
initial Dye concentration. ZVI=10 g L-1, pH=3.0.....................................31
Figure 8. Color removal as a function of reaction time for various pHs.
ZVI=10 g L-1, Dye concentration=300 mg L-1. ........................................33
Figure 9. First order decrease as a function of reaction time for various
pHs. ZVI=10 g L-1, Dye concentration = 300 mg L-1...............................33
Figure 10. Color removal as a function of reaction time for various ZVI
added. pH=3.0, Dye concentration=300 mg L-1. ......................................34
Figure 11. First order decrease constant k as a function of reaction time
for various ZVI added. pH=3.0, Dye concentration=300 mg L-1.............35
Figure 12. TOC removal as a function of reaction time for various pHs.
ZVI=10 g L-1, Dye concentration=300 mg L-1. ........................................36
Figure 13. TOC removal as a function of reaction time for various ZVI
added. pH=3.0, Dye concentration=300 mg L-1. ......................................37
Figure 14. TOC removal as a function of reaction time for various initial
Dye concentration. ZVI=10 g L-1, pH=3.0. ..............................................37
Figure 15. Ferrous generated as a function of time for various pHs.
ZVI=20 g L-1, Dye concentration=300 mg L-1. ........................................39
Figure 16. Ferrous generated as a function of time for various ZVI added.
pH=3.0, Dye concentration=300 mg L-1...................................................40
Figure 17. Ferrous generated as a function of time for various initial Dye
concentration. pH=3.0, ZVI=20 g L-1.......................................................41
Figure 18. Reaction process of ZVI treated azo dye orange II(Cao et al.,
1999; Nam and Tratnyek, 2000; Bigg and Judd, 2001; Roy et al., 2003;
Mielczarski et al., 2005; Zhang et al., 2005). ...........................................42
Figure 19. The amount of acid added versus ferrous generated for ZVI in
DI water. pH=3.0, ZVI=20 g L-1...............................................................42
Figure 20. The amount of acid added versus ferrous generated for ZVI in
orange II solution (concentration of 300 mgL-1) with pH fixed at 3.0 and
4.0. ZVI=10 g L-1.The time interval picked corresponded to the system
reaction followed not yet the 90% of ADMI removal . ............................43
Figure 21. The amount of acid added versus ferrous generated for
different ZVI in orange II solution with pH 3.0, Dye concentration=300
mg L-1.The time interval picked corresponded to the system reaction
followed not yet the 90% of ADMI removal . ..........................................44
Figure 22. The amount of acid added versus ferrous generated for ZVI in
orange II solution (concentration of 300,150 and 50 mgL-1) with pH 3.0,
ZVI=10 g L-1.The time interval picked corresponded to the system
reaction followed not yet the 90% of ADMI removal . ............................45
Figure 23. The amount of acid added versus ferrous generated.The time
interval picked corresponded to the system reaction followed the 90% of
ADMI removal..........................................................................................46
Figure 24. The react processes of three different system ZVI-Fenton
FentonZVI-H2O2. ..................................................................................47
Figure 25. The color and TOC removal as a function of various ferrous
concentration for ZVI-Fenton and Fenton reaction. pH=3.0, H2O2/Fe2+=2,
Dye concentration=300 mg L-1. ................................................................49
Figure 26. The color and TOC removal as a function of various ferrous
concentration for ZVI-Fenton and ZVI-H2O2 reaction. pH=3.0,
H2O2/Fe2+=2, Dye concentration=300 mg L-1. .........................................50
Figure 27. Color and TOC removal as a function of reaction time for
ZVI=200 g L-1, pH=3.0, Dye concentration=300 mg L-1, H2O2=8 mM...51

 
Table 1. The effect of dye color on ferrous measurement. .......................26
Table 2. The effect of dye color on hydrogen peroxide measurement. ....27
Table 3. Acid added versus ferrous generated at different pHs, ZVI added
and initial Dye concentration. The time interval picked corresponded to
the system reaction followed not yet the 90% of ADMI removal ...........46
參考文獻 Benjamin, M.M. 2002. Water Chemistry. McGRAW-HILL.
Bergendahl, J.A.,Thies, T.P. 2004. Fenton's oxidation of MTBE with zero-valent iron. Water Research 38(2), 327-334.
Bigg, T.,Judd, S.J. 2001. Kinetics of Reductive Degradation of Azo Dye by Zero-Valent Iron. Institution of Chemical Engineers Trans IChemE 79(B5), 297-303.
Bremner, D.H.,Burgess, A.E.,Houllemare, D.,Namkung, K.-C. 2006. Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Applied Catalysis B: Environmental 63(1-2), 15-19.
Brillas, E.,Calpe, J.C.,Casado, J. 2000. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Research 34(8), 2253-2262.
Cao, J.,Wei, L.,Huang, Q.,Wang, L.,Han, S. 1999. Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38(3), 565-571.
Chen, Y.-M.,Li, C.-W.,Chen, S.-S. 2005. Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere 59(6), 753-759.
Cheng, I.F.,Muftikian, R.,Fernando, Q.,Korte, N. 1997. Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35(11), 2689-2695.
Chou, S.,Huang, Y.-H.,Lee, S.-N.,Huang, G.-H.,Huang, C. 1999. Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Research 33(3), 751-759.
Hsueh, C.L.,Huang, Y.H.,Wang, C.C.,Chen, C.Y. 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58(10), 1409-1414.
Huang, Y.-H.,Chen, C.-C.,Huang, G.-H.,Chou, S.S. 2001. Comparison of a novel electro-Fenton method with Fenton's reagent in treating a highly contaminated wastewater. Water Science and Technology v 43(n 2), p 17-24.
Jank, M.,Koser, H.,Lucking, F.,Martienssen, M.,Wittchen, S. 1998. Decolorization and Degradation of Erioglaucine (Acid Blue 9) Dye in Wastewater. Environmental Technology 19(7), 741-747.
Kang, S.-F.,Chang, H.-M. 1997. Coagulation of textile secondary effluents with Fenton's reagent. Water Science and Technology 36(12), 215-222.
Kang, S.-F.,Liao, C.-H.,Hung, H.-P. 1999. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. Journal of Hazardous Materials 65(3), 317-333.
Lin, S.H.,Lo, C.C. 1997. Fenton process for treatment of desizing wastewater. Water Research 31(8), 2050-2056.
Meric, S.,Kaptan, D.,Olmez, T. 2004. Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere 54(3), 435-441.
Mielczarski, J.A.,Atenas, G.M.,Mielczarski, E. 2005. Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions. Applied Catalysis B: Environmental 56(4), 289-303.
Mu, Y.,Yu, H.-Q.,Zhang, S.-J.,Zheng, J.-C. 2004. Technical Note Kinetics of reductive degradation of Orange II in aqueous solution by zero-valent iron. Journal of Chemical Technology & Biotechnology 79(12), 1429 - 1431.
Nam, S.,Tratnyek, P.G. 2000. Reduction of azo dyes with zero-valent iron. Water Research 34(6), 1837-1845.
Neamtu, M.,Yediler, A.,Siminiceanu, I.,Macoveanu, M.,Kettrup, A. 2004. Decolorization of disperse red 354 azo dye in water by several oxidation processes--a comparative study. Dyes and Pigments 60(1), 61-68.
Oh, S.-Y.,Chiu, P.C.,Kim, B.J.,Cha, D.K. 2003. Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron. Water Research 37(17), 4275-4283.
Perey, J.R.,Chi, P.C.,Huang, C.,Cha, D.K. 2002. Zero-valent iron pretreatment for enhancing the biodegradability of azo dyes. Water Environment Research 74(3), 221-225.
Roy, G.,de Donato, P.,Gorner, T.,Barres, O. 2003. Study of tropaeolin degradation by iron--proposition of a reaction mechanism. Water Research 37(20), 4954-4964.
Sellers, R.M. 1980. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 105(1255), 950-954.
Solozhenko, E.G.,Soboleva, N.M.,Goncharuk, V.V. 1995. Decolourization of azodye solutions by Fenton's oxidation. Water Research 29(9), 2206-2210.
Swaminathan, K.,Sandhya, S.,Carmalin Sophia, A.,Pachhade, K.,Subrahmanyam, Y.V. 2003. Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere 50(5), 619-625.
Yu, F.-Y.,Li, C.-W.,KANG, S.-F. 2005. Color dye and DOC removal, and acid generation during Fenton oxidation of dyes. Environmental Technology 26(5), 537-544.
Yu, G.,Zhu, W.,Yang, Z. 1998. Pretreatment and biodegradability enhancement of DSD acid manufacturing wastewater. Chemosphere 37(3), 487-494.
Zhang, H.,Duan, L.,Zhang, Y.,Wu, F. 2005. The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron. Dyes and Pigments 65(1), 39-43.
財團法人台灣綠色生產力基金會(2001),”染整工程與廢水處理效能提升技術手冊初稿”
鄭成輝(2005),”利用高級氧化程序(AOP)處理半導體工業放流水中COD之研究”,淡江大學水資源及環境工程學系碩士論文
賴志青(2004),”利用研磨鐵粉廢棄物處理含染料廢水之資源化應用研究-Fenton氧化程序”,高雄第一科技大學環境與安全衛生工程系碩士論文.
賴來彬(2002),”Fenton程序氫氧自由基生成之研究”,淡江大學水資源及環境工程學系碩士論文.
蔡燦華(2000),”零價鐵技術祛除三氯乙烯之研究”,國立中央大學環境工程研究所碩士論文

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-06-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-06-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信